153,666 research outputs found

    One-variable word equations in linear time

    Full text link
    In this paper we consider word equations with one variable (and arbitrary many appearances of it). A recent technique of recompression, which is applicable to general word equations, is shown to be suitable also in this case. While in general case it is non-deterministic, it determinises in case of one variable and the obtained running time is O(n + #_X log n), where #_X is the number of appearances of the variable in the equation. This matches the previously-best algorithm due to D\k{a}browski and Plandowski. Then, using a couple of heuristics as well as more detailed time analysis the running time is lowered to O(n) in RAM model. Unfortunately no new properties of solutions are shown.Comment: submitted to a journal, general overhaul over the previous versio

    One-Variable Word Equations in Linear Time

    Get PDF

    Recompression: a simple and powerful technique for word equations

    Get PDF
    In this paper we present an application of a simple technique of local recompression, previously developed by the author in the context of compressed membership problems and compressed pattern matching, to word equations. The technique is based on local modification of variables (replacing X by aX or Xa) and iterative replacement of pairs of letters appearing in the equation by a `fresh' letter, which can be seen as a bottom-up compression of the solution of the given word equation, to be more specific, building an SLP (Straight-Line Programme) for the solution of the word equation. Using this technique we give a new, independent and self-contained proofs of most of the known results for word equations. To be more specific, the presented (nondeterministic) algorithm runs in O(n log n) space and in time polynomial in log N, where N is the size of the length-minimal solution of the word equation. The presented algorithm can be easily generalised to a generator of all solutions of the given word equation (without increasing the space usage). Furthermore, a further analysis of the algorithm yields a doubly exponential upper bound on the size of the length-minimal solution. The presented algorithm does not use exponential bound on the exponent of periodicity. Conversely, the analysis of the algorithm yields an independent proof of the exponential bound on exponent of periodicity. We believe that the presented algorithm, its idea and analysis are far simpler than all previously applied. Furthermore, thanks to it we can obtain a unified and simple approach to most of known results for word equations. As a small additional result we show that for O(1) variables (with arbitrary many appearances in the equation) word equations can be solved in linear space, i.e. they are context-sensitive.Comment: Submitted to a journal. Since previous version the proofs were simplified, overall presentation improve

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    (Un)Decidability Results for Word Equations with Length and Regular Expression Constraints

    Full text link
    We prove several decidability and undecidability results for the satisfiability and validity problems for languages that can express solutions to word equations with length constraints. The atomic formulas over this language are equality over string terms (word equations), linear inequality over the length function (length constraints), and membership in regular sets. These questions are important in logic, program analysis, and formal verification. Variants of these questions have been studied for many decades by mathematicians. More recently, practical satisfiability procedures (aka SMT solvers) for these formulas have become increasingly important in the context of security analysis for string-manipulating programs such as web applications. We prove three main theorems. First, we give a new proof of undecidability for the validity problem for the set of sentences written as a forall-exists quantifier alternation applied to positive word equations. A corollary of this undecidability result is that this set is undecidable even with sentences with at most two occurrences of a string variable. Second, we consider Boolean combinations of quantifier-free formulas constructed out of word equations and length constraints. We show that if word equations can be converted to a solved form, a form relevant in practice, then the satisfiability problem for Boolean combinations of word equations and length constraints is decidable. Third, we show that the satisfiability problem for quantifier-free formulas over word equations in regular solved form, length constraints, and the membership predicate over regular expressions is also decidable.Comment: Invited Paper at ADDCT Workshop 2013 (co-located with CADE 2013

    Context unification is in PSPACE

    Full text link
    Contexts are terms with one `hole', i.e. a place in which we can substitute an argument. In context unification we are given an equation over terms with variables representing contexts and ask about the satisfiability of this equation. Context unification is a natural subvariant of second-order unification, which is undecidable, and a generalization of word equations, which are decidable, at the same time. It is the unique problem between those two whose decidability is uncertain (for already almost two decades). In this paper we show that the context unification is in PSPACE. The result holds under a (usual) assumption that the first-order signature is finite. This result is obtained by an extension of the recompression technique, recently developed by the author and used in particular to obtain a new PSPACE algorithm for satisfiability of word equations, to context unification. The recompression is based on performing simple compression rules (replacing pairs of neighbouring function symbols), which are (conceptually) applied on the solution of the context equation and modifying the equation in a way so that such compression steps can be in fact performed directly on the equation, without the knowledge of the actual solution.Comment: 27 pages, submitted, small notation changes and small improvements over the previous tex
    corecore