394 research outputs found

    Convex Combinatorial Optimization

    Full text link
    We introduce the convex combinatorial optimization problem, a far reaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edge-guaranteed family, and discuss several applications

    Geometry of Log-Concave Density Estimation

    Full text link
    Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on Rd\mathbb{R}^d that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.Comment: 22 pages, 3 figure

    Robust Region-of-Attraction Estimation

    Get PDF
    We propose a method to compute invariant subsets of the region-of-attraction for asymptotically stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-of-attraction. A branch-and-bound type refinement procedure reduces the conservatism. We demonstrate the method on an example from the literature and uncertain controlled short-period aircraft dynamics

    Modeling and Control of Robot-Structure Coupling During In-Space Structure Assembly

    Get PDF
    This paper considers the problem of robot-structure coupling dynamics during in-space robotic assembly of large flexible structures. A two-legged walking robot is used as a construction agent, whose primary goal is to stably walking on the flexible structure while carrying a substructure component to a designated location. The reaction forces inserted by the structure to the walking robot are treated as bounded disturbance inputs, and a trajectory tracking robotic controller is proposed that combines the standard full state feedback motion controller and an adaptive controller to account for the disturbance inputs. In this study, a reduced-order Euler-Bernoulli beam structure model is adapted, and a finite number of co-located sensors and actuators are distributed along the span of the beam structure. The robot-structure coupling forces are treated as a bounded external forcing function to the structure, and hence an output covariance constraint problem can be formulated, in terms of linear matrix inequality, for optimal structure control by utilizing the direct output feedback controllers. The numerical simulations show the effectiveness of the proposed robot-structure modeling and control methodology

    Accuracy controlled data assimilation for parabolic problems

    Get PDF
    This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization

    Monogamy of highly symmetric states

    Full text link
    We study the question of how highly entangled two particles can be when also entangled in a similar way with other particles on the complete graph for the case of Werner, isotropic and Brauer states. In order to do so we solve optimization problems motivated by many-body physics, computational complexity and quantum cryptography. We formalize our question as a semi-definite program and then solve this optimization problem analytically, using tools from representation theory. In particular, we determine the exact maximum values of the projection to the maximally entangled state and antisymmetric Werner state possible, solving long-standing open problems. We find these optimal values by use of SDP duality and representation theory of the symmetric and orthogonal groups, and the Brauer algebra.Comment: Submitted to QIP202

    Space-time residual minimization for parabolic partial differential equations

    Get PDF
    Many processes in nature and engineering are governed by partial differential equations (PDEs). We focus on parabolic PDEs, that describe time-dependent phenomena like heat conduction, chemical concentration, and fluid flow. Even if we know that a unique solution exists, we can express it in closed form only under very strict circumstances. So, to understand what it looks like, we turn to numerical approximation. Historically, parabolic PDEs are solved using time-stepping. One first discretizes the PDE in space as to obtain a system of coupled ordinary differential equations in time. This system is then solved using the vast theory for ODEs. While efficient in terms of memory and computational cost, time-stepping schemes take global time steps, which are independent of spatial position. As a result, these methods cannot efficiently resolve details in localized regions of space and time. Moreover, being inherently sequential, they have limited possibilities for parallel computation. In this thesis, we take a different approach and reformulate the parabolic evolution equation as an equation posed in space and time simultaneously. Space-time methods mitigate the aforementioned issues, and moreover produce approximations to the unknown solution that are uniformly quasi-optimal. The focal point of this thesis is the space-time minimal residual (MR) method introduced by R. Andreev, that finds the approximation that minimizes both PDE- and initial error. We discuss its theoretical properties, provide numerical algorithms for its computation, and discuss its applicability in data assimilation (the problem of fusing measured data to its underlying PDE)
    corecore