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Preface

September 2021 marks my ten-year anniversary at Science Park. My first en-
counter with my future advisor Rob Stevenson was during my second-year
project, and somehow, I’ve been his student ever since. It feels weird that our
official collaboration is now coming to a close. Rob, your ever-critical view
distraught me at times, but it did push me to never settle for mediocrity. Your
ability to debug code by just looking at its output still baffles me. Thank you
for allowing me to pursue a Ph.D. under your wing, and for your continuous
support and supervision this past decade. Thanks to my copromotor Chris
Stolk for being there when I had questions, and the members of my commit-
tee for reading my thesis—I look forward to discussing its results with you.

I spent the spring of 2018 in the London office of Google, working on a
research project in the field of reinforcement learning. Claudio, thanks for
taking me in as an intern, even though I had no formal education on the topic;
I had an absolute blast. Good luck in Amsterdam, I know we’ll keep in touch.

It was a strange feeling when in March 2020, we suddenly had to do our
work from home. Still, aside from teaching over Zoom, I have very fond
memories of this period. Carmen and I had just moved in together and were
spending practically every moment of every day together with our two cats.
At some point during a lunch break, we realised our Ph.D. projects had much
more in common than we previously thought. With lots of uncertainty on the
funding of her final year, we set out to apply for a grant together. We never got
the money, but perhaps the real treasure was the process itself. My gratitude
goes out to everyone that helped us during this rollercoaster.

Zoë, David, Pjotr, Raymond, Gregor, Lenny, Sonja, Anita, Tiny, and the
other colleagues: thank you for overzomeren in Coronatijd. Vera, it was fun
supervising your thesis—good luck with the rest of your studies. Marieke:
thank you for the homemade jams and inkle weaves, our many discussions,
and for running the institute. Evelien: thank you for everything you do.

After a good four years at KdVI, and some six before that at Science Park in
general, it is time to leave the place I now call home. Although I’ve been away
for a couple of months here and there, this is the first time I’ll leave without a
definitive plan on what’s next. I look forward to being a little bored.

Raymond, sinds wij elkaar leerden kennen, hebben we praktisch elk studie-
project samen gedaan, en ik vond het geweldig. Je bent simpelweg een pro-
grammeur van wereldklasse. Je haalt m’n meest competitieve zelf naar boven,
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maar bent natuurlijk ook een enorm goede vriend, en ik kijk met plezier terug
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bedankt voor alle gekke programmeerwedstrijdjes met Mees en Ruben; hoe
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Gregor, sinds jouw komst op het instituut voelt onze groep als een groep,
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1 Introduction

Many processes in nature and engineering are governed by partial differential
equations (PDEs). We focus on parabolic PDEs, that describe time-dependent
phenomena like heat conduction, chemical concentration, and fluid flow.

Parabolic evolution equations describe how a function evolves from a given
initial state as governed by the PDE. On a time interval I := [0, T] and spatial
domain Ω ⊂ Rd, given a linear elliptic spatial partial differential operator A,
an initial state u0 : Ω → R and source term g : I × Ω → R, we aim to find
u : I × Ω → R, subject to appropriate boundary conditions, that solves

{
∂
∂t u + Au = g (on I × Ω),

u = u0 (on {0} × Ω).
(1.1)

Even if we know that a unique solution u exists, we can express it in closed
form only under very strict circumstances1; see also [Eva10, §7]. To under-
stand what u looks like, we turn to numerical approximation. Similar to the idea
of using many tiny line segments to approximate a circle, numerical methods
for PDEs couple many simple equations to approximate a complex equation.

Historically, parabolic evolution equations are solved using time-stepping;
see [Tho06]. One first discretizes the equation in space as to obtain a system
of coupled ordinary differential equations in time. This system is then solved
using the vast theory for ODEs. While efficient in terms of memory and com-
putational cost, time-stepping schemes take global time steps, which are in-
dependent of spatial position. As a result, these methods cannot efficiently
resolve details of u in localized regions of space and time. Moreover, being
inherently sequential, they have limited possibilities for parallel computation.

In this thesis, we take a different approach and reformulate the parabolic
evolution equation as a linear operator equation posed in space and time si-
multaneously. These space-time methods are able to increase the resolution of
discretizations locally, parallelize gracefully, and moreover produce approxi-
mations to the unknown solution that are uniformly quasi-optimal. Returning to
our circle analogy: out of all n-sided polygons inscribed in a circle, the regular
polygon is its uniformly optimal approximation, for any choice of n.

1One is reminded of the following metaphore. Milk production at a dairy farm was low, so the
farmer wrote to the local university asking for help. A multidisciplinary team of professors was assembled,
headed by a theoretical physicist, and weeks of intensive on-site investigation took place. The scholars
returned to the university, notebooks crammed with data. Shortly thereafter, the report came, stating that
“we found a solution, but it works only for spherical cows in a vacuum.”

1



1.1 Residual minimization

Following the pioneering works [BJ89, BJ90], recent years have seen a rapidly
growing interest in space-time methods for parabolic evolution equations. By
starting from a well-posed variational formulation of (1.1), one aims to trans-
fer fundamental properties enjoyed by numerical methods for elliptic PDEs
(like error control, a posteriori error analysis, adaptive discretization, efficient
solution) to the parabolic case. See [SY19] for a review of the recent literature.

The focal point of this thesis is the space-time minimal residual (MR) method
introduced by R. Andreev [And12]. Informally, with δ some discretization
parameter and (Xδ, Yδ) its discrete trial- and test spaces, the MR method finds

uδ
MR := arg min

wδ∈Xδ

[
‖ ∂

∂t wδ + Awδ − g‖2
Yδ ′︸ ︷︷ ︸

PDE residual

+ ‖wδ|t=0 − u0‖2
︸ ︷︷ ︸

initial residual

]
.

Considering a family (Xδ, Yδ)δ∈∆ of discrete trial- and test spaces, we would
like to have guarantees on the error ‖u − uδ

MR‖ of MR solutions. An appeal-
ing property is uniform quasi-optimality, meaning that MR solutions are, up to
some constant C, the best-possible approximation to u from Xδ:

‖u − uδ
MR‖ ≤ C min

w∈Xδ
‖u − wδ‖ uniformly in δ ∈ ∆.

This raises two important questions.
(Q1) What are the conditions on (Xδ, Yδ)δ∈∆ for uniform quasi-optimality?
(Q2) Can we estimate the error ‖u − uδ

MR‖ robustly, even if u is unknown?

As we will see, the conditions of (Q1) are met when Yδ is stable, i.e., large
enough relative to Xδ. At the same time, for the sake of efficiency, we want the
dimension of Yδ to be as small as possible. With this, our goal becomes finding
Xδ that allows an accurate approximation of u, and a corresponding stable Yδ

that is also efficient, in that dim Yδ/ dim Xδ is bounded uniformly in δ ∈ ∆.
The highest approximation power is held by trial spaces that adapt to the

solution at hand, with increased resolution in those regions of the space-time
cylinder where u has local details. Moreover, in view of a practical algorithm,
we want to compute (good approximations to) the MR solutions efficiently.
This raises two further questions.
(Q3) Is there a stable and efficient family (Xδ, Yδ)δ∈∆ that allows adaptivity?
(Q4) How do we construct quasi-optimal solutions as efficiently as possible?

In areas like weather prediction and measuring blood flow in humans,
we are supplied with vast amounts of data as (noisy) measurements of some
unknown function u that abides by a physical law. The process of recovering
u by fusing observations with an underlying mathematical model is known
as data assimilation. It raises the two final questions.
(Q5) How do our findings on residual minimization for parabolic evolution

equations extend to parabolic data assimilation problems?
(Q6) Are there other problems governed by parabolic PDEs that can be un-

derstood using residual minimization?

2 Chapter 1 Introduction



1.1 Residual minimization

Following the pioneering works [BJ89, BJ90], recent years have seen a rapidly
growing interest in space-time methods for parabolic evolution equations. By
starting from a well-posed variational formulation of (1.1), one aims to trans-
fer fundamental properties enjoyed by numerical methods for elliptic PDEs
(like error control, a posteriori error analysis, adaptive discretization, efficient
solution) to the parabolic case. See [SY19] for a review of the recent literature.

The focal point of this thesis is the space-time minimal residual (MR) method
introduced by R. Andreev [And12]. Informally, with δ some discretization
parameter and (Xδ, Yδ) its discrete trial- and test spaces, the MR method finds

uδ
MR := arg min

wδ∈Xδ

[
‖ ∂

∂t wδ + Awδ − g‖2
Yδ ′︸ ︷︷ ︸

PDE residual

+ ‖wδ|t=0 − u0‖2
︸ ︷︷ ︸

initial residual

]
.

Considering a family (Xδ, Yδ)δ∈∆ of discrete trial- and test spaces, we would
like to have guarantees on the error ‖u − uδ

MR‖ of MR solutions. An appeal-
ing property is uniform quasi-optimality, meaning that MR solutions are, up to
some constant C, the best-possible approximation to u from Xδ:

‖u − uδ
MR‖ ≤ C min

w∈Xδ
‖u − wδ‖ uniformly in δ ∈ ∆.

This raises two important questions.
(Q1) What are the conditions on (Xδ, Yδ)δ∈∆ for uniform quasi-optimality?
(Q2) Can we estimate the error ‖u − uδ

MR‖ robustly, even if u is unknown?

As we will see, the conditions of (Q1) are met when Yδ is stable, i.e., large
enough relative to Xδ. At the same time, for the sake of efficiency, we want the
dimension of Yδ to be as small as possible. With this, our goal becomes finding
Xδ that allows an accurate approximation of u, and a corresponding stable Yδ

that is also efficient, in that dim Yδ/ dim Xδ is bounded uniformly in δ ∈ ∆.
The highest approximation power is held by trial spaces that adapt to the

solution at hand, with increased resolution in those regions of the space-time
cylinder where u has local details. Moreover, in view of a practical algorithm,
we want to compute (good approximations to) the MR solutions efficiently.
This raises two further questions.
(Q3) Is there a stable and efficient family (Xδ, Yδ)δ∈∆ that allows adaptivity?
(Q4) How do we construct quasi-optimal solutions as efficiently as possible?

In areas like weather prediction and measuring blood flow in humans,
we are supplied with vast amounts of data as (noisy) measurements of some
unknown function u that abides by a physical law. The process of recovering
u by fusing observations with an underlying mathematical model is known
as data assimilation. It raises the two final questions.
(Q5) How do our findings on residual minimization for parabolic evolution

equations extend to parabolic data assimilation problems?
(Q6) Are there other problems governed by parabolic PDEs that can be un-

derstood using residual minimization?

2 Chapter 1 Introduction

1.2 Outline and contributions

This thesis is based on the following works.

[SW21a] R. Stevenson and J. Westerdiep
Stability of Galerkin discretizations of a mixed space-time variational
formulation of parabolic evolution equations
IMA Journal of Numerical Analysis, 41(1):28–47, 2021.

[SW21b] R. Stevenson and J. Westerdiep
Minimal residual space-time discretizations of parabolic equations:
Asymmetric spatial operators
Submitted to Computers & Mathematics with Applications, arXiv:2106.01090, 2021.

[vVW21a] R. van Venetië and J. Westerdiep
Efficient space-time adaptivity for parabolic evolution equations
using wavelets in time and finite elements in space
Submitted to Numerical Linear Algebra with Applications, arXiv:2104.08143, 2021.

[vVW20a] R. van Venetië and J. Westerdiep
A parallel algorithm for solving linear parabolic evolution equations
To appear in Parallel-in-Time Integration Methods, arXiv:2009.08875, 2020.

[DSW21] W. Dahmen, R. Stevenson, and J. Westerdiep
Accuracy controlled data assimilation for parabolic problems
To appear in Mathematics of Computation, arXiv:2105.05836, 2021.

[Wes20] J. Westerdiep
On p-Robust Saturation on Quadrangulations
Computational Methods in Applied Mathematics, 20(1):169–186, 2020.

Each chapter is essentially one of these papers, is self-contained, and can
be read independently. Notation is roughly consistent between chapters. On
average, the authors contributed equally to all works. We give a short outline.

Chapter 2: introduction on residual minimization

In this chapter, we discuss the preliminaries from an abstract point of view.
Starting from some linear operator equation posed on Hilbert spaces, we in-
troduce equivalent conditions for well-posedness of the problem, discuss its
minimal residual approximation and derive conditions for uniform quasi-optimality
(Q1). We will find the focal point to be uniform inf-sup stability of trial- and test
spaces, and shed some light on estimating the error (Q2).

We then discuss solving the arising linear systems efficiently (Q4), and
finally apply our ideas to the linear parabolic evolution equation (1.1).

Chapter 3: symmetric spatial operators and stable discretizations [SW21a]

As our first exploration into the minimal residual method for parabolic prob-
lems, we restrict ourselves to linear parabolic evolution equations with symmetric
spatial operators, so we consider (1.1) where A is self-adjoint.

We formulate sufficient conditions for uniform inf-sup stability of trial-
and test spaces, and with it, uniform quasi-optimality of MR solutions (Q1).

Moreover, we show that these conditions are satisfied when discretizing
the space-time cylinder into time slabs, where the spatial discretization can
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be adapted on each slab (Q3). While this family of discretizations allows for
refinements localized in space or time, it can’t refine locally in space and time.
In [SvVW21], we find a family that can, constructed as certain spans of wavelets
in time tensorized with (locally refined) finite element functions in space.

Chapter 4: asymmetric spatial operators and error estimation [SW21b]

Next, we take on evolution equations where the spatial partial differential op-
erator A is not necessarily symmetric. We find that for these equations, MR so-
lutions are also quasi-optimal (Q1) but that the optimality constant degrades
for an increasing relative size of the antisymmetric part 1

2 (A − A′) of A.
On the other hand, in the energy norm induced by the parabolic operator,

this optimality constant is robust not only in the discretization parameter, but
also the relative size of 1

2 (A − A′). We derive sufficient conditions for robust
error bounds (Q2), and find the Fortin interpolant to be the leading actor.

We apply this theory to convection-diffusion-reaction equations, with A as

A = −ε∆x︸ ︷︷ ︸
diffusion

+ b · ∇x︸ ︷︷ ︸
convection

+ c.︸︷︷︸
reaction

We think of the convection- and reaction-terms as fixed, and of the diffusion
ε > 0 as a problem parameter. When convection dominates diffusion, so for ε
small, the solution has boundary- and interior layers that we need to resolve.

Chapter 5: adaptive refinement in linear complexity [vVW21a]

In the symmetric setting, we consider the algorithm from [SvVW21] that aims
for optimal convergence using adaptive refinement locally in space and time
(Q3). There, we construct our discretizations as the span of wavelets in time
tensorized with finite element spaces in space. The theory is elegant, but its
implementation requires diligence: the resulting system matrix is dense, so
naive matrix-vector products have quadratic complexity.

In this chapter, we discuss its implementation at optimal linear cost (Q4).
We overcome the problem of matrix-vector multiplication, and use a matrix-
free iterative solver to produce approximate MR solutions ûδ

MR efficiently.
We highlight the interplay between algebraic error ‖uδ

MR − ûδ
MR‖ (Q4) and dis-

cretization error ‖u − uδ
MR‖ (Q2) to achieve quasi-optimality, and see that these

considerations translate to a highly efficient method in practice.

Chapter 6: parallel complexity and parallel implementation [vVW20a]

Next, we explore the minimal residual method in parallel computation (Q4).
Define parallel complexity as the asymptotic runtime of an algorithm given suf-
ficiently many parallel processors with access to a shared memory on which
communication is free. We show that on tensor-product discretizations, the
proposed algorithm runs in polylogarithmic parallel complexity. This is on
par with the best-known algorithms for elliptic problems.
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This parallel complexity translates to a highly scalable algorithm in prac-
tice, and we produce a quasi-optimal solution for the heat equation with over 4
billion unknowns using over 2 thousand parallel cores in under 2 minutes.

Although stated for parabolic evolution equations with symmetric spatial oper-
ators, the results extend naturally to the setting of Chapters 4 and 7.

Chapter 7: accuracy controlled data assimilation [DSW21]

Abandoning our utopia of well-posed problems, we now turn to the ill-posed
parabolic problem where initial data is missing, but we have observational
data instead (Q5). Suppose we are given a source term g : I × Ω → R and
observational data f : I × ω → R on a subdomain ω � Ω (possibly much
smaller than Ω). The data assimilation problem is to recover u : I × Ω → R s.t.{

∂
∂t u + Au = g (on I × Ω),

u = f (on I × ω).
(1.2)

The catch is that (g, f ) need not be consistent, in that (1.2) may not be solvable,
and we instead aim for some u that fits both data and PDE as closely as possible.

Based on our knowledge of well-posed operator equations and residual
minimization, we introduce a regularization term to arrive at a a regularized
minimal residual problem, and study the properties of its discretizations.

A crucial tool for deriving tight error bounds (Q2) is the Carleman estimate.
It allows bounding the norm of a function in our trial space away from zero by
that of its image under the problem operator. More explicitly, say A=−∆x is
the negative Laplacian and u is subject to u|∂Ω =0. Take trial- and test spaces

X := L2(I; H1
0(Ω)) ∩ H1(I; H−1(Ω)), Y := L2(I; H1

0(Ω)).

Given η ∈ (0, T), define Xη := L2([η, T]; H1
0(Ω)) ∩ H1([η, T]; H−1(Ω)). Then

the Carleman estimate states that there is a constant Cη,ω for which

‖w‖Xη ≤ Cη,ω

(
‖ ∂

∂t w + Aw‖Y′ + ‖w‖L2(I×ω)

)
(w ∈ X).

We formulate a highly efficient practical algorithm, and finish this chapter
with extensive numerical experiments to showcase its efficacy.

Chapter 8: p-robust saturation for elliptic problems [Wes20]

In this chapter, we change gears completely and look at a topic related to (Q2)–
(Q3), but in the setting of hp-adaptivity for elliptic boundary value problems.

Classical (h-)adaptive finite element methods for these problems work as
follows. Starting from some initial partition of the problem domain into, say,
triangles, we find the best approximation of the solution in a space of globally
continuous elementwise polynomials of fixed degree. We estimate the error
in this best approximation locally on every element, and refine only those
elements that carry large error. Iterating this process guarantees error con-
vergence at the best algebraic rate possible: with N the number of degrees of
freedom, the error decays as N−s for the best possible s > 0; cf. [Ste07].
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Allowing the polynomial degree to vary between elements, it is possible
to achieve exponential error decay, so proportional to exp(−αNβ) for some
α, β > 0. In [CNSV17a], Canuto, Nochetto, Stevenson, and Verani were the
first to prove instance-optimality of an hp-adaptive loop running in polynomial
time by alternating h-adaptive refinement with hp-adaptive coarsening. The
former increases the accuracy of the approximation, and the latter increases
its efficiency by removing (nearly) redundant degrees of freedom, at the ex-
pense of some accuracy. This produces a saw-tooth graph of the error, and the
sequence of solutions after each coarsening step converges exponentially.

While the hp-coarsening step of [Bin18] is a highly interesting result—in
fact, it featured heavily in both my bachelor’s and master’s theses—in this
chapter, we focus on the refinement step instead. In [CNSV17a], refinement
was driven by an error estimator with bounds sensitive to the polynomial de-
gree, resulting in a potentially exponential runtime. Instead, in [CNSV17b],
refinement is driven by a p-robust estimator. The central question to refine-
ment in polynomial complexity is which increase in local polynomial degrees en-
sures a reduction of the error in energy norm. We discuss this problem in the
setting of quadrilateral partitions that allow one hanging node per edge.

1.3 Outlook

In [SvVW21], we show uniform stability (Q3) for a particular family of spans
of wavelets in time tensorized with (locally refined) finite elements in space.
In Chapter 5, we see this can yield a very efficient algorithm, but also requires
careful implementation. It would be interesting to look at function spaces over
locally refined (prismatic) partitions of the space-time cylinder directly, so
without wavelets in the time-axis, and see if uniform stability holds here too.

We finish this chapter with an outlook of other parabolic problems that
could be solved numerically through space-time residual minimization (Q6).

Semilinear evolution equation

A natural next step is the semilinear problem of finding u that solves
{

∂
∂t u + Au + N(u) = g (on I × Ω),

u = u0 (on {0} × ω),

where N is some nonlinear operator, typically involving no derivatives of u.
Exciting applications are reaction-diffusion systems like the Gray–Scott model

of [GS84, Pea93] for autocatalytic reactions, or the Allen–Cahn equation [AC75]
for phase separation in metal alloys. These exhibit the Turing patterns that are
postulated to underlie the formation of patterns in animal fur and desert sand;
see also the pioneering work [Tur52] by Turing.2 Another application lies in

2Interestingly, Turing seems to have known about the spherical cows metaphore of footnote 1
as well, as [Tur52, p.41] reads: “a system which has spherical symmetry, and whose state is changing
because of chemical reactions and diffusion, will remain spherically symmetrical for ever. (The same would
hold true if the state were changing according to the laws of electricity and magnetism, or of quantum me-
chanics.) It certainly cannot result in an organism such as a horse, which is not spherically symmetrical.”
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the diffusion-drift model, used in semiconduction [MRS90] and in neutron- or
electron transport for nuclear fusion; see [DL00, Ch. XXI.§5] and [Bla19].

First steps for the analysis were taken in [And12, §3.4, §4.5] and [Ste14]: As
it turns out, for ‖(g, u0)‖ small enough, this problem behaves essentially like
a linear problem, and admits a unique solution we can find using fixed-point
iteration. It would be interesting to continue the analysis, and relate the ideas
of [GHPS18, HPSV21] for elliptic problems to parabolic evolution equations.

Goal-oriented adaptivity

In goal-oriented problems, we are interested in some quantity of interest J(u)
rather than the function u itself. Problems like these are prevalent in engi-
neering, where one might be interested in, say, the drag of an airplane, or
blood flow dynamics, where estimates of shear stress on vessel walls are used
in clinical decision-making for patients with cardiovascular disease [BFB+18].

MR solutions uδ
MR yield good approximations to J(u), as for J ∈ X′,

|J(uδ
MR)− J(u)| ≤ ‖J‖X′ ‖uδ

MR − u‖X .

In goal-oriented adaptivity, we can essentially double the rate of convergence by
‘cutting out the middleman’ and running an adaptive loop on J(u) directly. It
would be interesting to relate the ideas of [MS09, BGIP21] for elliptic prob-
lems, and [DC07, MMCP+19] for parabolic problems, to our simultaneous
solution. Our approach is especially welcoming to so-called time-domain goals
that require the entire time evolution, as it simplifies the treatment of the ad-
joint problem, and in any case allows higher approximation rates as we are not
restricted to global time steps.

Optimal control constrained by a parabolic evolution equation

Another type of problem that requires the full time evolution is optimal con-
trol constrained by a parabolic PDE; see [Lio71, §III] for an introduction on
the theory. The prototypical example is placing heaters in a room as to reach
a comfortable temperature everywhere, but many more applications exist.

Using ideas from [BG09, §11] and [GK11, BRU20, LSTY21], it would be
interesting to try adapting our space-time method to this problem.

Data assimilation for human blood flow

A powerful tool in the clinical evaluation of cardiovascular disease is non-
invasive blood flow quantification. Existing methods that can capture blood
flow patterns in three-dimensional space and time either rely on direct mea-
surements (4D flow MRI) or fluid simulations (CFD).

Neither is perfect: 4D flow MRI is progressively gaining ground in clinical
applications, but its output is still relatively noisy and low in resolution. Typi-
cal CFD simulations are based on invasively acquired and/or noisy, defective
initial- and anatomical data, with large errors as a result.
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In an effort to increase the quality of the MRI data, assimilating flow mea-
surements with a model for fluid flow like the Navier–Stokes equations has
become a highly researched problem; see [DV13, SD18, TZA+20, ZBF+20,
BBFV20], and the recent review [KKL+21] on physics-informed machine learn-
ing for data-driven problems governed by PDEs. It would be highly relevant
to apply our space-time method to this task, and relate its performance to ex-
isting solutions.
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2 Preliminaries

Before diving into the results of this thesis, let’s introduce the relevant topics at
a more gentle pace. We discuss the abstract concept of residual minimization for
well-posed operator equations, formulate sufficient and necessary conditions
for uniform quasi-optimality of discrete solutions, and say a little about robust
error estimation. We then turn to solving the arising linear systems efficiently,
and finish with the application to parabolic evolution problems.

Notation

In this thesis, by C � D we mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C � D is defined as D � C, and C � D as C � D and C � D.

For Hilbert spaces U and V, by L(U, V′) we denote the Hilbert space of
bounded linear mappings from U to the dual V′ of V, and by Lis(U, V′) its
subset of boundedly invertible linear mappings U → V′. When B ∈ L(U, V′)
is invertible with bounded inverse, we write B ∈ Lis(U, V′). The adjoint
of B, denoted B′ ∈ Lis(V, U′), is the unique linear operator that satisfies
(Bw)(v) = (B′v)(w) for all w ∈ U and v ∈ V.

2.1 Well-posed linear operator equations

Given Hilbert spaces U and V, for convenience over R, a bounded bilinear
form b : U × V → R, and a linear form l ∈ V′, find a u ∈ U such that

b(u, v) = l(v) (v ∈ V). (2.1.1)

The central question that arises is that of well-posedness of this problem:

Existence Is there a solution for any l ∈ V′?

Uniqueness Is there only a single u for any l ∈ V′?

Continuity Do small changes in l correspond with small changes in u?

Because b is bounded, existence and uniqueness together imply continuity
(by the Open Mapping Theorem).

To answer this question, we take a functional-analytic perspective. Define
the linear operator B : U → V′ : w �→ b(w, ·). Then B is bounded with
‖B‖ = ‖b‖, and (2.1.1) can be recast as seeking u ∈ U so that Bu = l in V′.
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Theorem ([Bra07, Thm. 4.3]). For B ∈ L(U, V′), the following are equivalent:

1. Problem (2.1.1) is well-posed;
2. B is invertible with bounded inverse; B ∈ Lis(U, V′);
3. With RV : V → V′ : v �→ 〈·, v〉V the Riesz map, for any l ∈ V′, u is the

U-component of the solution (µ, u) ∈ V × U of the saddle point problem
[

RV B
B′ 0

] [
µ
u

]
=

[
l
0

]
in V′ × U′. (2.1.2)

Remark. The formulation in (2.1.2) is called a saddle point problem as (µ, u) is
a saddle point of its Lagrange functional

L(v, w) := 1
2 (RVv)(v) + [(Bw)(v)− l(v)]

which is to say that

L(µ, w) ≤ L(µ, u) ≤ L(v, u) ((v, w) ∈ V × U);
(µ, u) minimizes L in the V-component but maximizes it in the U-component.
The name derives from the fact that the prototypical example in 2 dimensions
is a surface that curves up in one axis and down in the other, resembling the
shape of a riding saddle. ♦

2.2 Minimal residual approximation

When U is infinite-dimensional, we cannot be expected to construct u from l.
For that reason, the next-best thing is to find its best approximation from some
finite-dimensional subspace Uδ ⊂ U, i.e. the minimizer of ‖u − wδ‖U over
wδ ∈ Uδ. As u is unknown, this is generally not feasible either.

Instead, we aim for a quasi-optimal uδ ∈ Uδ that satisfies

‖u − uδ‖U � min
wδ∈Uδ

‖u − wδ‖U. (2.2.1)

Usually, δ denotes some discretization parameter and we are not interested in a
single δ, but rather a whole family ∆ = {δ}. In that case, we aim for uniform
quasi-optimal solutions that satisfy (2.2.1) with a constant independent of the
discretization parameter δ ∈ ∆.

Remark. When V = U and B is coercive in that (B·)(·) ≥ α‖ · ‖2
U—cf. (2.4.2)—

finding quasi-best approximations is easy: Céa’s Lemma states that the unique
uδ ∈ Uδ so that Buδ = l in Uδ ′—the Galerkin approximation uδ of u—is quasi-

optimal with constant ‖B‖
α (even ‖B‖1/2

α1/2 when B is also symmetric); cf. [BS08,
§2.8]. For V �= U, our focus, the problem is more nuanced. ♦

The minimizer uδ of ‖l −Bwδ‖V′ over wδ ∈ Uδ is uniformly quasi-optimal:

‖u − uδ‖U ≤ ‖B−1‖‖l −Buδ‖V′ = ‖B−1‖ min
wδ∈Uδ

‖l −Bwδ‖V′

≤ ‖B−1‖‖B‖ min
wδ∈Uδ

‖u − wδ‖U,
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u
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0
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with constant ‖B‖‖B−1‖. However, due to the the dual norm ‖ · ‖V′ , in gen-
eral, neither uδ nor its residual ‖Buδ − l‖V′ can be computed.

There is hope, though. The idea is to find a family (Vδ)δ∈∆ of closed (finite-
dimensional) test spaces in V, ideally with a dimension that is proportional to
that of its corresponding trial space Uδ, for which ‖B · ‖V′ can be controlled
by the computable quantity ‖B · ‖

Vδ ′ uniformly in δ ∈ ∆, i.e.

inf
δ∈∆

inf
w∈Uδ

sup
0 �=v∈Vδ

(Bw)(v)
‖Bw‖V′ ‖v‖V

= inf
δ∈∆

inf
w∈Uδ

‖Bw‖
Vδ ′

‖Bw‖V′
=: γB

∆ > 0. (2.2.2)

We call such families (Uδ, Vδ)δ∈∆ uniformly inf-sup stable; the equivalent

inf
δ∈∆

inf
w∈Uδ

sup
0 �=v∈Vδ

(Bw)(v)
‖w‖U‖v‖V

> 0 (2.2.3)

is called the Ladyzhenskaya–Babuška–Brezzi (LBB) condition in literature.

Remark. The optimal test space Vδ
opt := R−1

V BUδ satisfies dim Vδ = dim Uδ

and the family (Uδ, Vδ
opt)δ∈∆ satisfies γB

∆ = 1. The resulting solutions equal
the minimizer of ‖Bw − l‖V′ over w ∈ Uδ, and so are quasi-optimal with
constant ‖B‖‖B−1‖. However, the construction of Vδ

opt is difficult unless V is
an L2-type function space. Solutions exist by constructing projected optimal test
spaces; see the proof below for an example. ♦

In this discrete dual norm, consider the minimal residual approximation

uδ
MR := arg min

wδ∈Uδ

‖Bwδ − l‖
Vδ ′ . (2.2.4)

This minimizer exists uniquely thanks to (2.2.2) and unique solvability of the
saddle-point system (2.1.2). We discuss its practical computation in §2.3. First,
we have the following result.

Theorem 2.2.1 (Inf-sup stability ⇐⇒ quasi-optimality [§3.3.1]). Assume B ∈
Lis(U, V′). A family (Uδ, Vδ)δ∈∆ of proper nontrivial closed subspaces of U ×
V satisfies (2.2.2) exactly when its minimal residual approximations are uniformly
quasi-optimal. In that case,

‖u − uδ
MR‖U ≤ ‖B‖‖B−1‖

γB
∆

inf
wδ∈Uδ

‖u − wδ‖U (u ∈ U, δ ∈ ∆). (2.2.5)

Proof. Defining the trial-to-test map Tδ ∈ L(U, Vδ) by 〈Tδw, v〉V = (Bw)(v),
the function Tδw ∈ Vδ is the V-orthogonal projection onto Vδ of the optimal
test function R−1

V Bw. Define the projected optimal test space V
δ := ran Tδ|Uδ .

Then V
δ ⊂ Vδ and ‖Bw‖

Vδ ′ = ‖Bw‖
V

δ ′ for w ∈ Uδ, so (2.2.2) still holds

upon restriction to v ∈ V
δ. Moreover, dim V

δ
= dim Uδ and Eδ

V

′BUδ ∈

Lis(Uδ, V
δ ′
). The result follows from Remark 3.3.2 (which stability constant

is the LBB-constant κB∆ from (2.2.3)) after estimating κB∆ ≥ γB
∆

‖B−1‖ .
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In words, uniform quasi-optimality of minimal residual approximations is
equivalent to uniform inf-sup stability of the corresponding family of discrete
trial- and test spaces, so the game becomes showing (2.2.2). In the sequel, we
will often show inf-sup stability conditions using yet another equivalence.

2.2.1 Fortin interpolators

A linear operator Qδ : V → V is a Fortin interpolator [For77] when

ran Qδ ⊂ Vδ, ‖Qδ‖ < ∞, (Bwδ)(Qδv) = (Bwδ)(v) ((wδ, v) ∈ Uδ × V).

It is well-known that the existence of uniformly bounded Fortin interpolators
is a sufficient condition for uniform inf-sup stability. Indeed: for all v ∈ V we

have ‖Qδv‖V ≤ ‖Qδ‖‖v‖V, so that for v �= 0, 1
‖v‖V

≤ ‖Qδ‖
‖Qδv‖V

. Using this, we

find that for any wδ ∈ Uδ,

‖Bwδ‖V′ = sup
0 �=v∈V

(Bwδ)(v)
‖v‖V

= sup
0 �=v∈V

(Bwδ)(Qδv)
‖v‖V

≤ ‖Qδ‖ sup
0 �=v∈V

(Bwδ)(Qδv)
‖Qδv‖V

≤ ‖Qδ‖ sup
0 �=vδ∈Vδ

(Bwδ)(vδ)

‖vδ‖V

= ‖Qδ‖‖Bwδ‖
Vδ ′

so that
‖Bwδ‖

Vδ ′

‖Bwδ‖V′
≥ ‖Qδ‖−1, uniformly in wδ ∈ Uδ and δ ∈ ∆. It turns out that

the existence of such interpolators is also necessary:1

Theorem (Fortin interpolator ⇐⇒ inf-sup stability [Thm. 7.3.11]). Assume
B ∈ Lis(U, V′), let (Uδ, Vδ)δ∈∆ be a family of closed subspaces of U × V. Then
there exists a family (Qδ)δ∈∆ of uniformly bounded Fortin interpolators exactly when
(Uδ, Vδ)δ∈∆ is uniformly inf-sup stable as in (2.2.2).

2.2.2 A posteriori error estimation

To get any idea about the U-norm error ‖wδ − u‖U in some wδ ∈ Uδ. we have
to use the information available to us. The norm of the residual

‖Bwδ − l‖
Vδ ′

sounds promising, as its continuous counterpart has ‖Bwδ − l‖V′ � ‖wδ − u‖U.
In fact, boundedness of B immediately yields efficiency:

‖Bwδ − l‖
Vδ ′ = ‖B(wδ − u)‖

Vδ ′ ≤ ‖B(wδ − u)‖V′ ≤ ‖B‖‖wδ − u‖U.

This means that the residual norm doesn’t overestimate the error too much. The
challenge is to show reliability, i.e., that the residual norm doesn’t underestimate
the error too much either.

1The theorem is actually stated for B ∈ L(U, V′), with condition (2.2.2) defined over
inf{w∈Uδ :Bw �=0}. In current form, the equivalence is also found in [Bra07, 4.8–4.9].
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Property 3 of the Fortin interpolator Qδ guaranteed by §2.2.1 asserts that

(Id − Qδ ′)(BUδ) = 0,

which, combined with boundedness of B−1 and a triangle inequality, shows

‖wδ − u‖U ≤ ‖B−1‖‖Bwδ − l‖V′

≤ ‖B−1‖
(
‖Qδ ′(Bwδ − l)‖

Vδ ′ + ‖(Id − Qδ ′)(Bwδ − l)‖V′

)

= ‖B−1‖
(
‖Qδ ′(Bwδ − l)‖

Vδ ′ + ‖(Id − Qδ ′)l‖V′

)

≤ ‖B−1‖‖Qδ‖‖Bwδ − l‖
Vδ ′ + ‖B−1‖‖(Id − Qδ ′)l‖V′ .

We see that the residual norm is reliable up to a quantity ‖(Id − Qδ ′)l‖V′ we
call data oscillation. For this result to be satisfactory, Qδ ′ should have approxi-
mation properties in that, for sufficiently smooth data l, the data oscillation is of
equal or higher order than the discretization error infwδ∈Uδ ‖wδ − u‖U.

This is out of reach from the abstract viewpoint taken here, but we con-
tinue the argument in §4.7.2 for the parabolic evolution problem, and in §7.3.2
for the parabolic data assimilation problem.

2.3 Solving the discretized system

Writing Eδ
U : Uδ → U and Eδ

V : Vδ → V for the trivial embeddings, the
minimal residual solution uδ

MR from (2.2.4) equals the second component of
the discrete saddle point problem of finding (µδ

MR, uδ
MR) ∈ Vδ × Uδ such that

[
Eδ

V

′RVEδ
V Eδ

V

′BEδ
U

Eδ
U

′B′Eδ
V 0

] [
µδ

MR
uδ

MR

]
=

[
Eδ

V

′l
0

]
in Vδ ′ × Uδ ′. (2.3.1)

Equipping the pair (Uδ, Vδ) with appropriate bases (Φδ, Ψδ), we define

B := (BΦδ)(Ψδ), R := (RVΨδ)(Ψδ), l := l(Ψδ).

We call B the system matrix and l the load vector. The matrix representation of
our saddle point problem is to find (µ, u) ∈ Rdim Vδ × Rdim Uδ

such that

M

[
µ
u

]
=

[
l
0

]
where M :=

[
R B
B� 0

]
.

For vectors v ∈ Rdim Vδ
and w ∈ Rdim Uδ

, we can write v := v�Ψδ ∈ Vδ and
w := w�Φδ ∈ Uδ. In this notation, µδ

MR = µ�Ψδ and uδ
MR = u�Φδ.

Remark. The proof of Theorem 2.2.1 reveals that with the projected optimal
test space V

δ ⊂ Vδ, the resulting system matrix is square and invertible, and
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thus can be used to solve for uδ
MR. This idea is used extensively in discontinu-

ous Petrov–Galerkin methods, where V is a ‘broken’ (discontinuous) space and
constructing V

δ is efficient. In our case, its construction is infeasible, as R−1
V is

a nonlocal operator so the resulting matrix would be dense. We instead solve
the saddle point system (2.3.1) or the normal equations (2.3.2) below. ♦

2.3.1 An important insight

As R is symmetric positive definite (indeed: v�Rv = 〈v�Ψδ, v�Ψδ〉V = ‖v�Ψδ‖2
V),

we can take the Schur complement of M w.r.t. the Vδ-block to isolate the Uδ-
block, yielding the equivalent problem of finding u ∈ Rdim Uδ

that solves

B�R−1Bu = B�R−1l. (2.3.2)

Usually the exact evaluation of the action of R−1 will not be feasible. How-
ever, R−1 can be replaced by any spectrally equivalent K, i.e. one for which there
are 0 < r∆ ≤ R∆ < ∞ such that

σ(KR) ⊂ [r∆, R∆] (δ ∈ ∆). (2.3.3)

Matrices like these are called optimal preconditioners and play an important role
in solving linear systems efficiently as well, as discussed below in §2.3.3.

As R−1 is the matrix inducing the norm on Vδ ′, this amounts to replacing
the norm on Vδ ′ by the uniformly equivalent norm ||| · |||

Vδ ′ induced by K, hence

|||hδ|||
Vδ ′

‖hδ‖
Vδ ′

∈ [R−1
∆ , r−1

∆ ] (hδ ∈ Vδ ′, δ ∈ ∆).

Replacing R−1 by K in (2.3.2) yields the problem of finding û ∈ Rdim Uδ
s.t.

Sû = b where S := B�KB and b := B�Kl.

Note that in general, the solutions û and u do not coincide. However, we
deduce that ûδ

MR := û�Φδ is the unique minimizer of |||Bwδ − l|||
Vδ ′ over wδ ∈

Uδ. As a result, ûδ
MR is uniformly quasi-optimal, with

‖u − ûδ
MR‖U ≤ ‖B‖‖B−1‖

γB
∆

max(R∆, 1)
min(r∆, 1)

inf
wδ∈Uδ

‖u − wδ‖U (δ ∈ ∆).

The importance of this reformulation is that the matrix S is symmetric posi-
tive definite, which allows us to use an iterative solver such as Conjugate Gra-
dients [HS52] to obtain a good approximation to ûδ

MR very efficiently.
Alternatively, one can use MINRES [PS75] to solve the saddle-point sys-

tem, or Bramble–Pasciak CG [BP88], which allows nonsymmetric precondi-
tioners and offers a quantitative advantage over MINRES. When a precondi-
tioner K to R is not available, a variant of LSQR [PS82, Ben99] can be used to
solve the minimal residual problem directly.
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2.3.2 Matrix-free iterative solvers

One important hurdle in applications is that the dimension of trial- and test
spaces can become immense, in the order of billions. In this case, performing
a direct solve on the monolithic matrix S is prohibitively expensive.

In fact, even storing the system matrix B in memory may be out of reach.
Luckily, efficient methods exist for the matrix-free solution of linear systems.
Requiring only the action x �→ Sx (and so those of B�, K, and B), we solve the
linear system using an iterative method: Starting from some initial guess û0, we
generate a sequence (ûk)k∈N of improving approximate solutions.

For k ∈ N, define ûδ
k := û�kΦδ ∈ Uδ. Stopping after k iterations and

incurring an algebraic error ‖ûδ
MR − ûδ

k‖U is acceptable, as long as it is bounded
by the discretization error infwδ∈Uδ ‖u − wδ‖U with some fixed factor λ∆. Then,
the resulting iterative solution is still quasi-optimal:
‖u − ûδ

k‖U ≤ ‖u − ûδ
MR‖U + ‖ûδ

MR − ûδ
k‖U ≤ (1 + λ∆)‖u − ûδ

MR‖U

≤ (1 + λ∆)
‖B‖‖B−1‖

γB
∆

max(R∆ ,1)
min(r∆ ,1) inf

wδ∈Uδ
‖u − wδ‖U

(δ ∈ ∆).

Of course, computing the algebraic error is not straight-forward, as ûδ
MR

is unavailable. For Conjugate Gradients, there are methods to get accurate
bounds on the algebraic error using information already available in the loop;
see the recent work [MPT21] and references therein.

2.3.3 Optimal preconditioning

The performance of the iterative method depends on the quality of the initial
guess, but more so on the (spectral) condition number of S defined as

κ2(S) := ‖S‖‖S−1‖.
This condition number typically explodes for increasing problem size.

A preconditioner P is a matrix such that κ2(PS) � κ2(S). Preconditioners
are an essential tool in solving large sparse systems, as they increase the rate
of convergence of an iterative method dramatically. In fact, S is derived from
a linear operator S ∈ L(Xδ, Xδ ′), so any linear operator P ∈ L(Xδ ′, Xδ) satis-
fying ·(P·) � ‖ · ‖2

Xδ ′ yields an optimal preconditioner P, for which κ2(PS) � 1
uniformly in δ ∈ ∆; cf. [Hip06].

In the most extreme case P = S−1, any iterative method is finished after
a single iteration, but computing the action x �→ S−1x is prohibitively expen-
sive. Therefore, the next best thing is an optimal preconditioner we can apply
efficiently (at cost proportional to dim Xδ). In our parabolic problems, these
are built using wavelets in time and multigrid in space; see [And16, SvVW21].

With an optimal preconditioner, the iterative solver reduces the algebraic
error with a fixed factor in each iteration. In this case, also estimating the
algebraic error becomes feasible by measuring ‖Sûk − b‖P. Indeed:
‖Sûk − b‖P = ‖S(ûk − û)‖P � ‖S(ûk − û)‖S−1 = ‖ûk − û‖S = ‖ûδ

MR − ûδ
k‖U.

In fact, ‖Sûk − b‖P is already available within a preconditioned Conjugate
Gradients loop (as its variable β).
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2.4 Parabolic evolution problems

Heuristically, parabolic PDEs describe time-dependent physical processes that
dissipate2 over time towards some steady state described by an elliptic PDE.
We give a brief introduction on these elliptic PDEs.

Elliptic boundary-value problems

Let Ω ⊂ Rd be a Lipschitz domain as in [BS08, Def. 1.46]. For given forcing data
f : Ω → R, we want to find u : Ω → R solving the boundary-value problem

{
−∆u = f (on Ω),

u = 0 (on ∂Ω).

This is the Poisson equation, and it is the prototyptical elliptic PDE. Describing
the negative Laplacian −∆u by its action when integrated against functions is
known as a weak formulation. Integration by parts yields the bilinear form

a : V × V → R : (η, ζ) �→
∫

Ω
∇η · ∇ζ dx. (2.4.1)

Then for V := H1
0(Ω), a is continuous, and coercive in that for some α > 0

a(η, η) ≥ α‖η‖2
V (η ∈ V), (2.4.2)

(with ‖a‖ = α = 1). For f ∈ V′ = H−1(Ω), the problem to find u ∈ V that
solves a(u, ζ) = f (ζ) for all ζ ∈ V is well-posed in the sense of §2.1.

Example. Many more elliptic PDEs exist. The equation underlying many
chemical processes replaces the Laplace operator ∆ = div∇ with

−div K∇+ b · ∇+ c,

where K models diffusion, b models convective transport, and c is a reaction term
that can also depend nonlinearly on u. We touched briefly on these reaction-
diffusion systems in the Outlook of Chapter 1, and discuss a linear convection-
dominated diffusion problem in Chapter 4. ♦

Example. The fourth-order biharmonic equation ∆2u = f models the equilib-
rium position of a thin elastic plate subject to a vertical force f . Complemented
with clamped boundary conditions, the corresponding bilinear form is coer-
cive on V := H2

0(Ω), and one can use Argyris elements for its conforming
discretization. See [BS08, §5.9] for an overview.

This equation has a rich history, and Boris Galerkin (better romanized as
Galyorkin) first described his now-ubiquitous Galerkin method within this con-
text. See the excellent reviews [GW12, GK12]. ♦

2Dissipative here means that some notion of ‘energy’ is lost over time. This should be con-
trasted with hyperbolic equations, that conserve energy.

18 Chapter 2 Preliminaries
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2.4.1 Parabolic evolution problems

Let V and H be Hilbert spaces (of functions over some spatial domain) such
that the embedding V ⊂ H is dense and continuous. Applying the Riesz
representation theorem, we identify H with its dual, and find H′ ⊂ V′ with
dense and continuous embedding; we say V ⊂ H � H′ ⊂ V′ is a Gelfand
triple. Denote with 〈·, ·〉 the inner product on H × H and its unique extension
to V′ × V, and denote the norm on H by ‖ · ‖.

Let I := (0, T) be a time interval. Let a(t; ·, ·) : V × V → R denote a
bilinear form such that t �→ a(t; ·, ·) is measurable and a(t; ·, ·) is bounded and
coercive—cf. (2.4.2)—uniformly in t. Define a family of linear operators by
(A(t)·)(·) := a(t; ·, ·). For an initial value u0 and forcing data g, we seek u that
solves the parabolic evolution problem

{
du
dt (t) + A(t)u(t) = g(t) (for t ∈ I),

u(0) = u0.
(2.4.3)

Example (Heat equation). Taking H := L2(Ω), V := H1
0(Ω), and a from (2.4.1)

yields the prototypical parabolic heat equation ∂
∂t u − ∆xu = g. Its evolution

problem models the temperature evolution of some object Ω subject to a heat
source g, as the result of thermal conductivity. ♦

In simultaneous space-time variational form, its first equation reads as
finding u from some space X of functions of time and space such that

(Bu)(v) :=
∫

I
〈du

dt (t), v(t)〉+ 〈A(t)u(t), v(t)〉dt =
∫

I
〈g(t), v(t)〉dt =: g(v)

for all v from another space Y. With the trace map γt : w �→ w(t, ·), we can
enforce the initial condition weakly by testing γ0u against additional functions.
Defining A through (Au)(v) :=

∫
I〈A(t)u(t), v(t)〉dt, we get the following.

Theorem ([SS09]). With X := L2(I; V) ∩ H1(I; V′) and Y := L2(I; V),
[

B
γ0

]
u ∈ Lis(X, Y′ × H).

In other words, for any (g, u0) ∈ Y′ × H, the problem of finding u ∈ X s.t.
[

B
γ0

]
u =

[
g

u0

]
(2.4.4)

is a well-posed simultaneous space-time variational formulation of (2.4.3).

Define the symmetric part of A as As := 1
2 (A + A′) ∈ Lis(Y, Y′) and

∂t := B − A ∈ L(X, Y′). We equip Y with the energy norm ‖ · ‖2
Y := (As·)(·),

so As becomes the Riesz map on Y. Equip X with the norm

‖ · ‖2
X := ‖∂t · ‖2

Y′ + ‖ · ‖2
Y + ‖γ0 · ‖2.

Both norms are equivalent to their natural norms.

2.4 Parabolic evolution problems 19



We are now in the situation of the abstract introduction, with

U := X, V := Y × H, B :=

[
B
γ0

]
, and l :=

[
g

u0

]
.

Let’s apply its results. The first insight is that (2.4.4) is equivalent to the saddle
point problem of finding (µ, σ, u) ∈ Y × H × X such that


As 0 B
0 Id γ0
B′ γ′

0 0







µ
σ
u


 =




g
u0
0


 in Y′ × H × X′ (2.4.5)

and we can look at discrete subspaces of X and Y × H, respectively. In Chap-
ter 3, we will see that it is harmless to not discretize H at all, which is equiv-
alent to taking the Schur-complement of the H-block in (2.4.5). The resulting
saddle point problem is to find (µ, u) ∈ Y × X such that[

As B
B′ −γ′

0γ0

] [
µ
u

]
=

[
g

−γ′
0u0

]
in Y′ × X′. (2.4.6)

2.4.2 The minimal residual method of Andreev
In [And12, And13, And16], R. Andreev looked at the properties of minimal
residual (MR) solutions of this parabolic problem and its efficient solution.
Take some family (Xδ, Yδ)δ∈∆ of subspaces of X × Y. In current notation, the
MR method amounts to finding

arg min
wδ∈Xδ

‖Bwδ − g‖2
Yδ ′ + ‖γ0wδ − u0‖2.

Our abstract introduction shows that MR solutions are uniformly quasi-optimal
exactly when the family (Xδ, Yδ)δ∈∆ is uniformly inf-sup stable, i.e.

inf
δ∈∆

inf
wδ∈Xδ

‖Bwδ‖2
Yδ ′ + ‖γ0wδ‖2

‖Bwδ‖2
Y′ + ‖γ0wδ‖2

> 0. (2.4.7)

Andreev was able to prove the following important result that reduces inf-sup
stability of the entire operator (B, γ0) to that of the time-derivative ∂t only.

Theorem ([And13, Thm. 4.1]). Let Xδ ⊆ Yδ. When A is symmetric and

γ∂t
∆ := inf

δ∈∆
inf

wδ∈Xδ

‖∂twδ‖Yδ ′

‖∂twδ‖Y′
> 0, (2.4.8)

then the family (Xδ, Yδ)δ∈∆ is uniformly inf-sup stable, i.e., (2.4.7) holds.

In Chapter 4, we show that the symmetry condition on A can be dropped.

Stable trial- and test spaces It is clear by now that the main game is to con-
struct, for every trial space Xδ, a test space Yδ ⊂ Y that guarantees uniform
inf-sup stability of the time derivative (2.4.8). To ensure that the resulting lin-
ear system can be solved efficiently, we aim for a test space with dimension
proportional to its trial space, i.e. dim Yδ � dim Xδ uniformly in δ ∈ ∆.

A full explanation is outside the scope of this introduction. We give an
overview of families of stable trial- and test spaces in §4.5.
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3 Stable space-time Galerkin discretizations
of parabolic PDEs

Abstract We analyze Galerkin discretizations of a new well-posed mixed
space-time variational formulation of parabolic PDEs. For suitable pairs
of finite element trial spaces, the resulting Galerkin operators are shown to
be uniformly stable. The method is compared to two related space-time
discretization methods introduced in [IMA J. Numer. Anal., 33(1) (2013),
pp. 242–260] by R. Andreev and in [Comput. Methods Appl. Math., 15(4)
(2015), pp. 551–566] by O. Steinbach.

3.1 Introduction

In recent years one witnesses a rapidly growing interest in simultaneous space-
time methods for solving parabolic evolution equations originally introduced
in [BJ89, BJ90], see e.g. [GK11, And13, UP13, Ste15, GN16, LMN16, SS17, DS18,
NS19, RS19, VR18, SZ20, FK21]. Compared to classical time marching meth-
ods, space-time methods are much better suited for a massively parallel im-
plementation, and have the potential to drive adaptivity simultaneously in
space and time.

Apart from the first order system least squares formulation recently intro-
duced in [FK21], the known well-posed simultaneous space-time variational
formulations of parabolic equations in terms of partial differential operators
only, so not involving non-local operators, are not coercive. As a consequence,
it is non-trivial to find families of pairs of discrete trial- and test-spaces for
which the resulting Petrov–Galerkin discretizations are uniformly stable. The
latter is a sufficient and, as we will see, necessary condition for the Petrov–
Galerkin approximations to be quasi-optimal, i.e., to yield an up to a constant
factor best approximation to the solution from the trial space. This concept
has to be contrasted to rate optimality that, for quasi-uniform temporal and
spatial partitions, has been shown for any reasonable numerical scheme under
the assumption of sufficient regularity of the solution.

If one allows different spatial meshes at different times, then for the classi-
cal time marching schemes quasi-optimality of the numerical approximations

This chapter is a minor modification of Stability of Galerkin discretizations of a mixed
space-time variational formulation of parabolic evolution equations, R. Stevenson and J. West-
erdiep, IMA Journal of Numerical Analysis, 41(1):28–47, 2021.
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is known not to be guaranteed as demonstrated in [Dup82, Sect. 4].
In view of the difficulty in constructing stable pairs of trial- and test-spaces,

in [And13] Andreev considered minimal residual Petrov–Galerkin discretiza-
tions. They have an equivalent interpretation as Galerkin discretizations of an
extended self-adjoint mixed system, with the Riesz lift of the residual of the
primal variable being the secondary variable. This is our point of view.

A different path was followed by Steinbach in [Ste15]. Assuming a ho-
mogenous initial condition, for equal test and trial finite element spaces w.r.t.
fully general finite element meshes, there stability was shown w.r.t. a weaker
mesh-dependent norm on the trial space. As we will see, however, this has the
consequence that for some solutions of the parabolic problem these Galerkin
approximations are far from being quasi-optimal w.r.t. the (mesh-independent)
natural norm on the trial space.

In the current work, we modify Andreev’s approach by considering an
equivalent but simpler mixed system that we construct from a space-time vari-
ational formulation that follows from applying the Brézis–Ekeland–Nayroles
principle [BE76, Nay76]. With the same trial space for the primal variable, we
show stability of the Galerkin discretization of this mixed system whilst uti-
lizing a smaller trial space for the secondary variable. In addition, the stiffness
matrix resulting from this mixed system is more sparse. In experiments, the
errors in the Galerkin solutions are nevertheless very comparable.

3.1.1 Organization

In Sect. 3.2 we derive the two self-adjoint mixed system formulations of the
parabolic problem that are central in this work. In Sect. 3.3 we give sufficient
conditions for stability of Galerkin discretizations for both systems. We pro-
vide an a priori error bound for the Galerkin discretization of the newly intro-
duced system, and improved a priori error bounds for the methods from [And13]
and [Ste15]. In Sect 3.4, we show that the crucial condition for stability (be-
ing the only condition for the newly introduced mixed system) is satisfied
for prismatic space-time finite elements whenever the generally non-uniform
partition in time is independent of the spatial location, and the generally non-
uniform spatial mesh in each time slab is such that the corresponding L2-
orthogonal projection is uniformly H1-stable. In Sect. 3.5 we present some
first simple numerical experiments for a one-dimensional spatial domain and
uniform meshes. Conclusions are presented in Sect. 3.6.

3.1.2 Notations

In this work, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C � D is defined as D � C, and C � D as C � D and C � D.

For normed linear spaces E and F, by L(E, F) we will denote the normed
linear space of bounded linear mappings E → F, and by Lis(E, F) its subset
of boundedly invertible linear mappings E → F. We write E ↪→ F to denote

24 Chapter 3 Stable space-time Galerkin discretizations of parabolic PDEs
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that E is continuously embedded into F. For simplicity only, we exclusively
consider linear spaces over the scalar field R.

For linear spaces E and F, sequences Φ = (φj)j∈J ⊂ E, Ψ = (ψi)i∈I ⊂
F, f ∈ F′, and a linear A : E → F′, we define the column vector f (Ψ) :=
[ f (ψi)]i∈I and matrix (AΦ)(Ψ) := [(Aφj)(ψi)]i∈I,j∈J . If E = F is an inner
product space, then with R : E → E′ denoting the Riesz map, we set 〈Ψ, Φ〉 :=
(RΦ)(Ψ) = [(Rφj)(ψi)]i∈I,j∈J = [〈ψi, φj〉]i∈I,j∈J .

3.2 Space-time formulations of the parabolic evolution problem

Let V, H be separable Hilbert spaces of functions on some “spatial domain”
such that V ↪→ H with dense and compact embedding. Identifying H with its
dual, we obtain the Gelfand triple V ↪→ H � H′ ↪→ V′.

We use the notation 〈·, ·〉 to denote both the scalar product on H × H, and
its unique extension by continuity to the duality pairing on V′ × V. Corre-
spondingly, the norm on H will be denoted by ‖ · ‖.

For a.e.
t ∈ I := (0, T),

let a(t; ·, ·) denote a bilinear form on V × V such that for any η, ζ ∈ V, t �→
a(t; η, ζ) is measurable on I, and such that for a.e. t ∈ I,

|a(t; η, ζ)| � ‖η‖V‖ζ‖V (η, ζ ∈ V) (boundedness), (3.2.1)

a(t; η, η) � ‖η‖2
V (η ∈ V) (coercivity). (3.2.2)

With A(t) ∈ Lis(V, V′) being defined by (A(t)η)(ζ) = a(t; η, ζ), we are
interested in solving the parabolic initial value problem to finding u such that

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.
(3.2.3)

Remark 3.2.1. With ũ(t) := u(t)e−�t, (3.2.3) is equivalent to dũ
dt (t) + (A(t) +

�Id)ũ(t) = g(t)e−�t (t ∈ I), ũ(0) = u0. So if initially a(t; η, η) is not coercive
but only satisfies a Gårding inequality a(t; η, η) + �〈η, η〉 � ‖η‖2

V (η ∈ V), then
one can consider a transformed problem such that (3.2.2) is valid. ♦

In a simultaneous space-time variational formulation, the parabolic PDE
reads as finding u from a suitable space of functions of time and space s.t.

(Bw)(v) :=
∫

I
〈dw

dt (t), v(t)〉+ a(t; w(t), v(t))dt =
∫

I
〈g(t), v(t)〉 =: g(v)

(3.2.4)
for all v from another suitable space of functions of time and space. One pos-
sibility to enforce the initial condition is by testing it against additional test
functions. A proof of the following result can be found in [SS09], cf. [DL92,
Ch.XVIII, §3] and [Wlo82, Ch. IV, §26] for slightly different statements.
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Theorem 3.2.2. With X := L2(I; V) ∩ H1(I; V′), Y := L2(I; V), under condi-
tions (3.2.1) and (3.2.2) it holds that

[
B
γ0

]
∈ Lis(X, Y′ × H), (3.2.5)

where for t ∈ Ī, γt : u �→ u(t, ·) denotes the trace map. That is, assuming g ∈ Y′

and u0 ∈ H, finding u ∈ X such that

(Bu)(v1) + 〈u(0, ·), v2〉 = g(v1) + 〈u0, v2〉 ((v1, v2) ∈ Y × H), (3.2.6)

is a well-posed variational formulation of (3.2.3).

One ingredient of the proof of this theorem is the continuity of the embed-
ding X ↪→ C( Ī, H), in particular implying that for any t ∈ Ī, γt ∈ L(X, H).

Defining A, As ∈ Lis(Y, Y′) (here (3.2.2) is used), Aa ∈ L(Y, Y′), and
C, ∂t ∈ L(X, Y′) by

(Au)(v) :=
∫

I
a(t; u(t), v(t)) dt, As := 1

2 (A + A′), Aa := 1
2 (A − A′),

C := B − As, ∂t := B − A,

an equivalent well-posed variational formulation of the parabolic PDE is ob-
tained by applying the so-called Brézis–Ekeland–Nayroles variational princi-
ple [BE76, Nay76], cf. also [And12, §3.2.4]. It reads as

(C′A−1
s C + As + γ′

TγT)u = (Id + C′A−1
s )g + γ′

0u0, (3.2.7)

where the operator on the left is in Lis(X, X′), is self-adjoint and coercive.

We provide a direct proof of these facts. Since

[
As 0
0 Id

]
∈ Lis(Y × H, Y′ ×

H), an equivalent formulation of (3.2.5) as a self-adjoint saddle point equation
reads as finding (µ, σ, u) ∈ Y × H × X (where µ and σ will be zero) such that




As 0 B
0 Id γ0
B′ γ′

0 0







µ
σ
u


 =




g
u0
0


 , (3.2.8)

or

(B′A−1
s B + γ′

0γ0)u = B′A−1
s g + γ′

0u0. (3.2.9)

Thanks to (3.2.5), this Schur complement B′A−1
s B + γ′

0γ0 is in Lis(X, X′), is
self-adjoint and coercive.

We show that (3.2.9) and (3.2.7) are equal. Recalling the definitions of C
and ∂t, note that the right-hand sides of both equations are the same, and that

B′A−1
s B + γ′

0γ0 = C′A−1
s C + As + C + C′ + γ′

0γ0

= C′A−1
s C + As + ∂t + ∂′t + γ′

0γ0
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[
B
γ0

]
∈ Lis(X, Y′ × H), (3.2.5)
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I
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2 (A − A′),
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thanks to A′
a = −Aa. Our claim is proven after noting that for w, v ∈ X,

((∂t + ∂′t + γ′
0γ0)w)(v) =

∫

I
〈dw

dt (t), v(t)〉+ 〈w(t), dv
dt (t)〉dt + 〈w(0), v(0)〉

=
∫

I
d

dt 〈w(t), v(t)〉dt + 〈w(0), v(0)〉 = (γ′
TγTw)(v).

As (3.2.9) was obtained as the Schur complement equation of (3.2.8), in its
form (3.2.7) it is naturally obtained as the Schur complement of the problem
of finding (λ, u) ∈ Y × X such that

[
As C
C′ −(As + γ′

TγT)

] [
λ
u

]
=

[
g

−(g + γ′
0u0)

]
. (3.2.10)

Knowing that its Schur complement is in Lis(X, X′), As ∈ Lis(Y, Y′), and C ∈
L(X, Y′), we infer that the self-adjoint operator at the left hand side of (3.2.10)
is in Lis(Y × X, Y′ × X′).

Substituting C = B − As and Bu = g, we find the secondary variable to be

λ = u.

Remark 3.2.3. When reading γ′
TγT as ∂t + ∂′t +γ′

0γ0, the system (3.2.10) has re-
markable similarities to a certain preconditioned version presented in [NS19]
of a discretized parabolic PDE using the implicit Euler method in time. Ideas
concerning optimal preconditioning developed in that paper, as well as those
in [And16], can be expected to work for Galerkin discretizations of (3.2.10). ♦

Remark 3.2.4. In equations (3.2.8) and (3.2.9), the operator As can be replaced
by a general self-adjoint Ãs ∈ Lis(Y, Y′). With C̃ := B − Ãs, the equivalent
equation (3.2.7) then reads as

(C̃′ Ã−1
s C̃ + 2As − Ãs + γ′

TγT)u = (Id + C̃′ Ã−1
s )g + γ′

0u0,

and (3.2.10) as
[

Ãs C̃
C̃′ −(2As − Ãs + γ′

TγT)

] [
λ
u

]
=

[
g

−(g + γ′
0u0)

]
,

with solution λ = u. ♦

In the next section, we study Galerkin discretizations of equations (3.2.8)
and (3.2.10), which then are no longer equivalent.

Since the secondary variables µ and σ in (3.2.8) are zero, the subspaces
for their approximation do not have to satisfy any approximation properties.
Since the secondary variable λ in (3.2.10) is non-zero, the subspace of Y for
its approximation has to satisfy approximation properties, and the error in its
best approximation enters the upper bound for that of its primal variable.

On the other hand, (uniform) stability will be easier to realize with equa-
tion (3.2.10) and will also be proven to hold true for Aa �= 0; the system matrix
will be more sparse; and the number of unknowns will be smaller.
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In order to facilitate the derivation of some quantitative results, we will
equip the spaces Y and X with the ‘energy-norms’ defined by

‖v‖2
Y := (Asv)(v), ‖u‖2

X := ‖u‖2
Y + ‖∂tu‖2

Y′ + ‖u(T)‖2,

which are equivalent to the standard norms on these spaces. Correspondingly,
we measure orthogonality in Y w.r.t. the ‘energy scalar product’ (As·)(·).

3.3 Stable discretizations of the parabolic problem

3.3.1 Uniformly stable Petrov–Galerkin discretizations, quasi-best approximations

This subsection is devoted to proving the following theorem.

Theorem 3.3.1. Let W and Z be Hilbert spaces, and F ∈ Lis(Z, W ′). Let (Wδ, Zδ)δ∈∆
be a family of closed subspaces of W × Z such that for each δ ∈ ∆ it holds that
Eδ

W
′FEδ

Z ∈ Lis(Zδ, Wδ ′), where Eδ
W : Wδ → W, Eδ

Z : Zδ → Z denote the triv-
ial embeddings. Then the collection (zδ)δ∈∆ of Petrov–Galerkin approximations to
z ∈ Z, determined by Eδ

W
′FEδ

Zzδ = Eδ
W

′Fz, is quasi-optimal, i.e. ‖z − zδ‖Z �
inf0 �=z̄δ∈Z ‖z − z̄δ‖Z, uniformly in z ∈ Z and δ ∈ ∆, iff

inf
δ∈∆

inf
0 �=z∈Zδ

sup
0 �=w∈Wδ

|(Fz)(w)|
‖z‖Z‖w‖W

> 0 (uniform stability).

Proof. The mapping Pδ := z �→ zδ = Eδ
Z(Eδ

W
′FEδ

Z)
−1Eδ

W
′Fz is a projector. For

{0} � Zδ � Z, it holds that Pδ �∈ {0, Id}, and consequently, ‖Id− Pδ‖L(Z,Z) =

‖Pδ‖L(Z,Z) (see [Kat60, XZ03]). We obtain that

sup
z∈Z\Zδ

‖z − zδ‖Z

infz̄δ∈Zδ ‖z − z̄δ‖Z
= sup

z∈Z\Zδ

sup
z̄δ∈Zδ

‖(I − Pδ)z‖Z

‖z − z̄δ‖Z

= sup
0 �=z̄∈Z

‖(I − Pδ)z̄‖Z
‖z̄‖Z

= ‖Pδ‖L(Z,Z).

(3.3.1)

It remains to show uniform boundedness of ‖Pδ‖L(Z,Z) if and only if uniform
stability is valid.

The definition of Pδ shows that

‖F−1‖−1
L(W ′ ,Z) ≤

‖Pδ‖L(Z,Z)

‖Eδ
Z(Eδ

W
′FEδ

Z)
−1Eδ

W
′‖L(W ′ ,Z)

≤ ‖F‖L(Z,W ′).

Further, we have that

‖Eδ
Z(Eδ

W
′
FEδ

Z)
−1Eδ

W
′‖L(W ′ ,Z) = ‖(Eδ

W
′
FEδ

Z)
−1Eδ

W
′‖L(W ′ ,Zδ)

= ‖(Eδ
W

′
FEδ

Z)
−1‖L(Wδ ′ ,Zδ)
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28 Chapter 3 Stable space-time Galerkin discretizations of parabolic PDEs

where the last equality follows from ‖Eδ
W

′‖L(W ′ ,Wδ ′) ≤ 1 and, for the other

direction, from the fact that for given f δ ∈ Wδ ′ the function f ∈ W ′ defined
by f |Wδ := f δ and f |(Wδ)⊥ := 0 satisfies ‖ f ‖W ′ = ‖ f δ‖Wδ ′ and f δ = Eδ

W
′ f .

Then seeing that

‖(Eδ
W

′
FEδ

Z)
−1‖−1

L(Wδ ′ ,Zδ)
= inf

0 �=z∈Zδ
sup

0 �=w∈Wδ

|(Fz)(w)|
‖z‖Z‖w‖W

(3.3.2)

completes the proof.

Remark 3.3.2. In particular above analysis provides a short self-contained
proof of the quantitative results

‖F−1‖−1
L(W ′ ,Z) ≤

supz∈Z\Zδ
‖z−zδ‖Z

infz̄δ∈Zδ ‖z−z̄δ‖Z

inf0 �=z∈Zδ sup0 �=w∈Wδ
|(Fz)(w)|
‖z‖Z‖w‖W

≤ ‖F‖L(Z,W ′),

that were established earlier in [TV16, §2.1, in particular (2.12)]. ♦

3.3.2 Uniformly stable Galerkin discretizations of (3.2.10)

Let Yδ × Xδ be a closed subspace of Y × X, and let Eδ
Y : Yδ → Y and Eδ

X : Xδ →
X denote the trivial embeddings. Since Eδ

Y
′AsEδ

Y ∈ Lis(Yδ, Yδ ′) (as well as
being an isometry), the Galerkin operator resulting from (3.2.10) can be fac-
torized as

[
Eδ

Y
′AsEδ

Y Eδ
Y
′CEδ

X
(Eδ

Y
′CEδ

X)
′ −Eδ

X
′
(As + γ′

TγT)Eδ
X

]
=

[
Id 0

(Eδ
Y
′CEδ

X)
′(Eδ

Y
′AsEδ

Y)
−1 Id

]
◦

[
Eδ

Y
′AsEδ

Y 0
0 −Eδ

X
′
(As + γ′

TγT)Eδ
X − (Eδ

Y
′CEδ

X)
′(Eδ

Y
′AsEδ

Y)
−1Eδ

Y
′CEδ

X

]
◦

[
Id (Eδ

Y
′AsEδ

Y)
−1Eδ

Y
′CEδ

X
0 Id

]
.

(3.3.3)

We conclude that this Galerkin operator is invertible if and only if the Schur
complement

Eδ
X
′
(As + γ′

TγT)Eδ
X + (Eδ

Y
′
CEδ

X)
′(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
CEδ

X (3.3.4)

is invertible, which holds true for any Xδ �= {0}.
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Theorem 3.3.3. Let (Yδ, Xδ)δ∈∆ be a family of closed subspaces of Y × X such that

γ∆ := inf
δ∈∆

inf
{u∈Xδ : ∂tu �=0}

sup
0 �=v∈Yδ

(∂tu)(v)
‖∂tu‖Y′ ‖v‖Y

> 0.1 (3.3.5)

Let ρ = ρ∆ be the root in [0, 1) of

γ2
∆(ρ

2 − ρ) + ‖Aa‖2
L(Y,Y′)(ρ − 1) + ρ = 0,

and let

C∆ :=
(3 + ‖Aa‖2

L(Y,Y′))(
√

3 + ‖Aa‖L(Y,Y′))

(1 − ρ∆)γ
2
∆

,

so that C∆ = 3
√

3 γ−2
∆ when ‖Aa‖L(Y,Y′) = 0, and lim‖Aa‖L(Y,Y′)→∞ C∆ = ∞.

Then with λ = u and (λδ, uδ) denoting the solutions of (3.2.10) and its Galerkin
discretization, respectively, it holds that

√
‖λ − λδ‖2

Y + ‖u − uδ‖2
X ≤ C∆ inf

(λ̄δ ,ūδ)∈Yδ×Xδ

√
‖λ − λ̄δ‖2

Y + ‖u − ūδ‖2
X .

(3.3.6)

Proof. In view of the second inequality presented in Remark 3.3.2, we start
with bounding the norm of the continuous operator. Using Young’s inequal-
ity, for (λ, u) ∈ Y × X we have

‖Asλ + ∂tu‖2
Y′ + ‖∂′tλ − (As + γ′

TγT)u‖2
X′

≤ 3
2‖Asλ‖2

Y′ + 3‖∂tu‖2
Y′ + 3

2‖∂′tλ‖2
X′ + 3‖(As + γ′

TγT)u‖2
X′

≤ 3
2 (‖λ‖2

Y + ‖λ‖2
Y) + 3(‖∂tu‖2

Y′ + ‖u‖2
Y + ‖u(T)‖2) = 3(‖λ‖2

Y + ‖u‖2
X).

Together with ‖Aau‖2
Y′ + ‖A′

aλ‖2
X′ ≤ ‖Aa‖2

L(Y,Y′)(‖λ‖2
Y + ‖u‖2

X), it shows that

∥∥∥∥
[

As C
C′ −(As + γ′

TγT)

] ∥∥∥∥
L(Y×X,Y′×X′)

≤
∥∥∥∥
[

As ∂t
∂′t −(As + γ′

TγT)

] ∥∥∥∥
L(Y×X,Y′×X′)

+

∥∥∥∥
[

0 Aa
A′

a 0

] ∥∥∥∥
L(Y×X,Y′×X′)

≤
√

3 + ‖Aa‖L(Y,Y′).

To bound, in view of (3.3.2), the norm of the inverse of the Galerkin oper-
ator, we use the block-LDU factorization (3.3.3). With r := (1 + ‖Aa‖2

L(Y,Y′)),
for u ∈ X it holds that

‖Cu‖Y′ ≤ ‖∂tu‖Y′ + ‖Aa‖L(Y,Y′)‖u‖Y ≤
√

r ‖u‖X .

1Here and in the following, inf{u∈Xδ : ∂tu �=0} sup0 �=v∈Yδ
(∂tu)(v)

‖∂tu‖Y′ ‖v‖Y
should be read as 1 in the

case that {u ∈ Xδ : ∂tu �= 0} = ∅.
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Together with the fact that Eδ
Y
′AsEδ

Y ∈ Lis(Yδ, Yδ ′) is an isometry and again
Young’s inequality, it shows that for (λ, u) ∈ Yδ × Xδ,

‖λ − (Eδ
Y
′
AsEδ

Y)
−1Eδ

Y
′
CEδ

Xu‖2
Y + ‖u‖2

X

≤ (1 + r)‖λ‖2
Y + (1 + r−1)r‖u‖2

X + ‖u‖2
X

≤ (2 + r)(‖λ‖2
Y + ‖u‖2

X),

or
∥∥∥∥
[

Id (Eδ
Y
′AsEδ

Y)
−1Eδ

Y
′CEδ

X
0 Id

]−1 ∥∥∥∥
L(Yδ×Xδ ,Yδ×Xδ)

≤
√

3 + ‖Aa‖2
L(Y,Y′).

Obviously, the L(Yδ ′ × Xδ ′, Yδ ′ × Xδ ′)-norm of the inverse of the first factor
at the right-hand side of (3.3.3) satisfies the same bound.

For the 2nd factor, we consider the Schur complement operator. From
(Eδ

Y
′AsEδ

Yλ)(λ) = ‖λ‖2
Y for λ ∈ Yδ, we have for f ∈ Yδ ′, f ((Eδ

Y
′AsEδ

Y)
−1 f ) =

‖(Eδ
Y
′AsEδ

Y)
−1 f ‖2

Y = ‖ f ‖2
Yδ ′ , and so for u ∈ Xδ

(
(Eδ

Y
′
CEδ

X)
′(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
CEδ

Xu
)
(u) = ‖Eδ

Y
′
CEδ

Xu‖2
Yδ ′ .

Using that for u ∈ Xδ,

‖Eδ
Y
′
∂tEδ

Xu‖2
Yδ ′ =

(
sup

0 �=v∈Yδ

(∂tu)(v)
‖v‖Y

)2
≥ γ2

∆‖∂tu‖2
Y′

and
‖Eδ

Y
′
AaEδ

Xu‖2
Yδ ′ ≤ ‖Aa‖2

L(Y,Y′)‖u‖2
Y,

Young’s inequality shows that

‖Eδ
Y
′
CEδ

Xu‖2
Yδ ′ ≥ (1 − ρ∆)γ

2
∆‖∂tu‖2

Y′ + (1 − ρ−1
∆ )‖Aa‖2

L(Y,Y′)‖u‖2
Y,

where we assumed that ρ∆ > 0 i.e. Aa �= 0. It follows that

((As+γ′
TγT)u)(u) + ‖Eδ

Y
′
CEδ

Xu‖2
Yδ ′

≥ (1 + (1 − ρ−1
∆ )‖Aa‖2

L(Y,Y′))‖u‖2
Y + ‖u(T)‖2 + (1 − ρ∆)γ

2
∆‖∂tu‖2

Y′

≥ (1 − ρ∆)γ
2
∆‖u‖2

X (3.3.7)

where we used that 1 + (1 − ρ−1
∆ )‖Aa‖2

L(Y,Y′) = (1 − ρ∆)γ
2
∆ by definition of

ρ∆. One easily verifies (3.3.7) also in the case that Aa = 0 i.e. ρ∆ = 0.
Since Eδ

Y
′AsEδ

Y ∈ Lis(Yδ, Yδ ′) is an isometry, and 0 < (1 − ρ∆)γ
2
∆ ≤ γ2

∆ ≤
1, we conclude that the L(Yδ ′ × Xδ ′, Yδ × Xδ)-norm of the inverse of the sec-
ond factor is bounded by (1 − ρ∆)

−1γ−2
∆ .

In view of the second inequality presented in Remark 3.3.2 in combination
with (3.3.2), the proof is completed by collecting the derived bounds.
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3.3.3 Galerkin discretizations of (3.2.8)

In Chapter 4, we generalize results to the case of Aa �= 0 but as in [And13,
Ste15], in this section we operate under the condition that

A = As. (3.3.8)

Following [Ste15], for a given closed subspace Yδ ⊆ Y we define the ‘mesh-
dependent’ norm on X by

‖u‖2
X,Yδ := ‖u‖2

Y + sup
0 �=v∈Yδ

(∂tu)(v)2

‖v‖2
Y

+ ‖u(T)‖2.

Note that ‖ · ‖X,Y = ‖ · ‖X .
The following result generalizes the ‘inf-sup identity’, known for Yδ = Y,

see e.g. [ESV17], to mesh-dependent norms.

Lemma 3.3.4. Assuming (3.3.8), then for u ∈ Yδ ∩ X,

‖u‖2
X,Yδ = sup

0 �=v∈Yδ

(Bu)(v)2

‖v‖2
Y

+ ‖u(0)‖2.

If additionally γ0u ∈ Hδ, then

‖u‖2
X,Yδ = sup

0 �=(v1,v2)∈Yδ×Hδ

((Bu)(v1) + 〈u(0), v2〉)2

‖v1‖2
Y + ‖v2‖2

. (3.3.9)

Proof. Define y ∈ Yδ by (Asy)(v) = (∂tu)(v) (v ∈ Yδ). Then (Asy)(y) =

sup0 �=v∈Yδ
(∂tu)(v)2

‖v‖2
Y

. Furthermore, for v ∈ Yδ, (Bu)(v) = (As(y + u))(v) and

so, thanks to u ∈ Yδ,

sup
0 �=v∈Yδ

(Bu)(v)2

‖v‖2
Y

= (As(y + u))(y + u) = (Asy)(y) + 2(Asy)(u) + (Asu)(u)

= (Asy)(y) + 2(∂tu)(u) + (Asu)(u) = ‖u‖2
X,Yδ − ‖u(0)‖2

where we used that 2
∫

I〈∂tu(t), u(t)〉dt = ‖u(T)‖2 − ‖u(0)‖2.
The second statement follows from

sup
0 �=(v1,v2)∈Yδ×Hδ

((As(y + u))(v1) + 〈u(0), v2〉)2

‖v1‖2
Y + ‖v2‖2

= (As(y + u))(y + u) + ‖u(0)‖2,

thanks to u(0) ∈ Hδ.

The next theorem gives sufficient conditions for existence and uniqueness
of solutions of the Galerkin discretization of (3.2.8), and provides a suboptimal
error estimate.
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Theorem 3.3.5. Assuming (3.3.8), for closed subspaces Yδ × Hδ × Xδ ⊂ Y × H ×
X with Xδ ⊆ Yδ and ran γ0|Xδ ⊆ Hδ, the Galerkin discretization of (3.2.8) has a
unique solution (µδ, σδ, uδ) ∈ Yδ × Hδ × Xδ, and with u the solution of (3.2.6),

‖u − uδ‖X,Yδ ≤ 2 inf
ūδ∈Xδ

‖u − ūδ‖X .

Proof. Thanks to the assumptions Xδ ⊆ Yδ and ran γ0|Xδ ⊆ Hδ, the inf-sup
identity (3.3.9) quarantees the unique solvability of the Galerkin system.

For any u ∈ Xδ, there exist unique yu ∈ Yδ, hu ∈ Hδ such that

(Asyu)(v1) + 〈hu, v2〉 = (Bu)(v1) + 〈γ0u, v2〉 ((v1, v2) ∈ Yδ × Hδ).

We decompose Yδ × Hδ into Zδ := clos{(yu, hu) : u ∈ Xδ}2 and its orthogonal
complement Wδ. Using that for any u ∈ Xδ and (v1, v2) ∈ Wδ, (Bu)(v1) +
〈u(0), v2〉 = 0, one infers that for any u ∈ Xδ, the inf-sup identity (3.3.9)
remains valid when the supremum is restricted to 0 �= (v1, v2) ∈ Zδ. Fur-
thermore, since for any (v1, v2) ∈ Zδ there exists a z ∈ Xδ with (Bz)(v1) +
〈z(0), v2〉 �= 0, we infer that uδ is the unique solution of the Petrov–Galerkin
discretization of finding uδ ∈ Xδ such that

(Buδ)(v1) + 〈uδ(0), v2〉 = g(v1) + 〈u0, v2〉 ((v1, v2) ∈ Zδ). (3.3.10)

By applying these observations consecutively, we infer that for any ūδ ∈ Xδ,

‖uδ − ūδ‖2
X,Yδ = sup

0 �=(v1,v2)∈Zδ

((B(uδ − ūδ))(v1) + 〈uδ(0)− ūδ(0), v2〉)2

‖v1‖2
Y + ‖v2‖2

= sup
0 �=(v1,v2)∈Zδ

((B(u − ūδ))(v1) + 〈u(0)− ūδ(0), v2〉)2

‖v1‖2
Y + ‖v2‖2

≤ ‖u − ūδ‖2
X ,

(3.3.11)

where we again applied (3.3.9) now for Yδ = Y. A triangle-inequality com-
pletes the proof.

Theorem 3.3.5 can be used to demonstrate optimal rates for the error in
uδ in the ‖ · ‖X,Yδ -norm, and hence also in the Y-norm. Yet, for doing so
one needs to control the error of best approximation in the generally strictly
stronger ‖ · ‖X-norm, which requires regularity conditions on the solution u
that exceeds those that are needed for optimal rates of the best approximation
in the ‖ · ‖X,Yδ -norm. In other words, this theorem does not show that uδ is a
quasi-best approximation from Xδ in the ‖ · ‖X,Yδ -norm, or in any other norm.

Remark 3.3.6. Theorem 3.3.5 provides a generalization, with an improved
constant, of Steinbach’s result [Ste15, Theorem 3.2]. There the case was con-
sidered that the initial value u0 = 0, ran γ0|Xδ = {0}, Hδ = {0}, and Yδ =

2In the (discontinuous) Petrov–Galerkin community, Yδ × Hδ and Zδ are known under the
names test search space (or search test space), and projected optimal test space (or approximate
optimal test space), respectively.
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Xδ. In that case the Galerkin discretization of (3.2.8) means solving uδ ∈ Xδ

from (Buδ)(v) = g(v) (v ∈ Xδ) (indeed, Zδ in the proof of Theorem 3.3.5
is Xδ × {0}). So with this approach the forming of ‘normal equations’ as in
(3.2.9) is avoided.

In case of an inhomogeneous initial value u0 ∈ H, one may approximate
the solution as ū + wδ, where ū ∈ X is such that γ0ū = u0, and wδ ∈ Xδ solves
(Bwδ)(v) = g(v)− (Bū)(v) (v ∈ Xδ). Although such a ū ∈ X always exists,
its practical construction becomes inconvenient for u0 �∈ V. For u0 ∈ V, ū can
be taken as its constant extension in time.

To investigate in the setting of [Ste15] the relation between the ‖ · ‖X,Yδ -
and ‖ · ‖X-norms, we consider Xδ of the form Xδ

t ⊗ Xδ
x, where Xδ

t is the space
of continuous piecewise linears, zero at t = 0, w.r.t. a uniform partition of I
with mesh-size hδ = T

2Nδ
for some Nδ ∈ N, and Xδ

x ⊂ V with ∩δ∈∆Xδ
x �= {0}.

Given zδ ∈ Xδ, Lemma 3.3.4 shows that

sup
0 �=v∈Xδ

|(Bzδ)(v)|
‖zδ‖X‖v‖Y

=
‖zδ‖X,Yδ

‖zδ‖X
. (3.3.12)

For some arbitrary, fixed 0 �= zx ∈ ∩δ∈∆Xδ
x, we take zδ = zδ

t ⊗ zx ∈ Xδ,
where zδ

t ∈ Xδ
t is defined by d

dt zδ
t = (−1)i−1 on [(i− 1)hδ, ihδ]. Since zδ

t (0) = 0,

also zδ
t (T) = 0. We have ‖zδ

t ‖L2(I) � hδ, ‖ dzδ
t

dt ‖L2(I) � 1, sup0 �=v∈Y
(∂tzδ)(v)
‖v‖Y

=

‖ dzδ
t

dt ‖L2(I)‖zx‖V′ � 1, ‖zδ‖Y = ‖zδ
t ‖L2(I)‖zx‖V � hδ, and

sup
0 �=v∈Xδ

(∂tzδ)(v)
‖v‖Y

= sup
0 �=v∈Xδ

t

〈dzδ
t

dt , v〉L2(I)

‖v‖L2(I)
sup

0 �=v∈Xδ
x

〈zx, v〉
‖v‖V

≤ sup
0 �=v∈Xδ

t

〈dzδ
t

dt , v〉L2(I)

‖v‖L2(I)
‖zx‖V′ .

Let us equip the space of piecewise constants w.r.t. the aforementioned
uniform partition with the L2(I)-normalized basis {χδ

i } of characteristic func-
tions of the subintervals, and Xδ

t with the set of nodal basis functions {φδ
i } nor-

malized so that their maximal value is h−
1
2

δ . Then with G := [〈χj, φi〉L2(I)]ij =

1
2




1 1
. . . . . .

1 1
1



, and x :=

√
hδ [(−1)i−1]1≤i≤2Nδ

, from the uniform L2(I)-stability

of {φδ
i } one infers that

sup
0 �=v∈Xδ

t

〈dzδ
t

dt , v〉L2(I)

‖v‖L2(I)
� sup

0 �=y

〈Gx, y〉
‖y‖ = ‖Gx‖ =

1
2

√
hδ.

By substituting these estimates in the right-hand side of (3.3.12), we find that

its value is �
√

hδ, so that inf0 �=zδ∈Xδ sup0 �=v∈Xδ
|(Bzδ)(v)|
‖zδ‖X‖v‖Y

�
√

hδ. As follows
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from the first inequality in Remark 3.3.2, this means that there exist solu-
tions u ∈ X of the parabolic problem for which the errors in X-norm in these

Galerkin approximations from Xδ are a factor � h−
1
2

δ larger than these errors
in the best approximations from Xδ.

Numerical evidence provided by [Ste15, Table 6] indicate that in general
these Galerkin approximations are not quasi-optimal in the Y-norm either. ♦

Returning to the general setting of Theorem 3.3.5, in the following theo-
rem it will be shown that under an additional assumption quasi-optimal error
estimates are valid.

Theorem 3.3.7. Assuming (3.3.8), let (Yδ, Hδ, Xδ)δ∈∆ be a family of closed sub-
spaces of Y × H × X such that in addition to Xδ ⊆ Yδ and ran γ0|Xδ ⊆ Hδ, also
(3.3.5) is valid. Then for the Galerkin solutions (µδ, σδ, uδ) ∈ Yδ × Hδ × Xδ of
(3.2.8) it holds that

‖u − uδ‖X ≤ γ−1
∆ inf

ūδ∈Xδ
‖u − ūδ‖X .

Proof. As we have seen in the proof of Theorem 3.3.5, thanks to the assump-
tions Xδ ⊆ Yδ and ran γ0|Xδ ⊆ Hδ, the component uδ ∈ Xδ of the Galerkin
solution of (3.2.8) is the Petrov–Galerkin solution of (3.2.6) with test space
Zδ ⊂ Yδ × Hδ.

By (3.3.11), the projector Pδ : u �→ uδ satisfies ‖Pδu‖X,Yδ ≤ ‖u‖X . The
proof is completed by ‖ · ‖X ≤ γ−1

∆ ‖ · ‖X,Yδ on Xδ by assumption (3.3.5), in
combination with (3.3.1).

In [And13], Andreev studied minimal residual Petrov–Galerkin discretiza-

tions of

[
B
γ0

]
u =

[
g

γ′
0u0

]
. They can equivalently be interpreted as Galerkin

discretizations of (3.2.8) (cf. [CDW12], [BS14, Prop. 2.2]). In view of this, The-
orem 3.3.7 reproduces, though here with a clear-cut constant, the results from
[And13, Thms. 3.1 & 4.1].

Remark 3.3.8. As was pointed out earlier in [And13], for practical compu-
tations it can be attractive to modify the Galerkin discretization of (3.2.8) by
replacing Eδ

Y
′AsEδ

Y by some Ãδ
s = Ãδ

s
′ ∈ Lis(Yδ, Yδ ′) whose inverse can be

applied cheaply (a preconditioner) 3, so that for constants 0 < cN ≤ CN < ∞,

(Ãδ
s u)(u)

(Asu)(u)
∈ [c2

N , C2
N ] (δ ∈ ∆, u ∈ Yδ).

Indeed, in that case one can solve the then explicitly available Schur comple-
ment equation with precondition CG, instead of applying the preconditioned

3For Galerkin discretizations of (3.2.10), such a replacement of Eδ
Y
′AsEδ

Y by an equivalent
operator will result in an inconsistent discretization.
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MINRES iteration. By redefining Zδ := closYδ×Hδ ran

[
(Ãδ

s )
−1Eδ

Y
′B

γ0

] ∣∣∣∣
Xδ

in the

proof of Theorem 3.3.5, and by taking Wδ to be its orthogonal complement in
Yδ × Hδ with Yδ now being equipped with inner product (Ãδ

s ·)(·), instead of
(3.3.11) we now estimate for any ūδ ∈ Xδ ,

‖uδ − ūδ‖2
X,Yδ = sup

0 �=(v1,v2)∈Yδ

((B(uδ − ūδ))(v1) + 〈uδ(0)− ūδ(0), v2〉)2

‖v1‖2
Y + ‖v2‖2

≤ 1
min(c2

N ,1)
sup

0 �=(v1,v2)∈Yδ

((B(uδ − ūδ))(v1) + 〈uδ(0)− ūδ(0), v2〉)2

(Ãδ
s v1)(v1)2 + ‖v2‖2

= 1
min(c2

N ,1)
sup

0 �=(v1,v2)∈Zδ

((B(uδ − ūδ))(v1) + 〈uδ(0)− ūδ(0), v2〉)2

(Ãδ
s v1)(v1)2 + ‖v2‖2

= 1
min(c2

N ,1)
sup

0 �=(v1,v2)∈Zδ

((B(u − ūδ))(v1) + 〈u(0)− ūδ(0), v2〉)2

(Ãδ
s v1)(v1)2 + ‖v2‖2

≤ max(C2
N ,1)

min(c2
N ,1)

sup
0 �=(v1,v2)∈Zδ

((B(u − ūδ))(v1) + 〈u(0)− ūδ(0), v2〉)2

‖v1‖2
Y + ‖v2‖2

≤ max(C2
N ,1)

min(c2
N ,1)

‖u − ūδ‖2
X .

Consequently, a generalization of the statement of Theorem 3.3.5 reads as

‖u − uδ‖X,Yδ ≤
(

1 +
√

max(C2
N ,1)

min(c2
N ,1)

)
inf

ūδ∈Xδ
‖u − ūδ‖X ,

and that of Theorem 3.3.7 as

‖u − uδ‖X ≤ γ−1
∆

√
max(C2

N ,1)
min(c2

N ,1)
inf

ūδ∈Xδ
‖u − ūδ‖X . ♦

Remark 3.3.9. As we have seen in the previous section, under the condition
that (3.3.5) is valid, Galerkin discretizations of (3.2.10) yield quasi-optimal ap-
proximations. Assuming A = A′, in the current section we have seen that
the same holds true for Galerkin discretizations of (3.2.8) when in addition
Xδ ⊆ Yδ and ran γ0|Xδ ⊆ Hδ. For the latter discretization, however, a still sub-
optimal error bound is valid without assuming (3.3.5). This raises the question
whether this is also true for Galerkin discretizations of (3.2.10).

We saw that the Galerkin operator resulting from (3.2.10) is invertible when
Xδ �= {0}. Moreover, when equipping Xδ with the ‘mesh-dependent’ norm
‖ · ‖X,Yδ , by adapting the proof of Theorem 3.3.3 one can show that the opera-

tor is in Lis(Yδ × Xδ, Yδ ′ × Xδ ′) with both the operator and its inverse having
a uniformly bounded norm. Despite this result, we could not establish, how-
ever, a suboptimal error estimate similar to Theorem 3.3.5. ♦
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Finally in this section we comment on the implementation of the Galerkin
discretization of (3.2.8). This system reads as




Eδ
Y
′AsEδ

Y 0 Eδ
Y
′BEδ

X
0 Eδ

H
′Eδ

H Eδ
H
′
γ0Eδ

X
Eδ

X
′B′Eδ

Y Eδ
X
′
γ′

0Eδ
H 0







µδ

σδ

uδ


 =




Eδ
Y
′g

Eδ
H
′u0

0


 , (3.3.13)

By eliminating σδ, it is equivalent to

Eδ

Y
′AsEδ

Y Eδ
Y
′BEδ

X

Eδ
X
′B′Eδ

Y −Eδ
X
′
γ′

0Eδ
H

(
Eδ

H
′Eδ

H

)−1
Eδ

H
′
γ0Eδ

X



[

µδ

uδ

]
=

[
Eδ

Y
′g

−Eδ
X
′
γ′

0u0

]
.

(3.3.14)

The operator Eδ
H

(
Eδ

H
′Eδ

H

)−1
Eδ

H
′ is the H-orthogonal projector onto Hδ. So

under the assumption that

ran γ0|Xδ ⊆ Hδ

which was made in Theorem 3.3.7, it can be omitted, or equivalently, it can be
pretended that Hδ = H, without changing the solution (µδ, uδ). The imple-
mentation of the resulting system

[
Eδ

Y
′AsEδ

Y Eδ
Y
′BEδ

X
Eδ

X
′B′Eδ

Y −Eδ
X
′
γ′

0γ0Eδ
X

] [
µδ

uδ

]
=

[
Eδ

Y
′g

−Eδ
X
′
γ′

0u0

]
. (3.3.15)

is easier, and it runs more efficiently than (3.3.13).

Remark 3.3.10. We can view (3.3.15) as a Galerkin discretisation of
[

As B
B′ −γ′

0γ0

] [
µ
u

]
=

[
g

−γ′
0u0

]
, (3.3.16)

but for the analysis of the discretization error in (µδ, uδ) it is still useful to view
(3.3.15) before elimination of σδ, as a Galerkin discretization of (3.2.8) which
yielded the sharp bound on this error presented in Theorem 3.3.7. ♦

3.4 Realization of the uniform inf-sup stability (3.3.5)

In Theorem 3.3.3 we showed that Galerkin discretizations of (3.2.10) are quasi-
optimal when (3.3.5) holds, and in Theorem 3.3.7 for Galerkin discretizations
of (3.2.8) when in addition Xδ ⊆ Yδ and ran γ0|Xδ ⊆ Hδ (and A = As).

In this section we realize the condition (3.3.5) for finite element spaces
w.r.t. partitions of the space-time domain into prismatic elements. In §3.4.1
generally non-uniform partitions are considered for which the partition in
time is independent of the spatial location, and the spatial mesh in each time
slab is such that the corresponding H-orthogonal projection is uniformly V-
stable. In §3.4.2 we revisit the special case, already studied in [And13], of trial
spaces that are tensor products of temporal and spatial trial spaces.
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3.4.1 Non-uniform approximation in space local in time, non-uniform
approximation in time global in space

Theorem 3.4.1. Let O be a collection of closed subspaces Xx of V such that the
H-orthogonal projector QXx onto Xx is in L(V, V), with

µO := inf
Xx∈O

‖QXx‖−1
L(V,V)

> 0.

For N ∈ N, 0 = t0 < t1 < · · · < tN = T, (qn)N
n=0 ⊂ N, X0

x, . . . , XN−1
x ∈ O, let

Xδ := {u ∈ C( Ī; V) : u|(ti ,ti+1)
∈ Pqi ⊗ Xi

x}

Yδ := {v ∈ L2(I; V) : v|(ti ,ti+1)
∈ Pqi−1 ⊗ Xi

x}

Then with ∆ being the collection of all δ = δ(N, (ti)i, (qi)i, (Xi
x)i), it holds that

inf
δ∈∆

inf
{u∈Xδ : ∂tu �=0}

sup
0 �=v∈Yδ

(∂tu)(v)
‖∂tu‖Y′ ‖v‖Y

≥ µO , (3.4.1)

i.e. (3.3.5) is valid.

Proof. [And13, Lemma 6.2] yields inf
0 �=u∈Xx

sup
0 �=v∈Xx

〈u,v〉
‖u‖V′ ‖v‖V

= ‖QXx‖−1
L(V,V)

.

With Pn denoting the Legendre polynomial of degree n, extended with
zero outside (−1, 1), for any u ∈ Xδ, ∂tu can be written as the L2(I; H)-
orthogonal expansion (t, x) �→ ∑N−1

i=0 ∑
qi−1
n=0 Pn

(
2t−(ti+1+ti)

ti+1−ti

)
ui,n(x) for some

ui,n ∈ Xi
x. Fixing ε ∈ (0, µO), for each (i, n) there is a vi,n ∈ Xi

x with ‖vi,n‖V =
‖ui,n‖V′ and 〈ui,n, vi,n〉 ≥ (µO − ε)‖ui,n‖V′ ‖vi,n‖V . Taking v := (t, x) �→
∑N−1

i=0 ∑
qi−1
n=0 Pn

(
2t−(ti+1+ti)

ti+1−ti

)
vi,n(x), we conclude that

(∂tu)(v) ≥ (µO − ε)
N−1

∑
i=0

qi−1

∑
n=0

∥∥∥Pn

(
2·−(ti+1+ti)

ti+1−ti

)∥∥∥
2

L2(I)
‖ui,n‖2

V′

= (µO − ε)‖u‖Y′ ‖v‖Y,

which implies the result.

Remark 3.4.2. In view of Theorem 3.3.7, note that both Xδ ⊂ Yδ and (3.3.5)
are valid by taking Yδ := {v ∈ L2(I; V) : v|(ti ,ti+1)

∈ Pqi ⊗ Xi
x}. ♦

Considering the condition on the collection O of spatial trial spaces Xx,
let us consider the typical situation that H = L2(Ω), V = H1

0,γ(Ω) = {u ∈
H1(Ω) : u = 0 on γ} where Ω ⊂ Rd is a bounded polytopal domain, and γ is
a measurable, closed, possibly empty subset of ∂Ω. We consider Xx ⊂ V to be
finite element spaces of some degree w.r.t. a family of uniformly shape regular,
and, say, conforming partitions T of Ω into, say, d-simplices, where γ is the
union of some (d − 1)-faces of S ∈ T . When the partitions in this family are
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quasi-uniform, then using e.g. the Scott–Zhang quasi-interpolator ([SZ90]), it
is easy to demonstrate the (uniform) simultaneous approximation property

sup
Xx∈O

sup
0 �=u∈V

infv∈Xx{‖v‖V +
(

sup0 �=w∈Xx

‖w‖V
‖w‖H

)
‖u − v‖H}

‖u‖V
< ∞.

Writing for u ∈ V and any v ∈ Xx, Qu = v + Q(u − v), one easily infers that
supXx∈O ‖Qx‖L(V,V) < ∞.

The uniform boundedness of ‖Qx‖L(V,V) is, however, by no means re-
stricted to families of finite element spaces w.r.t. quasi-uniform partitions, and
it has been demonstrated for families of locally refined partitions, for d = 2
including those that are generated by the newest vertex bisection algorithm.
We refer to [Car01, GHS16].

3.4.2 Non-uniform approximation in space global in time, non-uniform
approximation in time global in space

If in Theorem 3.4.1, the spatial trial spaces Xi
x are independent of the tempo-

ral interval (ti, ti+1), then Xδ is a tensor product of trial spaces in space and
time. In that case, one shows inf-sup stability for general temporal trial spaces,
e.g. spline spaces with more global smoothness than continuity.

Theorem 3.4.3. Let O be as in Theorem 3.4.1. Given closed subspaces Xt ⊂ H1(I),
d

dt Xt ⊆ Yt ⊂ L2(I) and Xx ∈ O, let Xδ := Xt ⊗ Xx, Yδ := Yt ⊗ Xx. Then with ∆
being the collection of all δ = δ(Xt, Yt, Xx), (3.4.1) is valid.

The proof of this result follows from the fact that thanks to the Kronecker
product structure of ∂t ∈ L(X, Y′), for such trial spaces we have

inf
{u∈Xδ : ∂tu �=0}

sup
0 �=v∈Yδ

(∂tu)(v)
‖∂tu‖Y′ ‖v‖Y

= inf
{u∈Xt : du

dt �=0}
sup

0 �=v∈Yt

∫
I

du
dt v dt

‖du
dt ‖L2(I)‖v‖L2(I)

× inf
0 �=u∈Xx

sup
0 �=v∈Xx

〈u, v〉
‖u‖V′ ‖v‖V

(3.4.2)

= inf
0 �=u∈Xx

sup
0 �=v∈Xx

〈u, v〉
‖u‖V′ ‖v‖V

.

(Indeed: for U and V Hilbert, T ∈ L(U, V′), and Riesz mappings RU : U →
U′, RV : V → V′, we find inf0 �=u∈U sup0 �=v∈V

(Tu)(v)
‖u‖U‖v‖V

= min σ(R−1
U T′R−1

V T),

with R−1
U T′R−1

V T ∈ L(U, U) being self-adjoint and non-negative. In the above
setting, it is a Kronecker product of corresponding operators acting in the
‘time’ and ‘space’ direction, respectively.)

Remark 3.4.4 (Sparse tensor products). Instead of considering the ‘full’ tensor
product trial spaces from Theorem 3.4.3, more efficient approximations can be
found by the application of ‘sparse’ tensor products. Let X(0)

x ⊂ X(1)
x ⊂ · · · be
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a sequence of spaces from O, X(0)
t ⊂ X(1)

t ⊂ · · · ⊂ H1(I), and Y(0)
t ⊂ Y(1)

t ⊂
· · · ⊂ L2(I) such that Y(k)

t ⊇ d
dt X(k)

t . Then for X(�) := ∑�
k=0 X(k)

t ⊗ X(�−k)
x ,

Y(�) := ∑�
k=0 Y(k)

t ⊗ X(�−k)
x inf-sup stability holds true uniformly in � with

inf-sup constant µO .
Although this result follows as a special case from the analysis in [And13],

for convenience we include the argument. With W(k)
t := Y(k)

t ∩ (Y(k−1)
t )

⊥L2(I)

for k > 0, and W(0)
t := Y(0)

t , from the nestings of (Y(i)
t )i and (X(i)

x )i one

infers that Y(�) = ⊕�
k=0W(k)

t ⊗ X(�−k)
x is an (L2(I) ⊗ H)-orthogonal decom-

position. Given y ∈ Y(�), let y = ∑�
k=0 yk be the corresponding expansion.

Fixing ε ∈ (0, µO), there exist ỹk ∈ W(k)
t ⊗ X(�−k)

x with 〈yk, ỹk〉L2(I)⊗H ≥
(µO − ε)‖yk‖Y‖ỹk‖Y′ and ‖ỹk‖Y′ = ‖yk‖Y, and so 〈∑�

k=0 yk, ∑�
k=0 ỹk〉L2(I)⊗H ≥

(µO − ε)‖∑�
k=0 yk‖Y‖∑�

k=0 ỹk‖Y′ . The result follows from ∂tX(�) ⊆ Y(�). ♦

Remark 3.4.5. In view of (3.4.2), it is obvious that Theorem 3.4.3 remains valid

when d
dt Xt ⊆ Yt is relaxed to inf{u∈Xt : du

dt �=0} sup0 �=v∈Yt

∫
I

du
dt v dt

‖ du
dt ‖L2(I)‖v‖L2(I)

> 0 uni-

formly in the pairs (Xt, Yt) that are applied. As shown in [And13], the same
holds true in the sparse tensor product case. For Xt being the space of con-
tinuous piecewise linears w.r.t. some partition T of I, and Yt being the space
of continuous piecewise linears w.r.t. the once dyadically refined partition, an
easy computation shows that the inf-sup constant is not less than

√
3/4.

Since in our experiments with the method from [And13], with this alterna-
tive choice of Yt the numerical results are slightly better than when taking Yt
to be the space of discontinuous piecewise linears w.r.t. T , we will report on
results obtained with this alternative choice for Yt. ♦

3.5 Numerical experiments

For the simplest possible case of the heat equation in one space dimension
discretized using as ‘primal’ trial space Xδ the space of continuous piecewise
bilinears w.r.t. a uniform partition into squares, we compare the accuracy of
approximations provided by the newly proposed method (i.e. the Galerkin
discretization of (3.2.10) with trial space here denoted by Yδ

new × Xδ) with
those obtained with the method from [And13] (i.e. the Galerkin discretiza-
tion of (3.2.8)). We implement the latter method in the form (3.3.15), i.e. after
eliminating σδ. The remaining trial space is denoted here by Yδ

Andr. × Xδ. So
we take T = 1, i.e. I = (0, 1), and with Ω := (0, 1), H := L2(Ω), V := H1

0(Ω),
a(t; η, ζ) :=

∫
Ω η′ζ ′ dx. With 1

ht
= 1

hx
=: 1

h ∈ N, we set

Xδ :={v ∈ H1(I) : v|(ih,(i+1)h) ∈ P1} ⊗ {v ∈ H1
0(Ω) : v|(ih,(i+1)h) ∈ P1},

Yδ
new :={v ∈ L2(I) : v|(ih,(i+1)h) ∈ P0} ⊗ {v ∈ H1

0(Ω) : v|(ih,(i+1)h) ∈ P1},

Yδ
Andr :={v ∈ H1(I) : v|(ih/2,(i+1)h/2) ∈ P1} ⊗ {v ∈ H1

0(Ω) : v|(ih,(i+1)h) ∈ P1},
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position. Given y ∈ Y(�), let y = ∑�
k=0 yk be the corresponding expansion.

Fixing ε ∈ (0, µO), there exist ỹk ∈ W(k)
t ⊗ X(�−k)

x with 〈yk, ỹk〉L2(I)⊗H ≥
(µO − ε)‖yk‖Y‖ỹk‖Y′ and ‖ỹk‖Y′ = ‖yk‖Y, and so 〈∑�

k=0 yk, ∑�
k=0 ỹk〉L2(I)⊗H ≥

(µO − ε)‖∑�
k=0 yk‖Y‖∑�

k=0 ỹk‖Y′ . The result follows from ∂tX(�) ⊆ Y(�). ♦

Remark 3.4.5. In view of (3.4.2), it is obvious that Theorem 3.4.3 remains valid

when d
dt Xt ⊆ Yt is relaxed to inf{u∈Xt : du

dt �=0} sup0 �=v∈Yt

∫
I

du
dt v dt

‖ du
dt ‖L2(I)‖v‖L2(I)

> 0 uni-

formly in the pairs (Xt, Yt) that are applied. As shown in [And13], the same
holds true in the sparse tensor product case. For Xt being the space of con-
tinuous piecewise linears w.r.t. some partition T of I, and Yt being the space
of continuous piecewise linears w.r.t. the once dyadically refined partition, an
easy computation shows that the inf-sup constant is not less than

√
3/4.

Since in our experiments with the method from [And13], with this alterna-
tive choice of Yt the numerical results are slightly better than when taking Yt
to be the space of discontinuous piecewise linears w.r.t. T , we will report on
results obtained with this alternative choice for Yt. ♦

3.5 Numerical experiments

For the simplest possible case of the heat equation in one space dimension
discretized using as ‘primal’ trial space Xδ the space of continuous piecewise
bilinears w.r.t. a uniform partition into squares, we compare the accuracy of
approximations provided by the newly proposed method (i.e. the Galerkin
discretization of (3.2.10) with trial space here denoted by Yδ

new × Xδ) with
those obtained with the method from [And13] (i.e. the Galerkin discretiza-
tion of (3.2.8)). We implement the latter method in the form (3.3.15), i.e. after
eliminating σδ. The remaining trial space is denoted here by Yδ

Andr. × Xδ. So
we take T = 1, i.e. I = (0, 1), and with Ω := (0, 1), H := L2(Ω), V := H1

0(Ω),
a(t; η, ζ) :=

∫
Ω η′ζ ′ dx. With 1

ht
= 1

hx
=: 1

h ∈ N, we set

Xδ :={v ∈ H1(I) : v|(ih,(i+1)h) ∈ P1} ⊗ {v ∈ H1
0(Ω) : v|(ih,(i+1)h) ∈ P1},

Yδ
new :={v ∈ L2(I) : v|(ih,(i+1)h) ∈ P0} ⊗ {v ∈ H1

0(Ω) : v|(ih,(i+1)h) ∈ P1},

Yδ
Andr :={v ∈ H1(I) : v|(ih/2,(i+1)h/2) ∈ P1} ⊗ {v ∈ H1

0(Ω) : v|(ih,(i+1)h) ∈ P1},
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Note that dim Yδ
new ≈ dim Xδ and dim Yδ

Andr ≈ 2 dim Xδ. The total number of
non-zeros in the whole system matrix of the new method is asymptotically a
factor 2 smaller than this number for Andreev’s method.

Prescribing both a smooth exact solution u(t, x) = e−2t sin πx and a singu-
lar one u(t, x) = e−2t|t − x| sin πx, Figure 3.1 shows the errors eδ := u − uδ

in X-norm as a function of dim Xδ. The norms of the errors in the Galerkin

Figure 3.1 ‖eδ‖X vs. dim Xδ for both numerical methods. Left: u(t, x) =
e−2t sin πx. Right: u(t, x) = e−2t|t − x| sin πx.

solutions found by the two methods are nearly indistinguishable from one
another. Furthermore, the observed convergence rates 1/2 and 1/4, respec-
tively, are the best possible ones that in view of the polynomial degrees of Xδ

and Yδ (new method) or that of Xδ (Andreev’s method) and the regularity of
the solutions can be expected with the application of uniform meshes. (For
any ε > 0, e−2t|t − x| sin πx ∈ H

3
2−ε(I × Ω) \ H

3
2 (I × Ω)).

For both solutions and both numerical methods, the errors eδ(T, ·) mea-
sured in L2(Ω) converge with the better rate 1, i.e., these errors are asymp-
totically proportional to h2, see left picture in Figure 3.2. To illustrate that the
two methods yield different Galerkin solutions, we show eδ(0, ·), measured in
L2(Ω)-norm in the right of Figure 3.2.

Figure 3.2 Singular solution u(t, x) = e−2t|t − x| sin πx. Left: ‖eδ(T, ·)‖L2(Ω)

vs. dim Xδ. Right: ‖eδ(0, ·)‖L2(Ω) vs. dim Xδ.

The new method actually yields two approximations for u, viz. uδ and λδ.
This secondary approximation is not in X, but it is in Y = L2(I; V). For both
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solutions, the errors in λδ measured in Y-norm are slightly larger than in those
in uδ, see left picture in Figure 3.3.

Finally, we replaced the symmetric spatial diffusion operator by a nonsym-
metric convection-diffusion operator a(t; η, ζ) :=

∫
Ω η′ζ ′ + βη′ζdx. Letting

β := 100 and again taking the singular solution u(t, x) = e−2t|t − x| sin πx,
the errors eδ in X-norm of both Galerkin solutions vs. dim Xδ are given in
Figure 3.3. We once again see that the two methods show very comparable
convergence behaviour.

Figure 3.3 Singular solution u(t, x) = e−2t|t − x| sin πx. Left: ‖eδ‖Y and ‖u −
λδ‖Y vs. dim Xδ for the symmetric problem. Right: ‖eδ‖X vs. dim Xδ for the
nonsymmetric problem.

3.6 Conclusion

Three related (Petrov-) Galerkin discretizations of space-time variational for-
mulations were analyzed. The scheme introduced by Steinbach in [Ste15]
has the lowest computational cost, and applies on general space-time meshes,
but depending on the exact solution, the numerical solutions can be far from
quasi-optimal in the natural mesh-independent norm. The minimal residual
Petrov–Galerkin discretization introduced by Andreev in [And13] yields for
suitable trial and test pairs quasi-optimal approximations from the trial space.
For suitable pairs of trial spaces, Galerkin discretizations of a newly intro-
duced mixed space-time variational formulation also yield quasi-optimal ap-
proximations, but for the same accuracy at a lower computational cost than
with the method from [And13].
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4 Minimal residual discretizations of
asymmetric parabolic PDEs

Abstract We consider a minimal residual discretization of a simultane-
ous space-time variational formulation of parabolic evolution equations.
Under the usual ‘LBB’ stability condition on pairs of trial- and test spaces
we show quasi-optimality of the numerical approximations without as-
suming symmetry of the spatial part of the differential operator. Under a
stronger LBB condition we show error estimates in an energy-norm which
are independent of this spatial differential operator.

4.1 Introduction

This chapter is about the numerical solution of parabolic evolution equations
in a simultaneous space-time variational formulation. Compared to classi-
cal time-stepping schemes, simultaneous space-time methods are much better
suited for massively parallel computation (e.g. [NS19, vVW20a]), allow for lo-
cal refinements in space and time (e.g. [SY18, GS19, SvVW21, vVW21a]), and
produce numerical approximations from the trial spaces that are quasi-best.

The standard bilinear form that results from a space-time variational for-
mulation is non-coercive, which makes it difficult to construct pairs of discrete
trial and test spaces that inherit the stability of the continuous formulation.
For this reason, in [And13] R. Andreev proposed to use minimal residual dis-
cretizations. They have an equivalent interpretation as Galerkin discretiza-
tions of an extended self-adjoint, but indefinite, mixed system having as sec-
ondary variable the Riesz lift of the PDE-residual of the primal variable.

For pairs of trial spaces that satisfy a Ladyshenskaja–Babus̆ka–Brezzi (LBB)
condition, it was shown that w.r.t. the norm on the natural solution space, be-
ing an intersection of Bochner spaces, the Galerkin solutions are quasi-best
approximations from the selected trial spaces. This LBB condition was veri-
fied in [And13] for ‘full’ and ‘sparse’ tensor products of various finite elements
spaces in space and time. The sparse tensor product setting was then general-
ized in [SvVW21, Proposition 5.1] to allow for local refinements in space and
time whilst retaining (uniform) LBB stability.

This chapter is a minor modification of Minimal residual space-time discretizations of
parabolic equations: Asymmetric spatial operators, R. Stevenson and J. Westerdiep, submitted
to Computers & Mathematics with Applications, arXiv:2106.01090.
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A different minimal residual formulation of first order system type was
introduced in [FK21], see also [GS21]. Here the various residuals are all mea-
sured in L2-norms, meaning that they do not have to be introduced as separate
variables, and the resulting bilinear form is coercive.

Closer in spirit to [And13] are the space-time methods of [Ste15, LMN16,
BEEN19], in which error bounds are presented w.r.t. mesh-dependent norms.
In [Dev20, SZ20] space-time variational methods are presented that lead to
coercive bilinear forms based on fractional Sobolev norms of order 1

2 . A first
order space-time DPG formulation of the heat equation is presented in [DS20].

A restriction imposed in [And13], as well as in the other mentioned ref-
erences apart from [BEEN19, GS21], is that the spatial part of the PDO is not
only coercive but also symmetric. In Chapter 3 we could remove the sym-
metry condition for the analysis of a related Brézis–Ekeland–Nayroles (BEN)
([BE76, Nay76]) formulation of the parabolic PDE. In the current work, we
prove that also for the minimal residual (MR) method the symmetry condition
can be dropped. So for both MR and BEN we show that under the aforemen-
tioned LBB condition the Galerkin approximations are quasi-optimal, where
the bound on the error in the numerical approximation for BEN improves
upon the one from Chapter 3.

The error bounds for both MR and BEN degrade for increasing asymme-
try. This is not an artefact of the theory but is confirmed by numerical exper-
iments. Under a stronger LBB condition on the pair of trial spaces, however,
we will prove that the MR and BEN approximations are quasi-best w.r.t. a con-
tinuous, i.e., mesh-independent, energy-norm, uniformly in the spatial PDO.

We present numerical tests for the evolution problem governed by the sim-
ple PDE ∂t − ε∂2

x + ∂x + eId on (0, 1)2 with initial and boundary conditions,
where e is either 0 or 1. For the case that homogeneous Dirichlet boundary
conditions are prescribed at the outflow boundary x = 1, the results for very
small ε illustrate that quasi-optimal approximations do not necessarily mean ac-
curate approximations. Indeed the error in the computed solution is large be-
cause of the unresolved boundary layer. Minimization of the error in least-
squares energy norm causes a global spread of the error along the streamlines.
We tackle this problem by imposing these boundary conditions weakly.

4.1.1 Organization

In Sect. 4.2 we recall the well-posed space-time variational formulation of the
parabolic problem and study its conditioning. Under the usual LBB condi-
tion, in Sect. 4.3 we show quasi-optimality of the MR method without assum-
ing symmetry of the spatial differential operator. A similar result is shown
for BEN in Sect. 4.4. Known results concerning the verification of this LBB
condition are summarized in Sect. 4.5, together with results about optimal
preconditioning.

In Sect. 4.6 we equip the solution space with an energy norm, and, under
a stronger LBB condition, show error estimates for MR and BEN which are
independent of the spatial differential operator. We present an a posteriori
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error estimator which, under an even stronger LBB condition, is efficient and,
modulo a data-oscillation term, is reliable.

In Sect. 4.7 we apply the general theory to the example of the convection-
diffusion problem. We give pairs of trial- and test spaces which satisfy the 2nd
and 3rd mentioned LBB conditions. Finally, in Sect. 4.8 we present numerical
results for the MR method in the simple case of having a one-dimensional
spatial domain. To solve the problems caused by an unresolved boundary
layer, we modify the method by imposing a boundary condition weakly.

4.1.2 Notations

In this work, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C � D is defined as D � C, and C � D as C � D and C � D.

For normed linear spaces E and F, by L(E, F) we will denote the normed
linear space of bounded linear mappings E → F, and by Lis(E, F) its subset
of boundedly invertible linear mappings E → F. We write E ↪→ F to denote
that E is continuously embedded into F. For simplicity only, we exclusively
consider linear spaces over the scalar field R.

4.2 Well-posed variational formulation

Let V, H be separable Hilbert spaces of functions on some “spatial domain”
such that V ↪→ H with dense embedding. Identifying H with its dual, we
obtain the Gelfand triple V ↪→ H � H′ ↪→ V′. We use 〈·, ·〉 to denote both the
scalar product on H × H as well as its unique extension to the duality pairing
on V′ × V or V × V′, and denote the norm on H by ‖ · ‖.

For a.e.
t ∈ I := (0, T),

let a(t; ·, ·) denote a bilinear form on V × V such that for any η, ζ ∈ V, t �→
a(t; η, ζ) is measurable on I, and such that for some � ∈ R, for a.e. t ∈ I,

|a(t; η, ζ)| � ‖η‖V‖ζ‖V (η, ζ ∈ V) (boundedness), (4.2.1)

a(t; η, η) + �〈η, η〉 � ‖η‖2
V (η ∈ V) (Gårding inequality). (4.2.2)

With A(t) ∈ Lis(V, V′) being defined by (A(t)η)(ζ) := a(t; η, ζ), given
a forcing function g and an initial value u0, we are interested in solving the
parabolic initial value problem to finding u such that

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.
(4.2.3)

In a simultaneous space-time variational formulation, the parabolic PDE
reads as finding u from a suitable space of functions X of time and space s.t.

(Bw)(v) :=
∫

I
〈dw

dt (t), v(t)〉+ a(t; w(t), v(t))dt =
∫

I
〈g(t), v(t)〉dt =: g(v)

4.2 Well-posed variational formulation 47



for all v from another suitable space of functions Y of time and space. One
possibility to enforce the initial condition is by testing it against additional test
functions. A proof of the following result can be found in [SS09], cf. [DL92,
Ch.XVIII, §3] and [Wlo82, Ch. IV, §26] for slightly different statements.

Theorem 4.2.1. With X := L2(I; V)∩ H1(I; V′), Y := L2(I; V), under conditions
(4.2.1) and (4.2.2) it holds that

[
B
γ0

]
∈ Lis(X, Y′ × H),

where for t ∈ Ī, γt : u �→ u(t, ·) denotes the trace map. That is, assuming g ∈ Y′

and u0 ∈ H, finding u ∈ X such that
[

B
γ0

]
u =

[
g

u0

]
(4.2.4)

is a well-posed simultaneous space-time variational formulation of (4.2.3).

With ũ(t) := u(t)e−�t, (4.2.3) is equivalent to dũ
dt (t) + (A(t) + �Id)ũ(t) =

g(t)e−�t (t ∈ I), ũ(0) = u0. Since ((A(t) + �Id)η)(η) � ‖η‖2
V , w.l.o.g. we will

always assume that, besides (4.2.1), (4.2.2) is valid for � = 0, i.e., for a.e. t ∈ I,

a(t; η, η) � ‖η‖2
V (η ∈ V) (coercivity). (4.2.5)

We define A, As ∈ Lis(Y, Y′), Aa ∈ L(Y, Y′), and C, ∂t ∈ L(X, Y′) by

(Aw)(v) :=
∫

I
a(t; w(t), v(t))dt, As := 1

2 (A + A′), Aa := 1
2 (A − A′),

∂t := B − A, C := B − As = ∂t + Aa,

and equip Y with ‘energy’-scalar product 〈·, ·〉Y := (As·)(·), and norm

‖v‖Y :=
√
(Asv)(v).

being, thanks to (4.2.1) and (4.2.5), equivalent to the standard norm on Y.
Equipping Y′ with the resulting dual norm, As ∈ Lis(Y, Y′) is an isometric
isomorphism, and so for f ∈ Y′ we have

f (A−1
s f ) = (As A−1

s f )(A−1
s f ) = ‖A−1

s f ‖2
Y = ‖ f ‖2

Y′ .

For some constant β ≥ 1, we equip X with norm

‖ · ‖X :=
√
‖ · ‖2

Y + ‖∂t · ‖2
Y′ + ‖γT · ‖2 + (β − 1)‖γ0 · ‖2,

being, thanks to X ↪→ C(I; H), equivalent to the standard norm on X. In
addition, we define the energy-norm on X by

||| · |||X :=
√
‖B · ‖2

Y′ + β‖γ0 · ‖2,

which, thanks to Theorem 4.2.1, is indeed a norm on X.
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Proposition 4.2.2. With α := ‖Aa‖L(Y,Y′), for 0 �= w ∈ X it holds that

(
1 +

α

2

(
α +

√
α2 + 4

))−1
≤

|||w|||2X
‖w‖2

X
≤ 1 +

α

2

(
α +

√
α2 + 4

)
,

so that, in particular, both norms are equal when Aa = 0.

Proof. Using that for w, v ∈ X,

((∂t + ∂′t + γ′
0γ0)w)(v) =

∫

I
〈dw

dt (t), v(t)〉+ 〈w(t), dv
dt (t)〉dt + 〈w(0), v(0)〉

=
∫

I
d

dt 〈w(t), v(t)〉dt + 〈w(0), v(0)〉 = (γ′
TγTw)(v),

we find that

B′A−1
s B + βγ′

0γ0 = (C′ + As)A−1
s (C + As) + βγ′

0γ0

= C′A−1
s C + As + C′ + C + βγ′

0γ0

= C′A−1
s C + As + ∂′t + ∂t + βγ′

0γ0

= C′A−1
s C + As + γ′

TγT + (β − 1)γ′
0γ0.

(4.2.6)

For w ∈ X,

(C′A−1
s Cw)(w) = (Cw)(A−1

s Cw) = ‖(∂t + Aa)w‖2
Y′ ≤ (‖∂tw‖Y′ + α‖w‖Y)

2,

and so, for any η �= 0, Young’s inequality shows that

‖Bw‖2
Y′ + β‖γ0w‖2 =

(
(C′A−1

s C + As + γ′
TγT + (β − 1)γ′

0γ0)(w)
)
(w)

≤ (1 + η2)‖∂tw‖2
Y′ + ((1 + η−2)α2 + 1)‖w‖2

Y + ‖γTw‖2 + (β − 1)‖γ0w‖2.

Solving (1 + η2) = (1 + η−2)α2 + 1 gives 1 + η2 = 1 + α
2

(
α +

√
α2 + 4

)
,

showing one of the bounds of the statement.
From

‖(∂t + Aa)w‖2
Y′ ≥ (‖∂tw‖Y′ − α‖w‖Y)

2 ≥ (1− η2)‖∂tw‖2
Y′ + (1− η−2)α2‖w‖2

Y

again by Young’s inequality, by solving η2 from 1 − η2 = (1 − η−2)α2 + 1 the
other bound follows.

Remark 4.2.3. As ‖ · ‖Y is defined in terms of the symmetric part As of the
spatial differential operator A, α = ‖Aa‖L(Y,Y′) measures the relative asymme-

try of the operator A. Indeed ‖Aa‖L(Y,Y′) = ‖A− 1
2

s Aa A− 1
2

s ‖L(L2(I;H),L2(I;H)) =

ρ(A− 1
2

s A′
a A−1

s Aa A− 1
2

s )
1
2 = ρ(A−1

s Aa A−1
s Aa)

1
2 , where we used A′

a = −Aa. ♦
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4.3 Minimal residual (MR) method

Let (Xδ, Yδ)δ∈∆ a family of closed, proper, non-zero subspaces of X and Y,
respectively. For δ ∈ ∆, let Eδ

X and Eδ
Y denote the trivial embeddings Xδ → X

and Yδ → Y that we often write for clarity. We assume that

Xδ ⊆ Yδ (δ ∈ ∆), (4.3.1)

γ∂t
∆ := inf

δ∈∆
inf

{w∈Xδ : ∂tEδ
Xw �=0}

‖Eδ
Y
′
∂tEδ

Xw‖Yδ ′

‖∂tEδ
Xw‖Y′

> 0. (4.3.2)

Furthermore, for efficiency, we assume to have a Kδ
Y = Kδ

Y
′ ∈ Lis(Yδ ′, Yδ)

(a ‘preconditioner’), such that for some constants 0 < r∆ ≤ R∆ < ∞,

((Kδ
Y)

−1v)(v)

(Eδ
Y
′AsEδ

Yv)(v)
∈ [r∆, R∆] (δ ∈ ∆, v ∈ Yδ), (4.3.3)

or, equivalently, f (Kδ
Y f )

f ((Eδ
Y
′AsEδ

Y)
−1 f )

∈ [R−1
∆ , r−1

∆ ] (δ ∈ ∆, f ∈ Yδ ′).

Noticing that ‖ f ‖2
Yδ ′ = f ((Eδ

Y
′AsEδ

Y)
−1 f ), the expression

‖ · ‖Kδ
Y

:=
√
(·)(Kδ

Y·)

defines an equivalent norm on Yδ ′, and our Minimal Residual approximation
uδ ∈ Xδ of the solution u ∈ X of (4.2.4) is defined as

uδ := arg min
w∈Xδ

‖Eδ
Y
′
(BEδ

Xw − g)‖2
Kδ

Y
+ β‖γ0Eδ

Xw − u0‖2, (4.3.4)

for some constant β ≥ 1. Later we will see that, thanks to (4.3.2) and (4.3.3),

inf
0 �=w∈Xδ

sup
(v1,v2)∈Yδ×H

(BEδ
Xw)(Eδ

Yv1) + β〈γ0Eδ
Xw, v2〉√

((Kδ
Y)

−1v1)(v1) + β‖v2‖2
> 0 (4.3.5)

(even uniformly in δ ∈ ∆)1 which implies that (4.3.4) has a unique solution.
The numerical approximation (4.3.4) was proposed in [And13]2, and further
investigated in Chapter 3. In both these references the analysis of the MR
method was restricted to the case that Aa = 0. The parameter β ≥ 1 allows us
to appropriately weight both terms in the least squares minimization.

The solution uδ of the MR problem is the solution of the resulting Euler–
Lagrange equations, which read as

(Eδ
X
′
B′Eδ

YKδ
YEδ

Y
′
BEδ

X + Eδ
X
′
βγ′

0γ0Eδ
X)u

δ = Eδ
X
′
B′Eδ

YKδ
YEδ

Y
′
g + Eδ

X
′
βγ′

0u0,
(4.3.6)

1This follows by combining (4.3.13), (4.3.15), and (4.3.16).
2In [And13], the norm ‖γ0Eδ

Xw − u0‖ reads as sup0 �=z∈Zδ
〈γ0Eδ

X w−u0,z〉
‖z‖ for some H ⊇ Zδ ⊇

ran γ0|Xδ which generalization seems not very helpful.
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as also the second component of the solution (µδ, uδ) ∈ Yδ × Xδ of

[
(Kδ

Y)
−1 Eδ

Y
′BEδ

X
Eδ

X
′B′Eδ

Y −Eδ
X
′
βγ′

0γ0Eδ
X

] [
µδ

uδ

]
=

[
Eδ

Y
′g

−Eδ
X
′
βγ′

0u0

]
, (4.3.7)

being a useful representation when no efficient preconditioner is available and
one has to resort to (Kδ

Y)
−1 = Eδ

Y
′AsEδ

Y.
With the “projected” or “approximate” (because generally Yδ �= Y) trial-

to-test operator Tδ ∈ L(X, Yδ × H) defined by

((Kδ
Y)

−1Tδw)(v1) + β〈Tδw, v2〉
= (Bw)(Eδ

Yv1) + β〈γ0u, v2〉
((v1, v2) ∈ Yδ × H), (4.3.8)

and “projected” or “approximate” optimal test space Zδ := ran Tδ|Xδ , a third
equivalent formulation of (4.3.4) (see e.g. [DG11], [BS14, Prop. 2.2], [DG14]) is
finding uδ ∈ Xδ which solves the Petrov-Galerkin system

(BEδ
Xuδ)(Eδ

Yv1) + β〈γ0Eδ
Xuδ, v2〉 = g(Eδ

Yv1) + β〈u0, v2〉 ((v1, v2) ∈ Zδ).
(4.3.9)

Note that (4.3.9) avoids the ‘normal equations’ (4.3.6). It will allow us to derive
a quantitatively sharp estimate for the error in uδ. From (4.3.3) and (4.3.5), one

infers that sup0 �=w∈Xδ
‖Tδw‖Y×H

‖w‖X
> 0, so that, thanks to Xδ being closed, Zδ is a

closed subspace of Yδ × H. We orthogonally decompose Yδ × H into Zδ and
(Zδ)⊥, where here we equip Yδ with inner product ((Kδ

Y)
−1·)(·). From (4.3.8)

one infers that for w ∈ Xδ and (v1, v2) ∈ (Zδ)⊥, it holds that (Bw)(v1) +
β〈γ0u, v2〉 = 0, and so

sup
(v1,v2)∈Yδ×H

(BEδ
Xw)(Eδ

Yv1) + β〈γ0Eδ
Xw, v2〉√

((Kδ
Y)

−1v1)(v1) + β‖v2‖2

= sup
(v1,v2)∈Zδ

(BEδ
Xw)(Eδ

Yv1) + β〈γ0Eδ
Xw, v2〉√

((Kδ
Y)

−1v1)(v1) + β‖v2‖2
.

(4.3.10)

Theorem 4.3.1. Under conditions (4.3.1), (4.3.2), and (4.3.3), the solution uδ ∈ Xδ

of (4.3.6) exists uniquely, and satisfies

‖u− uδ‖X ≤

√√√√√√√
max(R∆ ,1)

(
1+ 1

2

(
α2+α

√
α2+4

))

min(r∆ ,1) 1
2

(
(γ

∂t
∆ )2+α2+1−

√
((γ

∂t
∆ )2+α2+1)2−4(γ∂t

∆ )2

) inf
w∈Xδ

‖u−w‖X .

(In particular, uδ is the best approximation to u from Xδ when γ∂t
∆ = r∆ = R∆ = 1

and α = 0.)
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Remarks 4.3.2. One can verify that

√√√√√√√

(
1+ 1

2

(
α2+α

√
α2+4

))

1
2

(
(γ

∂t
∆ )2+α2+1−

√
((γ

∂t
∆ )2+α2+1)2−4(γ∂t

∆ )2

)
/ 1+ 1

2

(
α2+α

√
α2+4

)

γ
∂t
∆

∈
[

1
2

√
3, 1

]
,

which clarifies the dependence of the bound from Theorem 4.3.1 on α and γ∂t
∆ .

For α = 0 (and β = 1), the estimate equals that of Thm. 3.3.7 & Rem. 3.3.8. ♦

Proof. Let u solve (4.2.4), i.e., g = Bu and u0 = γ0u. The mapping Pδ ∈
L(X, X) from u to the solution uδ ∈ Xδ of (4.3.4) or, equivalently, (4.3.6) or
(4.3.9), is a projector onto Xδ which, by assumption Xδ �∈ {0, X}, is unequal to
0 or Id. Consequently ‖Pδ‖L(X,X) = ‖Id − Pδ‖L(X,X) ([Kat60, XZ03]), and

‖u − uδ‖X = ‖(Id − Pδ)u‖X = inf
w∈Xδ

‖(Id − Pδ)(u − w)‖X

≤ ‖Pδ‖L(X,X) inf
w∈Xδ

‖u − w‖X .
(4.3.11)

To bound ‖Pδ‖L(X,X) = sup0 �=w∈X
‖Pδw‖X
‖w‖X

, given w ∈ X, let Eδ
Xwδ := Pδw.

Using (4.3.3), (4.3.10), (4.3.9), and Proposition 4.2.2 we estimate

sup
(v1,v2)∈Yδ×H

(
(BEδ

Xwδ)(Eδ
Yv1) + β〈γ0Eδ

Xwδ, v2〉
)2

‖Eδ
Yv1‖2

Y + β‖v2‖2

≤ 1
min(r∆ ,1) sup

(v1,v2)∈Yδ×H

(
(BEδ

Xwδ)(Eδ
Yv1) + β〈γ0Eδ

Xwδ, v2〉
)2

((Kδ
Y)

−1v1)(v1) + β‖v2‖2

= 1
min(r∆ ,1) sup

(v1,v2)∈Zδ

(
(BEδ

Xwδ)(Eδ
Yv1) + β〈γ0Eδ

Xwδ, v2〉
)2

((Kδ
Y)

−1v1)(v1) + β‖v2‖2

= 1
min(r∆ ,1) sup

(v1,v2)∈Zδ

(
(Bw)(Eδ

Yv1) + β〈γ0w, v2〉
)2

((Kδ
Y)

−1v1)(v1) + β‖v2‖2

≤ max(R∆ ,1)
min(r∆ ,1) sup

(v1,v2)∈Y×H

(
(Bw)(v1) + β〈γ0w, v2〉

)2

‖v1‖2
Y + β‖v2‖2

= max(R∆ ,1)
min(r∆ ,1) |||w|||2X ≤ max(R∆ ,1)

min(r∆ ,1)

(
1 + 1

2

(
α2 + α

√
α2 + 4

))
‖w‖2

X .

(4.3.12)
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On the other hand,

sup
(v1,v2)∈Yδ×H

(
(BEδ

Xwδ)(Eδ
Yv1) + β〈γ0Eδ

Xwδ, v2〉
)2

‖Eδ
Yv1‖2

Y + β‖v2‖2

= sup
(v1,v2)∈Yδ×H

(
(AsEδ

Y(Eδ
Y
′AsEδ

Y)
−1Eδ

Y
′BEδ

Xwδ)(Eδ
Yv1) + β〈γ0Eδ

Xwδ, v2〉
)2

‖Eδ
Yv1‖2

Y + β‖v2‖2

= sup
(v1,v2)∈Yδ×H

(
〈Eδ

Y(Eδ
Y
′AsEδ

Y)
−1Eδ

Y
′BEδ

Xwδ, Eδ
Yv1〉Y + β〈γ0Eδ

Xwδ, v2〉
)2

‖Eδ
Yv1‖2

Y + β‖v2‖2

= ‖Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

Xwδ‖2
Y + β‖γ0Eδ

Xwδ‖2

= (AsEδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

Xwδ)(Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

Xwδ)

+ β(Eδ
X
′
γ′

0γ0Eδ
Xwδ)(wδ)

=
(
(Eδ

Y
′
B′Eδ

Y(Eδ
Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

X + βEδ
X
′
γ′

0γ0Eδ
X)w

δ
)
(wδ).

(4.3.13)

Using (4.3.1), we write Eδ
X = Eδ

Y Fδ with Fδ the trivial embedding Xδ → Yδ.
Using B = C + As and C + C′ + γ′

0γ0 = γ′
TγT , similar to (4.2.6) we find

Eδ
X
′
B′Eδ

Y(Eδ
Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

X + Eδ
X
′
βγ′

0γ0Eδ
X

= Fδ ′
(

Eδ
Y
′
B′Eδ

Y(Eδ
Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

Y + Eδ
Y
′
βγ′

0γ0Eδ
Y

)
Fδ

= Fδ ′
(

Eδ
Y
′(

C′Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
C + As + (γ′

TγT + (β − 1)γ′
0γ0)

)
Eδ

Y

)
Fδ

= Eδ
X
′(

C′Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
C + As + (γ′

TγT + (β − 1)γ′
0γ0)

)
Eδ

X .

(4.3.14)

We conclude that for any η ∈ (0, 1],

(
(Eδ

X
′
B′Eδ

Y(Eδ
Y
′
AsEδ

Y)
−1Eδ

Y
′
BEδ

X + Eδ
X
′
βγ′

0γ0Eδ
X)w

δ
)
(wδ)

= ‖Eδ
Y
′
CEδ

Xwδ‖2
Yδ ′ + ‖Eδ

Xwδ‖2
Y + ‖γT Eδ

Xwδ‖2 + (β − 1)‖γ0Eδ
Xwδ‖2

≥ (‖Eδ
Y
′
∂tEδ

Xwδ‖Yδ ′ − α‖Eδ
Xwδ‖Y)

2 + ‖Eδ
Xwδ‖2

Y + ‖γT Eδ
Xwδ‖2

+ (β − 1)‖γ0Eδ
Xwδ‖2

≥ (1 − η2)‖Eδ
Y
′
∂tEδ

Xwδ‖2
Yδ ′ +

(
(1 − η−2)α2 + 1

)
‖Eδ

Xwδ‖2
Y + ‖γT Eδ

Xwδ‖2

+ (β − 1)‖γ0Eδ
Xwδ‖2

(4.3.2)
≥ (1 − η2)(γ∂t

∆ )2‖∂tEδ
Xwδ‖2

Y′ +
(
(1 − η−2)α2 + 1

)
‖Eδ

Xwδ‖2
Y + ‖γT Eδ

Xwδ‖2

+ (β − 1)‖γ0Eδ
Xwδ‖2

≥ min
(
(1 − η2)(γ∂t

∆ )2,
(
(1 − η−2)α2 + 1

))
‖Eδ

Xwδ‖2
X ,

(4.3.15)
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with Young’s inequality. Solving (1− η2)(γ∂t
∆ )2 = (1− η−2)α2 + 1 for η yields

(1 − η2)(γ∂t
∆ )2 = 1

2

(
(γ∂t

∆ )2 + α2 + 1 −
√
((γ∂t

∆ )2 + α2 + 1)2 − 4(γ∂t
∆ )2

)
> 0.

(4.3.16)
Recalling (4.3.11) and ‖Pδ‖L(X,X) = sup0 �=w∈X

‖wδ‖X
‖w‖X

, the proof is completed
by combining (4.3.12), (4.3.13), and (4.3.15).

4.4 Brézis–Ekeland–Nayroles (BEN) formulation

The minimizer u ∈ X of
∥∥∥∥
[

B√
β γ0

]
w −

[
g√
β u0

] ∥∥∥∥
2

Y′×H
, that is equal to the

unique solution of (4.2.4), is the unique solution of

(B′A−1
s B + βγ′

0γ0)u = B′A−1
s g + βγ′

0u0. (4.4.1)

As we have seen in (4.2.6), this system is equivalent to

(C′A−1
s C + As + γ′

TγT + (β − 1)γ′
0γ0)u = (Id + C′A−1

s )g + βγ′
0u0, (4.4.2)

showing that u is the second component of the pair (λ, u) ∈ Y × X solving
[

As C
C′ −(As + γ′

TγT + (β − 1)γ′
0γ0)

] [
λ
u

]
=

[
g

−(g + βγ′
0u0)

]
. (4.4.3)

Notice that λ = u.
The formulation (4.4.2) of the parabolic equation can alternatively be de-

rived from the application of the Brézis–Ekeland–Nayroles variational prin-
ciple ([BE76, Nay76], cf. also [And12, §3.2.4]), which generalizes beyond the
linear, Hilbert space setting.

Given δ ∈ ∆, we consider the Galerkin discretization of (4.4.3), i.e.,
[

Eδ
Y
′AsEδ

Y Eδ
Y
′CEδ

X
(Eδ

Y
′CEδ

X)
′ −Eδ

X
′
(As + γ′

TγT + (β − 1)γ′
0γ0)Eδ

X

][
λδ

ūδ

]
=

[
Eδ

Y
′g

−Eδ
X
′
(g + βγ′

0u0)

]

(4.4.4)
or, equivalently

Eδ
X
′(

C′Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
C + As + γ′

TγT + (β − 1)γ′
0γ0

)
Eδ

Xūδ

= Eδ
X
′(

C′Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
g + g + βγ′

0u0

)
.

(4.4.5)

Remark 4.4.1. Assuming Xδ ⊆ Yδ ((4.3.1)) and Kδ
Y = (Eδ

Y
′AsEδ

Y)
−1, it holds

that ūδ = uδ, i.e., the solutions of BEN and MR are equal. Indeed, (4.3.14)
shows that in this case the operator at the left-hand side of (4.4.5) equals the
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operator in (4.3.6), and from Eδ
X
′AsEδ

Y(Eδ
Y
′AsEδ

Y)
−1Eδ

Y
′
= Eδ

X
′ when Xδ ⊆ Yδ

one deduces that also the right-hand sides agree.
In contrast to MR, with BEN, it is not possible to replace (Eδ

Y
′AsEδ

Y)
−1 by

a general preconditioner as in (4.3.7)–(4.3.6) and still obtain a quasi-best ap-
proximation to (λ, u) from Yδ × Xδ. This can be understood by noticing that
replacing A−1

s in (4.4.2) by another operator changes the solution, whereas
this is not the case in (4.4.1). So for the iterative solution of BEN one has to
operate on the saddle point system (4.4.4) instead of on a symmetric positive
definite system as with MR, see (4.3.6).

On the other hand, BEN doesn’t require Xδ ⊆ Yδ, as we will see below. ♦

The applicability of BEN for the case Aa �= 0 was already demonstrated in
Chapter 3. The following result gives a quantitatively better error bound.

Theorem 4.4.2. Under the sole condition (4.3.2), the solution ūδ ∈ Xδ of (4.4.5)
exists uniquely, and satisfies

‖u − ūδ‖X ≤

(
1+ 1

2

(
α2+α

√
α2+4

))
inf

w∈Xδ
‖u − w‖X+

√
1+α2 inf

v∈Yδ
‖u − v‖Y

1
2

(
(γ

∂t
∆ )2+α2+1−

√
((γ

∂t
∆ )2+α2+1)2−4(γ∂t

∆ )2
) .

Proof. With g = Bu and u0 = γ0u, using B = C + As and γ′
0γ0 = γ′

TγT −
(C′ + C), the right-hand side of (4.4.5) reads as

Eδ
X
′(

C′Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
(C + As) + As + γ′

TγT + (β − 1)γ′
0γ0 − C′

)
u =

Eδ
X
′(

C′Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
C + As + γ′

TγT + (β − 1)γ′
0γ0

+ C′
[

Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
As − Id

])
u.

So with G(δ) := C′Eδ
Y(Eδ

Y
′AsEδ

Y)
−1Eδ

Y
′C + As + γ′

TγT + (β − 1)γ′
0γ0, we have

u �→ Eδ
Xūδ=Eδ

X(Eδ
X
′
G(δ)Eδ

X)
−1Eδ

X
′(

G(δ) + C′
[

Eδ
Y(Eδ

Y
′
AsEδ

Y)
−1Eδ

Y
′
As − Id

])
u,

where we already used that Eδ
X
′G(δ)Eδ

X is invertible, which we verify be-
low. Since Eδ

X(Eδ
X
′G(δ)Eδ

X)
−1Eδ

X
′G(δ) ∈ L(X, X) and Eδ

Y(Eδ
Y
′AsEδ

Y)
−1Eδ

Y
′As ∈

L(Y, Y) are projectors onto Xδ and Yδ, respectively, the latter being orthogo-
nal, for any v ∈ Yδ and w ∈ Xδ it holds that

u − ūδ =(Id − Eδ
X(Eδ

X
′
G(δ)Eδ

X)
−1Eδ

X
′
G(δ))(u − Eδ

Xw)

+ Eδ
X(Eδ

X
′
G(δ)Eδ

X)
−1Eδ

X
′
C′
[
Id − Eδ

Y(Eδ
Y
′
AsEδ

Y)
−1Eδ

Y
′
As

]
(u − Eδ

Yv)

and so, also using Yδ �∈ {0, Y},

‖u − ūδ‖X ≤ ‖(Eδ
X
′
G(δ)Eδ

X)
−1‖L(Xδ ′ ,Xδ)

{
‖G(δ)‖L(X,X′) inf

w∈Xδ
‖u − w‖X

+ ‖C‖L(X,Y′) inf
v∈Yδ

‖u − v‖Y

}
.
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For w ∈ X, we have

(G(δ)w)(w) = ‖Eδ
Y
′
Cw‖2

Yδ ′ + ‖w‖2
Y + ‖γTw‖2 + (β − 1)‖γ0w‖2

≤ ‖Cw‖2
Y′ + ‖w‖2

Y + ‖γTw‖2 + (β − 1)‖γ0w‖2

= ((C′A−1
s C+As + γ′

TγT+(β − 1)γ′
0γ0)w)(w)=‖Bw‖2

Y′+β‖γ0w‖2

≤
(

1 + 1
2

(
α2 + α

√
α2 + 4

))
‖w‖2

X

by Proposition 4.2.2. Since (G(δ)·)(·) is symmetric semi-positive-definite, we
conclude that ‖G(δ)‖L(X,X′) ≤ 1 + 1

2

(
α2 + α

√
α2 + 4

)
.

For w ∈ Xδ, one deduces

(G(δ)Eδ
Xw)(Eδ

Xw)

= ‖Eδ
Y
′
CEδ

Xw‖2
Yδ ′ + ‖Eδ

Xw‖2
Y + ‖γTEδ

Xw‖2 + (β − 1)‖γ0Eδ
Xw‖2

≥ 1
2

(
(γ∂t

∆ )2 + α2 + 1 −
√
((γ∂t

∆ )2 + α2 + 1)2 − 4(γ∂t
∆ )2

)
‖Eδ

Xw‖2
X

by following the lines starting at the second line of (4.3.15), in particular show-
ing that Eδ

X
′G(δ)Eδ

X is invertible.
Finally, for w ∈ X, ‖Cw‖Y′ ≤ ‖∂tw‖Y′ + α‖w‖Y ≤

√
1 + α2 ‖w‖X . The

theorem follows by combining the above estimates.

4.5 Stable subspaces and preconditioners

By the boundedness and coercivity assumptions (4.2.1) and (4.2.5), it holds
that ‖ · ‖Y � ‖ · ‖L2(I;V). Since with

γδ := γδ(Xδ, Yδ) := inf
{w∈Xδ : ∂tw �=0}

sup
0 �=v∈Yδ

∫
I〈∂tw, v〉dt

‖∂tw‖L2(I;V′)‖v‖L2(I;V)
, (4.5.1)

consequently it holds that γ∂t
∆ � infδ∈∆ γδ, we will summarize some known

results about settings for which infδ∈∆ γδ > 0 has been demonstrated.
In the final subsection of this section we will briefly comment on the con-

struction of preconditioners at the Y-side, i.e. condition (4.3.3), and the X-side.
The preconditioner Kδ

Y has its application for the reduction of the saddle-point
system (4.3.7) (reading (Kδ

Y)
−1 as Eδ

Y
′AsEδ

Y) to the elliptic system (4.3.6), and as
an ingredient for building a preconditioner for the saddle-point system (4.4.4),
whereas Kδ

X can be applied for preconditioning (4.3.6), and as the other ingre-
dient to construct a preconditioner for (4.4.4).

Since inf-sup conditions of the type γδ > 0, or infδ∈∆ γδ > 0, will be en-
countered more often in this work, in an abstract setting we recall their rela-
tion with existence of certain Fortin interpolators, see Theorem 7.3.11.
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Proposition 4.5.1. Let Ã and B̃ be closed subspaces of Hilbert spaces A and B, and
let F ∈ L(A,B′). Let

Q ∈ L(B,B) with ran Q ⊂ B̃ and (Id − Q′)FÃ = 0. (4.5.2)

Then G := inf{a∈Ã : Fa �=0} sup0 �=b∈B̃
(Fa)(b)

‖Fa‖B′ ‖b‖B
≥ ‖Q‖−1

L(B,B). Conversely, if G >

0, then there exists a projector Q as in (4.5.2), and ‖Q‖L(B,B) ≤ 2 + 1/G.

4.5.1 ‘Full’ tensor product case

Concerning the verification of infδ∈∆ γδ > 0, we start with the easy case of Xδ

and Yδ being ‘full’ tensor products of approximation spaces in time and space
(as opposed to sparse tensor products, see below). With Yt := L2(I) and Xt :=
H1(I), for Z ∈ {X, Y} let (Zδ

t )δ∈∆ and (Zδ
x)δ∈∆ be families of closed subspaces

of Zt and V, respectively, and let Zδ := Zδ
t ⊗ Zδ

x. Assuming that

γδ
t := inf

{w∈Xδ
t : w′ �=0}

sup
0 �=v∈Yδ

t

∫
I w′v dt

‖w′‖L2(I)‖v‖L2(I)
� 1, (4.5.3)

γδ
x := inf

0 �=w∈Xδ
x

sup
0 �=v∈Yδ

x

〈w, v〉
‖w‖V′ ‖v‖V

� 1, (4.5.4)

a tensor product argument shows that

γδ = γδ
t γδ

x � 1.

Obviously, (4.5.3) is true when d
dt Xδ

t ⊆ Yδ
t , which however is not a neces-

sary condition. For example, when Xδ
t is the space of continuous piecewise

linears w.r.t. some partition of I, and Yδ
t is the space of continuous piecewise

linears w.r.t. a once dyadically refined partition, an easy computation ([And13,
Prop. 6.1]) shows that γδ

t ≥
√

3/4.
Considering, for a domain Ω ⊂ Rd and Γ ⊂ ∂Ω, H = L2(Ω) and V =

H1
0,Γ(Ω) := {v ∈ H1(Ω) : v|Γ = 0}, H1(Ω)-stability of the L2(Ω)-orthogonal

projector onto Lagrange finite element spaces Xδ
x = Yδ

x is an extensively stud-
ied subject. In view of Proposition 4.5.1, taking F to be the Riesz map H → H′

viewed as a mapping V → V′, this stability implies (4.5.4). For finite element
spaces w.r.t. shape regular quasi-uniform partitions into, say, d-simplices, where
Γ is the union of faces of T ∈ T , stability follows easily from direct and inverse
estimates. It is known that this stability holds also true for (shape regular) lo-
cally refined partitions when they are sufficiently mildly graded. In [GHS16],
it is shown that in two space dimensions the meshes generated by newest
vertex bisection satisfy this requirement, see also [DST20] for extensions.

4.5.2 Sparse tensor product case

As shown in [And13, Prop. 4.2], these results for full tensor products extend
to sparse tensor products. When (Zδ

t )δ∈∆ and (Zδ
x)δ∈∆ are nested sequences of
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closed subspaces Zδ0
t ⊂ Zδ1

t ⊂ · · · ⊂ Zt, Zδ0
x ⊂ Zδ1

x ⊂ · · · ⊂ V which satisfy

(4.5.3)–(4.5.4), then for Zδn := ∑{0≤nt+nx≤n} Z
δnt
t ⊗ Zδnx

x we have

γδn ≥ min
0≤nt≤n

γ
δnt
t min

0≤nx≤n
γ

δnx
t � 1.

4.5.3 Time-slab partition case

Another extension of the full tensor product case is given by the following.
Let (X̄δ, Ȳδ)δ∈∆̄ be a family of pairs of closed subspaces of X and Y for which

γ∆̄ := inf
δ∈∆̄

inf
{w∈X̄δ : ∂tw �=0}

sup
0 �=v∈Ȳδ

∫
I〈∂tw, v〉dt

‖w‖L2(I;V′)‖v‖L2(I;V)
> 0.

Then if, for δ ∈ ∆, Xδ and Yδ are such that for some finite partition Iδ =
([tδ

i−1, tδ
i ])i of I, with Gδ

i (t) := tδ
i−1 +

t
T (t

δ
i − tδ

i−1) and arbitrary δi ∈ ∆̄ we have

Xδ ⊆ {u ∈ X : u|(tδ
i−1,tδ

i )
◦ Gδ

i ∈ X̄δi},

Yδ ⊇ {v ∈ L2(I; V) : v|(tδ
i−1,tδ

i )
◦ Gδ

i ∈ Ȳδi},

then γδ ≥ γ∆̄ > 0 as one easily verifies using
∫

I〈
du
dt , v〉dt = ∑i

∫ ti
ti−1

〈du
dt , v〉dt.

An example of this ‘time-slab partition’ setting will be given in Sect. 4.7. Think-
ing of the X̄δ as being finite element spaces, notice that the condition Xδ ⊂ X
will require that possible ‘hanging nodes’ on the interface between different
time slabs do not carry degrees of freedom.

4.5.4 Generalized sparse tensor product case

Finally, we informally describe a ‘generalized’ sparse tensor product setting that
allows for local refinements driven by an a posteriori error estimator. For Z ∈
{X, Y}, let the nested sequences of closed subspaces Zδ0

t ⊂ Zδ1
t ⊂ · · · ⊂ Zt,

Zδ0
x ⊂ Zδ1

x ⊂ · · · ⊂ V be equipped with hierarchical bases, meaning that the
basis for Zδi

t (analogously Zδi
x ) is inductively defined as the basis for Zδi−1

t plus
a basis for a complement space of Zδi−1

t in Zδi
t . The level of the functions in the

latter basis is defined as i.
Let us consider the usual case that the diameter of the support of a hier-

archical basis function with level i is � 2−i, and let us assign to each basis
function φ on level i > 0 one (or a few) parents with level i − 1 whose sup-
ports intersect the support of φ. We now let (Zδ)δ∈∆ be the collection of all
spaces that are spanned by sets of product hierarchical basis functions, which
sets are downward closed (or lower) in the sense that if a product of basis func-
tions is in the set, then so are all their parents in both directions. Note that

the sparse tensor product spaces ∑{0≤nt+nx≤n} Z
δnt
t ⊗ Zδnx

x are included in this
collection, but that it contains many more spaces.
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sup
0 �=v∈Ȳδ

∫
I〈∂tw, v〉dt

‖w‖L2(I;V′)‖v‖L2(I;V)
> 0.

Then if, for δ ∈ ∆, Xδ and Yδ are such that for some finite partition Iδ =
([tδ

i−1, tδ
i ])i of I, with Gδ

i (t) := tδ
i−1 +

t
T (t

δ
i − tδ

i−1) and arbitrary δi ∈ ∆̄ we have

Xδ ⊆ {u ∈ X : u|(tδ
i−1,tδ

i )
◦ Gδ

i ∈ X̄δi},

Yδ ⊇ {v ∈ L2(I; V) : v|(tδ
i−1,tδ

i )
◦ Gδ

i ∈ Ȳδi},

then γδ ≥ γ∆̄ > 0 as one easily verifies using
∫

I〈
du
dt , v〉dt = ∑i

∫ ti
ti−1

〈du
dt , v〉dt.

An example of this ‘time-slab partition’ setting will be given in Sect. 4.7. Think-
ing of the X̄δ as being finite element spaces, notice that the condition Xδ ⊂ X
will require that possible ‘hanging nodes’ on the interface between different
time slabs do not carry degrees of freedom.

4.5.4 Generalized sparse tensor product case

Finally, we informally describe a ‘generalized’ sparse tensor product setting that
allows for local refinements driven by an a posteriori error estimator. For Z ∈
{X, Y}, let the nested sequences of closed subspaces Zδ0

t ⊂ Zδ1
t ⊂ · · · ⊂ Zt,

Zδ0
x ⊂ Zδ1

x ⊂ · · · ⊂ V be equipped with hierarchical bases, meaning that the
basis for Zδi

t (analogously Zδi
x ) is inductively defined as the basis for Zδi−1

t plus
a basis for a complement space of Zδi−1

t in Zδi
t . The level of the functions in the

latter basis is defined as i.
Let us consider the usual case that the diameter of the support of a hier-

archical basis function with level i is � 2−i, and let us assign to each basis
function φ on level i > 0 one (or a few) parents with level i − 1 whose sup-
ports intersect the support of φ. We now let (Zδ)δ∈∆ be the collection of all
spaces that are spanned by sets of product hierarchical basis functions, which
sets are downward closed (or lower) in the sense that if a product of basis func-
tions is in the set, then so are all their parents in both directions. Note that

the sparse tensor product spaces ∑{0≤nt+nx≤n} Z
δnt
t ⊗ Zδnx

x are included in this
collection, but that it contains many more spaces.
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Under conditions on the hierarchical bases for Zδ0
t ⊂ Zδ1

t ⊂ · · · ⊂ Zt for
Z ∈ {X, Y}, which should be of wavelet-type, in [SvVW21] it is shown that to
any Xδ one can assign a Yδ with dim Yδ � dim Xδ, such that γδ � 1 holds.

4.5.5 Preconditioners

Moving to condition (4.3.3), obviously we would like to construct Kδ
Y such

that it is not only a uniform preconditioner, i.e., it satisfies (4.3.3), but also
that its application can be performed in O(dim Yδ) operations. In the full-
tensor product case, after selecting bases for Yδ

t and Yδ
x , the construction of Kδ

Y
boils down to tensorizing approximate inverses of the ‘mass matrix’ in time,
which does not pose any problems, and the ‘stiffness matrix’ in space. For
V = H1(Ω) (or a subspace of aforementioned type), it is well-known that by
taking a multi-grid preconditioner as the approximate inverse of the stiffness
matrix the resulting Kδ

Y satisfies our needs. A straightforward generalization
of this construction of Kδ

Y applies to spaces Yδ that correspond to the time-slab
partitioning approach.

Finally, for the efficient iterative solution of (4.3.6) or (4.4.4), one needs a
Kδ

X = Kδ
X
′ ∈ Lis(Xδ ′, Xδ) whose norm and norm of its inverse are uniformly

bounded, and whose application can be performed in O(dim Xδ) operations.
For the full and generalized sparse tensor product setting such precondition-
ers have been constructed in [And16] and [SvVW21], respectively.

4.6 Robustness

The quasi-optimality results presented in Theorems 4.3.1 and 4.4.2 for MR and
BEN degenerate when α = ‖Aa‖L(Y,Y′) → ∞. Aiming at results that are robust
for α → ∞, we now study convergence w.r.t. the energy-norm ||| · |||X on X. On
its own this change of norms turns out not to be helpful. By replacing ‖ · ‖X
by ||| · |||X in Theorems 4.3.1 and 4.4.2, and adapting their proofs in an obvious

way yields for MR the same upper bound for |||u−uδ |||X
infw∈Xδ |||u−w|||X

as we found for

‖u−uδ‖X
infw∈Xδ ‖u−w‖X

(for u �∈ Xδ), whereas instead of Theorem 4.4.2 we arrive at the

only slightly more favourable bound

|||u − ūδ|||X ≤ 2+α2+α
√

α2+4

(γ
∂t
∆ )2+α2+1−

√
((γ

∂t
∆ )2+α2+1)2−4(γ∂t

∆ )2
inf

w∈Xδ , v∈Yδ
|||u − w|||X + ‖u − v‖Y ,

which is, however, still far from being robust.
In order to obtain robust bounds, instead of the condition γ∂t

∆ > 0 ((4.3.2))
we now impose

γC
∆ := inf

δ∈∆
inf

{0 �=w∈Xδ : CEδ
Xw �=0}

‖Eδ
Y
′CEδ

Xw‖Yδ ′

‖CEδ
Xw‖Y′

> 0, (4.6.1)

which, when considering a family of operators A, we would like to hold uni-
formly for α → ∞.
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Theorem 4.6.1. Under conditions (4.3.1), (4.6.1), and (4.3.3), the solution uδ ∈ Xδ

of (4.3.6) satisfies

|||u − uδ|||X ≤
√

max(R∆ ,1)
min(r∆ ,1) (γC

∆)
−1 inf

w∈Xδ
|||u − w|||X ; (4.6.2)

and under condition (4.6.1), the solution ūδ ∈ Xδ of (4.4.5) satisfies

|||u − ūδ|||X ≤ (γC
∆)

−2
{

inf
w∈Xδ

|||u − w|||X + inf
v∈Yδ

‖u − v‖Y

}
. (4.6.3)

Proof. The first estimate follows from ignoring the last inequality in (4.3.12),
and by replacing the first inequality in (4.3.15) by

‖Eδ
Y
′
CEδ

Xwδ‖2
Yδ ′ + ‖Eδ

Xwδ‖2
Y + ‖γTEδ

Xwδ‖2 + (β − 1)‖γ0Eδ
Xwδ‖2

≥ (γC
∆)

2
(
‖CEδ

Xwδ‖2
Y′ + ‖Eδ

Xwδ‖2
Y + ‖γTEδ

Xwδ‖2 + (β − 1)‖γ0Eδ
Xwδ‖2

)

= (γC
∆)

2
(
(Eδ

X
′
B′A−1

s BEδ
X + Eδ

X
′
βγ′

0γ0Eδ
X)w

δ
)
(wδ) = (γC

∆)
2|||wδ|||2X .

Following the proof of Theorem 4.4.2, but now equipping X with ||| · |||X ,
from ‖C‖L(X,Y′) ≤ 1, ‖G(δ)‖L(X,X′) ≤ 1, and ‖(Eδ

X
′G(δ)Eδ

X)
−1‖L(Xδ ′ ,Xδ)

≤
(γC

∆)
−2, one infers the estimate for BEN.

We conclude that for a family of operators A robustness w.r.t. ||| · |||X is
obtained when (γC

∆)
−1 is uniformly bounded for α = ‖Aa‖L(Y,Y′) → ∞. A

family for which this will be realized is presented in Sect. 4.7.

4.6.1 A posteriori error estimation

In particular because for α = ‖Aa‖L(Y,Y′) → ∞ meaningful a priori error
bounds for infw∈Xδ |||u − w|||X will be hard to derive, it is important to have
(robust) a posteriori error bounds.

Let Qδ
B ∈ L(Y, Y) be such that ran Qδ

B ⊂ Yδ and (Id − Qδ
B
′
)BXδ = 0. Then,

with eδ
osc(g) := ‖(Id − Qδ

B
′
)g‖Y′ , for w ∈ Xδ and u the solution of (4.2.4) it

holds that

r∆‖Eδ
Y
′
(g−Bw)‖2

Kδ
Y
+ β‖u0 − γ0w‖2 ≤ |||u − w|||2X ≤

(
‖Qδ

B‖L(Y,Y)
√

R∆‖Eδ
Y
′
(g − Bw)‖Kδ

Y
+ eδ

osc(g)
)2

+ β‖u0 − γ0w‖2,

which follows from ‖g − Bw‖Yδ ′ ≤ ‖g − Bw‖Y′ ≤ ‖Qδ
B
′
(g − Bw)‖Y′ + eδ

osc(g).
Therefore, if supδ∈∆ ‖Qδ

B‖L(Y,Y) < ∞, then the a posteriori error estimator

E δ(w; g, u0, β) :=
√
‖Eδ

Y
′
(g − Bw)‖2

Kδ
Y
+ β‖u0 − γ0w‖2 (4.6.4)
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is an efficient and, modulo the data oscillation term eδ
osc(g), reliable estimator

of the error |||u − w|||X . If supδ∈∆ ‖Qδ
B‖L(Y,Y) and max(R∆ ,1)

min(r∆ ,1) are bounded uni-
formly in α → ∞, then this estimator is even robust.

Remark. In view of Prop. 4.5.1, the aforementioned assumptions ran Qδ
B ⊂

Yδ, (Id − Qδ
B
′
)BXδ = 0, and supδ∈∆ ‖Qδ

B‖L(Y,Y) < ∞ are equivalent to

γB
∆ := inf

δ∈∆
inf

{0 �=w∈Xδ : BEδ
Xw �=0}

‖Eδ
Y
′BEδ

Xw‖Yδ ′

‖BEδ
Xw‖Y′

> 0.

In applications the conditions γ∂t
∆ > 0, γC

∆ > 0, and γB
∆ > 0 are increasingly

more difficult to fulfill. ♦

To have a meaningful reliability result, in addition we would like to find
above Qδ

B such that, for sufficiently smooth g, the term eδ
osc(g) is asymptoti-

cally, i.e. for the ‘mesh-size’ tending to zero, of equal or higher order than the
approximation error infw∈Xδ |||u − w|||X . We will realize this in the setting that
will be discussed in Sect. 4.7.2.

4.7 Spatial PDOs with dominating asymmetric part

For some domain Ω ⊂ Rd, and Γ ⊂ ∂Ω, let

H := L2(Ω), V := H1
0,Γ(Ω) := {v ∈ H1(Ω) : v|Γ = 0},

a(t; η, ζ) :=
∫

Ω
ε∇η · ∇ζ + (b · ∇η + eη)ζ dx, ε > 0,

b ∈ L∞(I; L∞(div; Ω)), e ∈ L∞(I × Ω), ess inf(e − 1
2 divx b) ≥ 0,

(4.7.1)

and |Γ| > 0 when the latter ess inf is zero, so that (4.2.1) and (4.2.5) are valid.
In this setting, the operators Aa, As = As(ε), and so A = A(ε) = As(ε) + Aa,
are given by

(Aaw)(v) =
∫

I

∫

Ω
(b · ∇xw + 1

2 w divx b)v dx dt,

(As(ε)w)(v) =
∫

I

∫

Ω
ε∇xw · ∇xv + (e − 1

2 divx b)wv dx dt.

Thinking of b and e fixed, and variable ε > 0, one infers that α = α(ε) → ∞
when ε ↓ 0 (cf. Remark 4.2.3).

In the next subsection we will construct (Xδ)δ∈∆ ⊂ X and (Yδ)δ∈∆ ⊂ Y
that (essentially) satisfy infε>0 γC

∆(ε) > 0 as families of finite element spaces
w.r.t. subdivisions of I × Ω into time-slabs with prismatic elements in each
slab w.r.t. generally different partitions of Ω. Notice that although C = ∂t + Aa
is independent of ε, γC

∆(ε) depends on ε because it is defined in terms of the
ε-dependent energy-norm ‖ · ‖Y =

√
(As(ε)·)(·).

As a consequence of γC
∆(ε) being uniformly positive, for Kδ

Y � (Eδ
Y
′AsEδ

Y)
−1

uniformly in ε and δ, i.e., supε>0
max(R∆ ,1)
min(r∆ ,1) < ∞, Theorem 4.6.1 gives ε-robust

quasi-optimality for MR and BEN w.r.t. the ε- and β-dependent ||| · |||X-norm.
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4.7.1 Realization of infε γC
∆(ε) > 0

Given a conforming partition T of a polytopal Ω into (essentially disjoint)
closed d-simplices, we define S−1,q

T as the space of all (discontinuous) piece-
wise polynomials of degree q w.r.t. T , and, for q ≥ 1, set

S0,q
T ,0 := S−1,q

T ∩ H1
0,Γ(Ω),

where we assume that Γ is the union of faces of T ∈ T .
Let (T δ)δ∈∆̄, (T δ

S )δ∈∆̄ be a families of such partitions of Ω, which are uni-
formly shape regular (which for d = 1 should be read as to satisfy a uniform
K-mesh property), and where T δ

S is a refinement of T δ of some fixed max-
imal depth in the sense that |T| � |T′| for T δ

S � T ⊂ T′ ∈ T δ, so that
dim T δ

S � dim T δ. On the other hand, fixing a q ≥ 1, we require that the
refinement from T δ to T δ

S is sufficiently deep that it permits the construction
of a projector Pδ

q for which

ran Pδ
q ⊆ S0,q

T δ
S ,0

, ran(Id − Pδ
q ) ⊥L2(Ω)

(
S0,q
T δ ,0 + S−1,q−1

T δ

)
, (4.7.2)

‖Pδ
q w‖L2(T) � ‖w‖L2(T) (T ∈ T δ, w ∈ L2(Ω)). (4.7.3)

As shown in Lemma 7.5.1 and Remark 7.5.2, regardless of the refinement
rule (e.g. red-refinement of newest vertex bisection) that is (recursively) ap-
plied to create (T δ

S )δ∈∆̄ from (T δ)δ∈∆̄, there is a refinement of some fixed
depth that suffices to satisfy (4.7.3) as well as

ran Pδ
q ⊆ {w ∈ S0,q

T δ
S ,0

: w|∪T∈T ∂T = 0}, ran(Id − Pδ
q ) ⊥L2(Ω) S

−1,q
T δ ,0 . (4.7.4)

Condition (4.7.4) is stronger than (4.7.2), and will be relevant in Sect. 4.7.2 on
robust a posteriori error estimation.

For d ∈ {1, 2, 3} and q ∈ {1, 2, 3}, and both newest vertex bisection and
red-refinement it was verified that it is sufficient that the aformentioned depth
creates in the space S0,q

T δ
S ,0

an additional number of degrees of freedom interior

to any T ∈ T δ that is greater or equal to (q+d
q ).

Remark 4.7.1. To satisfy condition (4.7.2)–(4.7.3) generally a smaller number
of degrees of freedom interior to any T ∈ T δ suffices. For d = 2 = q, in
Appendix 7.A it was shown that in order to satisfy (4.7.2)–(4.7.3) it is sufficient
to create T δ

s from T δ by one red-refinement, which creates only three of such
degrees of freedom, whereas to satisfy (4.7.3)–(4.7.4) six additional interior
degrees of freedom are needed. ♦

We show robustness of MR and BEN in a time-slab partition setting.

Theorem 4.7.2. Let H, V, and a(·; ·, ·) be as in (4.7.1), with constant b and con-
stant e ≥ 0. Let (T δ)δ∈∆̄ and (T δ

S )δ∈∆̄ be as specified above. Then if, for δ ∈ ∆, Xδ
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and Yδ satisfy, for some finite partition Iδ = ([tδ
i−1, tδ

i ])i of I, and arbitrary δi ∈ ∆̄,

Xδ ⊆ {w ∈ C(I; H1
0,Γ(Ω)) : w|(tδ

i−1,tδ
i )
∈ Pq(tδ

i−1, tδ
i )⊗ S0,q

T δi ,0
}, (4.7.5)

Yδ ⊇ {v ∈ L2(I; H1
0,Γ(Ω)) : v|(tδ

i−1,tδ
i )
∈ Pq(tδ

i−1, tδ
i )⊗ S0,q

T δi
S ,0

},

then infε>0 γC
∆(ε) > 0. Consequently the bounds (4.6.2) and (4.6.3) show quasi-

optimality of MR and BEN w.r.t. the (ε- and β-dependent) norm ||| · |||X, uniformly in
ε > 0 and β ≥ 1.

Proof. As follows from Proposition 4.5.1 the statement infε>0 γC
∆(ε) > 0 is

equivalent to existence of Qδ
C ∈ L(Y, Y) with

sup
ε>0, δ∈∆

‖Qδ
C‖L(Y,Y) < ∞, ran Qδ

C ⊂ Yδ,
∫

I

∫

Ω
((∂t + b · ∇x)Xδ)(I −Qδ

C)Y dx dt = 0,

(4.7.6)
using that, thanks to constant b, Y = L2(I; H1

0,Γ(Ω)) is equipped with norm

√
(As(ε)v)(v) =

√∫

I
ε‖∇xv‖2

L2(Ω)d + e‖v‖2
L2(Ω)

dt

�
√

ε‖∇xv‖L2(I×Ω)d +
√

e‖v‖L2(I;L2(Ω)).

It holds that

(∂t+b · ∇x)Xδ ⊆
{

v∈L2(I×Ω) : v|(tδ
i−1,tδ

i )
∈Pq(tδ

i−1, tδ
i )⊗(S0,q

T δi ,0
+S−1,q−1

T δi
)
}

.
(4.7.7)

Let (Qδ
x)δ∈∆̄ denote a family of projectors such that

sup
δ∈∆

max
(
‖Qδ

x‖L(L2(Ω),L2(Ω)), ‖Qδ
x‖L(H1

0,Γ(Ω),H1
0,Γ(Ω))

)
< ∞, (4.7.8)

ran Qδ
x ⊂ S0,q

T δ
S ,0

, ran(Id − Qδ
x) ⊥L2(Ω)

(
S0,q
T δ ,0 + S−1,q−1

T δ

)
, (4.7.9)

and let Qδ,i be the L2(tδ
i−1, tδ

i )-orthogonal projector onto Pq(tδ
i−1, tδ

i ). Then, the
operator Qδ

C, defined by

(Qδ
Cv)|(tδ

i−1,tδ
i )×Ω = (Qδ,i ⊗ Qδi

x )v|(tδ
i−1,tδ

i )×Ω,

satisfies (4.7.6). Indeed its uniform boundedness w.r.t. the energy-norm on Y
follows by the boundedness of Qδ

x w.r.t. both the L2(Ω)- and H1(Ω)-norms.
By writing Id − Qδ,i ⊗ Qδi

x = (Id − Qδ,i) ⊗ Id + Qδ,i ⊗ (Id − Qδi
x ), and using

(4.7.7) one verifies the third condition in (4.7.6).
We seek Qδ

x of the form Qδ
x = Q̆δ

x + Q̂δ
x + Q̂δ

xQ̆δ
x where

ran Q̆δ
x, ran Q̂δ

x ⊂ S0,q
T δ

S ,0
, ran(Id − Q̂δ

x) ⊥L2(Ω) (S
0,q
T δ ,0 + S−1,q−1

T δ ). (4.7.10)

Then from Id − Qδ
x = (Id − Q̂δ

x)(Id − Q̆δ
x), we infer that (4.7.9) is satisfied.
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We take Q̂δ
x = Pδ

q from (4.7.2)–(4.7.3). It satisfies the properties required
in (4.7.10). With h̄δ being the piecewise constant function defined by h̄δ|T =
diam T (T ∈ T δ), thanks to the uniform K-mesh property of T ∈ (T δ)δ∈∆̄,
(4.7.3) implies both ‖h̄−1

δ Pδ
q h̄δ‖L(L2(Ω),L2(Ω)) � 1 and ‖Pδ

q ‖L(L2(Ω),L2(Ω)) � 1.

Take Q̆δ
x as a modified Scott–Zhang quasi-interpolator onto S0,q

T δ
S ,0

([GL01,

Appendix]). The modification consists in setting the degrees of freedom on Γ
to zero. When applied to a function from H1

0,Γ(Ω) it equals the original Scott–
Zhang interpolator ([SZ90]), but thanks to the modification it is uniformly
bounded w.r.t. L2(Ω), and so ‖Qδ

x‖L(L2(Ω),L2(Ω)) is uniformly bounded.

Writing Qδ
x = Q̆δ

x + Pδ
q (Id− Q̆δ

x), from h̄−1
δ (Id− Q̆δ

x) ∈ L(H1
0,Γ(Ω), L2(Ω)),

h̄−1
δ Pδ

q h̄δ ∈ L(L2(Ω), L2(Ω)), and Q̆δ
x ∈ L(H1

0,Γ(Ω), H1
0,Γ(Ω)) all being uni-

formly bounded, and ‖ · ‖H1(Ω) � ‖h̄−1
δ · ‖L2(Ω) on S0,q

T δ
S ,0

, we infer the uniform

boundedness of ‖Qδ
x‖L(H1

0,Γ(Ω),H1
0,Γ(Ω)).

Next under the condition that ess inf(e − 1
2 divx b) > 0, we consider the

case of variable b and e. The scaling argument that was applied directly be-
low Theorem 4.2.1 shows that it is no real restriction to assume that ess inf(e−
1
2 divx b) > 0. Although we will not be able to show infε>0 γC

∆(ε) > 0, this inf-
sup condition will be valid modulo a perturbation which can be dealt with us-
ing Young’s inequality similarly as in the proofs of Theorems 4.3.1 and 4.4.2.
It will result in ε- (and β-) robust quasi-optimality results for MR and BEN
similar as for constant b and constant e ≥ 0.

Theorem 4.7.3. Take the situation of Theorem 4.7.2, but now without assuming that
b and e are constants. Assume b ∈ W1

∞(I × Ω)d, ess inf(e − 1
2 divx b) > 0, and,

only for the case that b is time-dependent,

|tδ
i−1 − tδ

i | � max
T∈T δi

diam(T). (4.7.11)

Then for MR and BEN it holds

|||u − uδ|||X � max(R∆ ,1)
min(r∆ ,1) inf

w∈Xδ
|||u − w|||X ,

|||u − ūδ|||X � inf
w∈Xδ

|||u − w|||X + inf
v∈Yδ

‖u − v‖Y,

uniformly in ε > 0 and β ≥ 1.

Proof. As in the proof of Theorem 4.6.1, we follow the proofs of Theorems 4.3.1
(MR) and 4.4.2 (BEN). We only need to adapt the derivation of a lower bound
for the expression in the second line of (4.3.15).

With ξ = ess inf(e − 1
2 divx b), it holds that

√
ξ‖ · ‖Y′ ≤ ‖ · ‖L2(I×Ω) ≤ 1√

ξ
‖ · ‖Y.
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Let bδ be the piecewise constant vector field defined by taking the average of
b over each prismatic element (tδ

i−1, tδ
i )× T for T ∈ T δi . We use w �→ bδ · ∇xw

to approximate Aa; then ‖b − bδ‖L∞((tδ
i−1,tδ

i )×T)d � diam(T)‖b‖W1
∞((tδ

i−1,tδ
i )×T)d

by (4.7.11). An application of the inverse inequality on the family of spaces
(S0,q

T ,0)T ∈∆̄ shows that for some constant L > 0, for w ∈ Xδ it holds that

‖(b − bδ) · ∇xw + 1
2 w divx b‖L2(I×Ω) ≤ L‖w‖L2(I×Ω).

Because (4.7.7) is also valid for piecewise constant b, and
√
(As(ε)v)(v) �

√
ε‖∇xv‖L2(I×Ω)d +

√
ξ‖v‖L2(I;L2(Ω)),

only dependent on ‖e− 1
2 divx b‖L∞(I×Ω)/ξ, the proof of Theorem 4.7.2 shows

that for some constant γ > 0, for w ∈ Xδ it holds that

‖Eδ
Y
′
(∂t + bδ · ∇x)Eδ

Yw‖Yδ ′ ≥ γ‖(∂t + bδ · ∇x)Eδ
Yw‖Y′ .

By combining these estimates, we find that for w ∈ Xδ it holds that

‖Eδ
Y
′
CEδ

Yw‖Yδ ′ ≥ γ‖(∂t + bδ · ∇x)Eδ
Yw‖Y′ − L√

ξ
‖Eδ

Yw‖L2(I×Ω)

≥ γ‖CEδ
Yw‖Y′ − (γ + 1) L√

ξ
‖Eδ

Yw‖L2(I×Ω)

≥ γ‖CEδ
Yw‖Y′ − (γ + 1) L

ξ ‖Eδ
Yw‖Y,

and so

‖Eδ
Y
′
CEδ

Yw‖2
Yδ ′ + ‖Eδ

Xw‖2
Y + ‖γTEδ

Xw‖2 + (β − 1)‖γ0Eδ
Xw‖2

≥
(

γ‖CEδ
Yw‖Y′ −(γ + 1) L

ξ ‖Eδ
Yw‖Y

)2
+ ‖Eδ

Xw‖2
Y

+ ‖γTEδ
Xw‖2 + (β − 1)‖γ0Eδ

Xw‖2

≥ (1 − η2)γ2‖CEδ
Yw‖2

Y′ +
{
(1 − η−2)(γ + 1)2 L2

ξ2 + 1
}
‖Eδ

Xw‖2
Y

+ ‖γTEδ
Xw‖2 + (β − 1)‖γ0Eδ

Xw‖2.

Minimizing over η shows that, with α2 := (γ + 1)2 L2

ξ2 , the last expression is
greater than or equal to

1
2

(
γ2 + α2 + 1 −

√
(γ2 + α2 + 1)2 − 4γ2

)
|||Eδ

Xw|||2X ,

which completes the proof.

4.7.2 Robust a posteriori error estimation

A robust error estimator will be realized in the following limited setting.
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Consider the spaces and bilinear form a as in (4.7.1), where b is constant,
e = 0, and the polytope Ω ⊂ Rd is convex. For families of quasi-uniform
partitions (Iδ)δ∈∆ of I, and (T δ)δ∈∆ and (T δ

S )δ∈∆ of Ω as before, where T δ
S is a

sufficiently deep refinement of T δ that permits the construction of a projector
Pδ

1 that satisfies (4.7.3)–(4.7.4), and for some hδ > 0, diam T � hδ � diam J
(T ∈ T δ, J ∈ Iδ), let Xδ := S0,1

Iδ ⊗ S0,1
T δ ,0 and Yδ := S−1,1

Iδ ⊗ S0,1
T δ

S ,0
. For complete-

ness, S−1,1
Iδ denotes the space of piecewise linears w.r.t. Iδ, and S0,1

Iδ the space
of continuous piecewise linears w.r.t. Iδ.

In this setting, in Theorem 7.5.4 projectors Qδ
B ∈ L(Y, Y) have been con-

structed with ran Qδ
B ⊂ Yδ and (I −Qδ

B
′
)BXδ = 0. Moreover, these Qδ

B are uni-
formly bounded in Y = L2(I; H1

0,Γ(Ω)) equipped with the standard Bochner
norm, with H1

0,Γ(Ω) being equipped with ‖∇ · ‖L2(Ω)d . Since for the current
bilinear form a, the energy-norm ‖ · ‖Y is equal to

√
ε‖ · ‖L2(I;H1

0,Γ(Ω)), it holds

that supδ∈∆, ε>0 ‖Qδ
B‖L(Y,Y) < ∞, and so

inf
ε>0

γB
∆(ε) > 0.

Let ((K̂δ
Y)

−1v)(v)�
∫

I

∫
Ω|∇xv|2 dx dt (δ ∈ ∆, v ∈ Yδ), then (ε−1K̂δ

Y)
−1 �

Eδ
Y
′AsEδ

Y, i.e., using preconditioner Kδ
Y := ε−1K̂δ

Y, supε>0
max(R∆ ,1)
min(r∆ ,1) < ∞.

We show that data-oscillation is asymptotically of higher or equal order as

the approximation error in ||| · |||X =
√
‖B · ‖2

Y′ + β‖γ0 · ‖2. Noting that ‖ ·
‖Y′ = 1√

ε
‖ · ‖L2(I;H1

0,Γ(Ω)′), it is natural to select β = ε−1. Then
√

ε||| · |||X equals

√
‖(∂t + b · ∇x)·‖2

L2(I;H1
0,Γ(Ω)′)

+ε2‖ · ‖2
L2(I;H1

0,Γ(Ω))
+ε‖γT · ‖2+(1 − ε)‖γ0 · ‖2,

and so even for a general smooth u,
√

ε times the approximation error cannot
be expected to be smaller than� h2

δ. Since for g ∈ L2(I; H1(Ω))∩ H2(I; H−1(Ω))

it holds that
√

ε‖(I −Qδ
B
′
)g‖Y′ = ‖(I −Qδ

B
′
)g‖L2(I;H1

0,Γ(Ω)′) � h2
δ (Theorem 7.5.4),

we conclude that E δ(w; g, u0, β) from (4.6.4) is an efficient and, modulo above
satisfactory data-oscillation term, reliable a posteriori estimator of the error in
w in ||| · |||X-norm.

4.8 Numerical experiments

We tested the minimal residual (MR) method applied to the parabolic initial
value problem with the singularly perturbed ‘spatial component’ as given in
(4.7.1). We considered the simplest case where I = Ω = (0, 1), b = 1, and e is
either 0 or 1, and Xδ = S0,1

Iδ ⊗ S0,1
T δ ,0, where Iδ = T δ is a uniform partition of I

with mesh size hδ. Taking always (Kδ
Y)

−1 = Eδ
Y
′AsEδ

Y, we took either
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(i) Yδ = S−1,1
Iδ ⊗ S0,1

T δ ,0(⊇ Xδ ∪ ∂tXδ) which for any fixed ε > 0 gives γ∂t
∆ > 0

(Sect. 4.5.1), so that the MR approximations are quasi-optimal approxi-
mations from the trial space w.r.t. ‖ · ‖X (Thm. 4.3.1), or

(ii) Yδ := S−1,1
Iδ ⊗ S0,1

T δ
s ,0

where T δ
s is a uniform partition with mesh-size hδ/3

which even gives infε>0 γC
∆(ε) > 0 (Thm. 4.7.2), so that the MR approxi-

mations are quasi-optimal approximations from the trial space w.r.t. the
energy-norm ||| · |||X also uniformly in ε > 0 (Thm. 4.6.1).

With Remark 4.4.1, in these cases the BEN and MR methods are equivalent.
As discussed in Sect. 4.7.2, for the case that e = 0 it is natural to take the

weight β = ε−1. Unlike with e = 0, for e = 1 and 0 �= v ∈ Y the energy-norm√
(Asv)(v) does not tend to zero for ε ↓ 0 but converges to ‖v‖L2(I×Ω), so

there is no reason to let β tend to infinity for ε ↓ 0, and we took β = 1.
For Yδ as in (ii), in Sect. 4.7.2 it was shown that for (e, β) = (0, ε−1) it holds

that infε>0 γB
∆(ε) > 0, and more specifically that the a posteriori error esti-

mator E δ(w; g, u0, β) from (4.6.4) is an efficient and, modulo a data-oscillation
term which is at least of equal order, reliable estimator of the error |||u − w|||X .
Therefore to assess our numerical results, we used Yδ as in Option (ii) for error
estimation, even when solving with Yδ as in (i).

For (e, β) = (1, 1), we numerically observed that for our model problems
the a posteriori error estimator E δ(w; g, u0, β) computed with Yδ as in (ii) is
efficient and reliable as, knowing that the estimator equals |||u − w|||X for Yδ =
Y, we saw that further overrefinement of the test space Yδ never increased the
estimated error by more than a percent. So again, regardless of whether we
took Yδ as in Option (i) or (ii), we used Yδ as in (ii) to compute E δ(w; g, u0, β).

In experiments below, we choose ε = 1, 10−1, 10−3, 10−6; to compare dif-
ferent values of ε, we show the estimated error divided by an accurate approx-

imation for
√
‖g‖2

Y′+β‖u0‖2 = |||u|||X .

4.8.1 Smooth problem

We take (homogeneous) Dirichlet boundary conditions at left- and right bound-
ary, i.e. Γ = ∂Ω, select (e, β) = (0, ε−1), and prescribe the solution u(t, x) :=
(t2 + 1) sin(πx) with derived data u0 and g. For this problem, the best possible
error in ||| · |||X-norm, divided by |||u|||X , decays proportionally to (dim Xδ)−1/2.

Figure 4.1 shows this relative estimated error as a function of dim Xδ. In ac-
cordance with Theorem 4.3.1, for this parabolic problem with non-symmetric
spatial part, both Option (i) and Option (ii) give solutions that converge at the
expected rate. For Option (i), however, this convergence is not uniform in ε,
but in accordance with Theorem 4.6.1, for Option (ii) it is.

4.8.2 Internal layer problem

We choose u0 := 0 and g(t, x) := 1{x>t}, select (e, β) = (0, ε−1), and prescribe
a homogeneous Dirichlet boundary condition only at the left boundary x = 0,
i.e. Γ := {0}, and so have a Neumann boundary condition at the ‘outflow’
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Figure 4.1 Relative estimated error progression for the smooth problem as func-
tion of dim Xδ for different diffusion rates ε. Left: test space Yδ as in Option (i);
right: Yδ as in (ii).

boundary x = 1. Due to the jump in the forcing data, in the limit ε ↓ 0, the
solution t · 1{x>t} is discontinuous along the diagonal x = t.

The left of Figure 4.2 shows the relative estimated error progression of Op-
tion (ii) as a function of dim Xδ; as Option (i) again suffers from degradation
for small ε (with results very similar to the left of Figure 4.1), we omit a graph
of its error progression. Its right shows the discrete solution at hδ = 1

512 and
ε = 10−6. The solution resembles the pure transport solution quite well, with
the exception of a small artefact near x = t = 0.

Figure 4.2 Solving the internal layer problem with Option (ii). Left: relative
estimated error progression as function of dim Xδ for different diffusion rates ε.
Right: solution at hδ =

1
512 and ε = 10−6.
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4.8.3 Boundary layer problem

We choose u0(x) := sin(πx) and g = 0, select (e, β) = (1, 1), and set ho-
mogenous Dirichlet boundary conditions on ∂Ω, i.e. Γ = {0, 1}. Due to the
condition on the outflow boundary, the problem is ill-posed in the limit ε = 0,
hence for ε small, the solution has a boundary layer at x = 1.

Figure 4.3 shows that the method fails to make progress until the boundary
layer is resolved at hδ � ε. Figure 4.4 shows two discrete solutions at hδ =

1
512

computed for Option (ii). We see that for ε = 10−3, the boundary layer is re-
solved and the solution resembles the pure transport solution quite well, with
the exception of a small artefact near x = t = 1. For ε = 10−6 though, the
boundary layer cannot be resolved with the current (uniform) mesh, and the
solution is completely wrong. For ε ↓ 0, the energy-norm of the error in an ap-
proximation w approaches

√
‖(∂t + b · ∇x)w‖2

L2(I×Ω)
+ ‖u0 − γ0w‖2

L2(Ω)
. As

a result, for streamlines that hit the outflow boundary, the method ‘chooses’
to smear the unavoidably large error as a consequence of the layer along the
whole streamline resulting in a globally bad approximation. This is a well-
known phenomenon when using a least squares method to approximate a
solution that has a sharp layer or a shock.

Figure 4.3 Relative estimated error progression for the boundary layer problem
as function of dim Xδ for different diffusion rates ε. Left: test space Yδ as in
Option (i); right: Yδ as in (ii).

4.8.4 Imposing outflow boundary conditions weakly

One common work-around is to resolve the problem caused by the boundary
layer is to refine the mesh strongly towards this layer. An alternative is to im-
pose at the outflow boundary the Dirichlet boundary condition only weakly,
see e.g. the references [CDW12, BS14, CEQ14, CFLQ14] where this approach
has been applied with least squares methods for stationary convection domi-
nated convection-diffusion methods. Without having a rigorous analysis we
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Figure 4.4 Solutions of the boundary layer problem with Option (ii) at hδ =
1

512 .
Left: diffusion ε = 10−3; right: ε = 10−6.

tried this second approach by computing, with Yδ as in Option (ii),

uδ := arg min
w∈X̂δ

‖Eδ
Y
′
(BEδ

Xw − g)‖2
Yδ ′ + β‖γ0Eδ

Xw − u0‖2 + ε‖w(·, 1)‖2
L2(I).

Here, X̂δ denotes the space Xδ after removing the Dirichlet boundary condi-
tion at x = 1. Figure 4.5 shows the resulting error progression, which is robust
in ε, as well as the minimal residual solution at hδ = 1

512 and ε = 10−6; it re-
sembles the pure transport solution quite well, and does not suffer from the
artifact present at the right of Figure 4.4.

Figure 4.5 Solving the boundary layer problem with Option (ii) imposing the
outflow boundary condition weakly. Left: error progression in dim X̂δ for different
ε. Right: solution at hδ =

1
512 and ε = 10−6.
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5 Efficient space-time adaptivity for
parabolic PDEs

Abstract Considering the space-time adaptive method for parabolic evo-
lution equations introduced in [arXiv:2101.03956 [math.NA]], this work
discusses an implementation of the method in which every step is of lin-
ear complexity. Exploiting the product structure of the space-time cylin-
der, the method allows for a family of trial spaces given as the spans of
wavelets-in-time tensorized with (locally refined) finite element spaces-
in-space. On spaces whose bases are indexed by double-trees, we derive an
algorithm that applies the resulting bilinear forms in linear complexity.
We provide extensive numerical experiments to demonstrate the linear
runtime of the resulting adaptive loop.

Source code is available at [vVW21b].

5.1 Introduction

This chapter deals with the adaptive numerical solution of parabolic evolution
equations using a simultaneous space-time variational formulation. Com-
pared to the more classical time-stepping schemes, these space-time meth-
ods are very flexible. Among other things, they are especially well-suited for
massively parallel computation ([NS19, vVW20a]), and some can guarantee
quasi-best approximations from the trial space ([And13, FK21, SZ20]).

We are interested in those space-time methods that permit adaptive re-
finement locally in space and time. Within this class, wavelet-based methods
(see [SS09, GK11, KSU15]) are attractive, as they can be shown to be quasi-
optimal: they produce a sequence of solutions that converges at the best pos-
sible rate, at optimal linear computational cost. Moreover, they can overcome
the curse of dimensionality using a form of sparse tensor-product approximation,
solving the whole time evolution at a runtime proportional to that of solving
the corresponding stationary problem.

In [SvVW21], we constructed an r-linearly converging space-time adaptive
solver for parabolic evolution equations exploiting the product structure of

This chapter is a minor modification of Efficient space-time adaptivity for parabolic evolu-
tion equations using wavelets in time and finite elements in space, R. van Venetië and J. West-
erdiep, submitted to Numerical Linear Algebra & Applications, arXiv:2104.08143.
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the space-time cylinder for a family of trial spaces as the spans of wavelets-in-
time tensorized with (locally refined) finite element spaces-in-space.

The principal difference between this and other wavelet-based methods is
that we use wavelets in time only, and standard finite elements in space. This
eases implementation, and alleviates the need for a suitable spatial wavelet
basis, a difficulty for general domains ([RS18a]). Unfortunately, there is no free
lunch: a proof of optimal convergence is, for our method, not yet available.

In this work we discuss an implementation of [SvVW21] in which the dif-
ferent steps (each iteration of the linear algebraic solver, the error estimation,
Dörfler marking, and refinement of trial- and test spaces) of the adaptive al-
gorithm are of linear complexity.

Special care has to be taken for matrix-vector products. For a bilinear form
that is ‘local’ and equals (a sum of) tensor-product(s) of bilinear forms in time
and space, and ‘trial’ and ‘test’ spaces spanned by tensor-product multi-level
bases with double-tree index sets, the resulting system matrix w.r.t. both bases
can be applied in linear complexity, even though this matrix is not sparse.
The algorithm that realizes this complexity makes a clever use of multi- to
single-scale transformations alternately in time and space. This unidirectional
principle was introduced in [BZ96] for ‘uniform’ sparse grids, so without ‘lo-
cal refinements’, and it was later extended to general downward closed or lower
sets, also called adaptive sparse grids, in [KS14]. The definition of a lower set
in [KS14], there called multi-tree, is more restrictive than our current defini-
tion that allows more localized refinements.

To the best of our knowledge, other implementations for the efficient eval-
uation of tensor-product bilinear forms (see [Pfl10, KS14, Pab15, Rek18]) are
based on the concept of hash maps. There, a hash function is used to map
basis functions to array indices. In an adaptive loop, the final set of basis func-
tions is unknown in advance so it is impossible to construct a hash function
that guarantees an upper bound on the number of hash collisions. Aiming at
true linear complexity, we implement these operations by traversing trees and
double-trees, so without the use of hash maps.

Organization

In §5.2, we look at the abstract parabolic problem, its stable discretization, and
the adaptive routine. In §5.3, we provide an abstract algorithm for the efficient
evaluation of tensor-product bilinear forms w.r.t. multilevel bases indexed on
double-trees. In §5.4, we take the heat equation as a model problem, and provide
a concrete family of trial- and test spaces with bases indexed by double-trees
that permits local space-time adaptivity. In §5.5, we discuss the practical im-
plementation of the adaptive algorithm. Finally, in §5.6, we provide extensive
numerical experiments to demonstrate linear runtime.

Notation

In this work, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
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C � D is defined as D � C, and C � D as C � D and C � D.
For normed linear spaces E and F, by L(E, F) we will denote the normed

linear space of bounded linear mappings E → F, and by Lis(E, F) its subset
of boundedly invertible linear mappings E → F. We write E ↪→ F to denote
that E is continuously embedded into F. For simplicity only, we exclusively
consider linear spaces over the scalar field R.

5.2 Space-time adaptivity for a parabolic model problem

In this section, we summarize the relevant parts of [SvVW21, §2–5].
Let V, H be separable Hilbert spaces of functions on some “spatial do-

main” such that V ↪→ H with dense and compact embedding. Identifying
H with its dual, we obtain the Gelfand triple V ↪→ H � H′ ↪→ V′.

For a.e.
t ∈ I := (0, T),

let a(t; ·, ·) denote a bilinear form on V × V so that for any η, ζ ∈ V, t �→
a(t; η, ζ) is measurable on I, and such that for a.e. t ∈ I,

|a(t; η, ζ)| � ‖η‖V‖ζ‖V (η, ζ ∈ V) (boundedness),

a(t; η, η) � ‖η‖2
V (η ∈ V) (coercivity).

With (A(t)·)(·) := a(t; ·, ·) ∈ Lis(V, V′), given a forcing function g and
initial value u0, we want to solve the parabolic initial value problem of

finding u : I → V such that

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.
(5.2.1)

Example 5.2.1. For the heat equation, on some spatial domain Ω ⊂ Rd we select
V := H1

0(Ω), H := L2(Ω), and a(t; η, ζ) :=
∫

Ω ∇xη · ∇xζ dx. ♦

In our simultaneous space-time variational formulation, the parabolic prob-
lem is to find u that solves

(Bu)(v) :=
∫

I
〈du

dt (t), v(t)〉H + a(t; u(t), v(t))dt =
∫

I
〈g(t), v(t)〉H =: g(v)

for all v from some suitable space of functions of time and space. We can
enforce the initial condition by testing against additional test functions.

Theorem ([SS09]). With X := L2(I; V) ∩ H1(I; V′), Y := L2(I; V), we have
[

B
γ0

]
∈ Lis(X, Y′ × H),

where for t ∈ Ī, γt : u �→ u(t, ·) denotes the trace map. In other words,

finding u ∈ X s.t. (Bu, γ0u) = (g, u0) given (g, u0) ∈ Y′ × H (5.2.2)

is a well-posed simultaneous space-time variational formulation of (5.2.1).
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We define A ∈ Lis(Y, Y′) and ∂t ∈ Lis(X, Y′) as

(Au)(v) :=
∫

I
a(t; u(t), v(t))dt, and ∂t := B − A.

Following [SvVW21], we assume that A is self-adjoint. Morever, in view of an
efficient implementation, we assume that A is a finite sum of tensor-product
operators. If A does not have this structure, one may alternatively consider
(low-rank) tensor-product approximations of A, see e.g. [Hac12] for an overview.

We equip Y and X with ‘energy’-norms

‖ · ‖2
Y := (A·)(·), ‖ · ‖2

X := ‖∂t · ‖2
Y′ + ‖ · ‖2

Y + ‖γT · ‖2
H ,

which are equivalent to the canonical norms on Y and X.
The solution u of (5.2.2) equals the solution of the minimization problem

u = arg min
w∈X

‖Bw − g‖2
Y′ + ‖γ0w − u0‖2

H , (5.2.3)

which in turn is the second component of the solution of

finding (µ, u) ∈ Y × X s.t.

[
A B
B′ −γ′

0γ0

] [
µ
u

]
=

[
g

−u0

]
. (5.2.4)

Indeed, taking the Schur complement of (5.2.4) w.r.t. the Y-block results in the
Euler–Lagrange equations of (5.2.3).

5.2.1 Discretizations

Take a family (Xδ)δ∈∆ of closed subspaces of X, and define

uδ = arg min
w∈Xδ

‖Bw − g‖2
Y′ + ‖γ0w − u0‖2

H , (5.2.5)

being the best approximation to u from Xδ w.r.t. ‖ · ‖X . Solving this problem,
however, is not feasible because of the presence of the dual norm. Therefore,
take (Yδ)δ∈∆ to be a family of closed subspaces of Y such that

Xδ ⊆ Yδ (δ ∈ ∆), and γ∆ := inf
δ∈∆

inf
0 �=w∈Xδ

sup
0 �=v∈Yδ

(∂tw)(v)
‖∂tw‖Y′ ‖v‖Y

> 0.

(5.2.6)
For δ ∈ ∆ with Yδ ⊇ Yδ, we replace Y′ by Yδ ′ in (5.2.5) yielding

uδδ = arg min
w∈Xδ

‖Bw − g‖2
Yδ ′ + ‖γ0w − u0‖2

H .

Notice that uδδ approximates uδ in that uδδ = uδ when Yδ = Y.
With Eδ

Y : Yδ → Y and Eδ
X : Xδ → X denoting the trivial embeddings, uδδ

is the second component of the solution of
[

Eδ
Y
′
AEδ

Y Eδ
Y
′
BEδ

X
Eδ

X
′B′Eδ

Y −Eδ
X
′
γ′

0γ0Eδ
X

] [
µδδ

uδδ

]
=

[
Eδ

Y
′
g

−Eδ
X
′
γ′

0u0

]
.
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Taking the Schur complement w.r.t. the Yδ-block then leads to the equation

Eδ
X
′
(B′Eδ

Y(Eδ
Y
′
AEδ

Y)
−1Eδ

Y
′
B + γ′

0γ0)Eδ
Xuδδ

= Eδ
X
′
(B′Eδ

Y(Eδ
Y
′
AEδ

Y)
−1Eδ

Y
′
g + γ′

0u0),
(5.2.7)

which has a unique solution (cf. [SvVW21, Lem. 3.3]) that satisfies ‖u−uδδ‖X ≤
γ−1

∆ ‖u − uδ‖X whenever Yδ ⊇ Yδ; cf. Theorem 3.3.7. For now, we assume the
right-hand side of (5.2.7) to be evaluated exactly. Later, in §5.4.5, we will dis-
cuss approximation of the right-hand side.

In view of obtaining an efficient solver, we want to replace the inverses
in (5.2.7) while aiming to preserve quasi-optimality of the solution. To this

end, let Kδ
Y = Kδ

Y
′
∈ Lis(Yδ ′, Yδ) be a uniformly optimal preconditioner for

Eδ
Y
′
AEδ

Y that can be applied in linear complexity. Then, for some κ∆ ≥ 1,

((Kδ
Y)

−1v)(v)
(Av)(v)

∈ [κ−1
∆ , κ∆] (δ ∈ ∆, v ∈ Yδ).

Replacing (Eδ
Y
′
AEδ

Y)
−1 by Kδ

Y, we denote the solution of (5.2.7) again by
uδδ. It is quasi-optimal with ‖u − uδδ‖X ≤ κ∆

γ∆
‖u − uδ‖X ; cf. Remark 3.3.8.

5.2.2 Adaptive refinement loop

Our adaptive loop, given in Algorithm 5.1, takes the familiar Solve, Estimate,
Mark and refine steps, and is driven by an efficient and reliable ‘hierarchical
basis’ a posteriori error estimator.

The adaptive loop below requires a saturation assumption. Define a partial
order on ∆ by δ̃ � δ whenever Xδ̃ ⊇ Xδ. Let δ �→ δ � δ be a mapping providing
saturation in that for some ζ < 1,

‖u − uδ‖X ≤ ζ‖u − uδ‖X (δ ∈ ∆). (5.2.8)

With this choice of δ, we are interested in finding uδ := uδδ ∈ Xδ that solves

Eδ
X
′
(B′Eδ

YKδ
YEδ

Y
′
B + γ′

0γ0)Eδ
X︸ ︷︷ ︸

Sδδ :=

uδ = Eδ
X
′
(B′Eδ

YKδ
YEδ

Y
′
g + γ′

0u0)︸ ︷︷ ︸
f δ :=

. (5.2.9)

Notice that (5.2.9) is uniquely solvable even with Xδ as ‘trial space’, and we
use this ‘room’ between Xδ and Xδ to our advantage. Expanding Xδ to some
intermediate space Xδ ⊂ Xδ̃ ⊂ Xδ yields a uδ̃ that is a better approximation to
u than uδ; cf. [SvVW21, Prop. 4.2]. This function will be the successor of uδ in
our loop, and we will show that the resulting sequence of functions converges
r-linearly to u; see Algorithm 5.1 and Theorem 5.2.3.
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Solving Instead of solving the symmetric positive definite system (5.2.9) ex-
actly, we construct an approximate solution ûδ using Preconditioned Conju-
gate Gradients (PCG). To this end, let Kδ

X = Kδ
X
′ ∈ Lis(Xδ ′, Xδ) be a uniformly

optimal preconditioner for Sδδ. Then ((Kδ
X)

−1w)(w) � ‖w‖2
X � ‖Kδ

XSδδw‖2
X

for w ∈ Xδ. Writing w = Kδ
XSδδ(uδ − vδ) leads to an algebraic error estimator

βδ(vδ) :=
√
( f δ − Sδδvδ)(Kδ

X( f δ − Sδδvδ)) � ‖uδ − vδ‖X (vδ ∈ Xδ, δ ∈ ∆).
(5.2.10)

With ûδ
k denoting the approximant at iteration k of the PCG loop, βδ(ûδ

k) is al-
ready available as the variable βk used in computing the next search direction.

Error estimation Let Θδ := {θλ}λ∈Jδ
with Xδ ⊕ spanΘδ = Xδ be uniformly

X-stable, i.e.,

‖z + c�Θδ‖2
X � ‖z‖2

X + ‖c‖2 (c ∈ �2(Jδ), z ∈ Xδ, δ ∈ ∆). (5.2.11)

Define the trivial embedding Pδ : Xδ → Xδ. Akin to (5.2.9), we set Sδδ, f δδ,
and then the residual-based a posteriori error estimator rδ : Xδ → �2(Jδ), as

Sδδ := Eδ
X
′
(B′Eδ

YKδ
YEδ

Y
′
B + γ′

0γ0)Eδ
X , f δδ := Eδ

X
′
(B′Eδ

YKδ
YEδ

Y
′
g + γ′

0u0),

rδ(ûδ) := ( f δδ − SδδPδûδ)(Θδ).
(5.2.12)

For ûδ close to uδ, the error estimator ‖rδ(ûδ)‖ is reliable and efficient:

Lemma 5.2.2. Assume (5.2.8) and (5.2.11), κ∆
γ∆

< 1
ζ , and fix some ξ > 0 small

enough. For ûδ ∈ Xδ satisfying β(ûδ) ≤ ξ
1−ξ ‖rδ(ûδ)‖, we have

‖rδ(ûδ)‖ � ‖u − ûδ‖X and ‖u − ûδ‖X � ‖u − uδ‖X (δ ∈ ∆).

Proof. For convenience, we write r̂δ := rδ(ûδ) and rδ := rδ(uδ).
By (5.2.8), (5.2.11) and κ∆

γ∆
< 1

ζ , [SvVW21, Prop. 4.4] shows that

‖rδ‖ � ‖u − uδ‖X (δ ∈ ∆). (5.2.13)

From (5.2.11) one deduces that ‖rδ − r̂δ‖ � ‖uδ − ûδ‖X ; cf. [SvVW21,
(4.13)]. By assumption, for ξ < 1, we find βδ(ûδ) � ξ‖r̂δ‖, revealing that

‖rδ − r̂δ‖
(5.2.11)
� ‖uδ − ûδ‖X

(5.2.10)
� βδ(ûδ) � ξ‖r̂δ‖. (5.2.14)

Using this, we can show reliability of the estimator by

‖u − ûδ‖X ≤ ‖u − uδ‖X + ‖uδ − ûδ‖X

(5.2.13),(5.2.10)
� ‖rδ‖+ βδ(ûδ) ≤ ‖r̂δ‖+ ‖rδ − r̂δ‖+ βδ(ûδ)

(5.2.14)
� ‖r̂δ‖.
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Solving Instead of solving the symmetric positive definite system (5.2.9) ex-
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X = Kδ
X
′ ∈ Lis(Xδ ′, Xδ) be a uniformly
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X)

−1w)(w) � ‖w‖2
X � ‖Kδ

XSδδw‖2
X

for w ∈ Xδ. Writing w = Kδ
XSδδ(uδ − vδ) leads to an algebraic error estimator

βδ(vδ) :=
√
( f δ − Sδδvδ)(Kδ

X( f δ − Sδδvδ)) � ‖uδ − vδ‖X (vδ ∈ Xδ, δ ∈ ∆).
(5.2.10)
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(5.2.14)
� ‖r̂δ‖.

78 Chapter 5 Efficient space-time adaptivity for parabolic PDEs

For efficiency of the estimator, we deduce

‖r̂δ‖
(5.2.13)
� ‖u − uδ‖X + ‖rδ − r̂δ‖ ≤ ‖u − ûδ‖X + ‖uδ − ûδ‖X + ‖rδ − r̂δ‖

(5.2.14)
� ‖u − ûδ‖X + ξ‖r̂δ‖,

so taking ξ sufficiently small and kicking back ‖r̂δ‖ yields

‖r̂δ‖ � ‖u − ûδ‖X . (5.2.15)

Similarly, from (5.2.13) and (5.2.14) it follows that

‖r̂δ‖ � ‖u − uδ‖X . (5.2.16)

We infer quasi-optimality of ûδ from

‖u − ûδ‖X

(5.2.14)
� ‖u − uδ‖X + ξ‖r̂δ‖

(5.2.16)
� ‖u − uδ‖X .

In the solve step, we iterate PCG until βδ(ûδ
k)/‖rδ(ûδ

k)‖ is small enough. In
the algorithm below, this is ensured by the do-while loop which also avoids
the (expensive) recomputation of the residual at every PCG iteration.

Marking and refinement Denoting the output of the solve step by ûδ, we drive
the adaptive loop by performing Dörfler marking on the residual r̂δ := rδ(ûδ),
i.e., for some θ ∈ (0, 1], we mark the smallest set J ⊂ Jδ for which ‖r̂δ|J‖ ≥
θ‖r̂δ‖. We then construct the smallest δ̃ � δ such that Xδ̃ contains spanΘδ|J .

Data: θ ∈ (0, 1], ξ ∈ (0, 1), δ := δinit ∈ ∆;

tδ := E δ(0) =
√
(Eδ

Y
′
g)(Kδ

YEδ
Y
′
g) + ‖u0‖2

H ;
repeat

Solve:
do

Compute ûδ
∗ ∈ Xδ with βδ(ûδ

∗) ≤ tδ/2;
tδ := βδ(ûδ

∗);
eδ := ‖rδ(ûδ

∗)‖+ tδ;
while tδ > ξeδ;
ûδ := ûδ

∗;
Estimate: Set r̂δ := rδ(ûδ);
Mark: Mark a smallest J ⊂ Jδ for which ‖r̂δ|J‖ ≥ θ‖r̂δ‖;
Refine: Determine smallest δ̃ ∈ ∆ such that Xδ̃ ⊃ Xδ ⊕ spanΘδ|J ;
tδ̃ := eδ, δ := δ̃;

Algorithm 5.1 Space-time adaptive refinement loop.
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Theorem 5.2.3 ([SvVW21, Thm. 4.9 with η = 0]). Assume (5.2.8), (5.2.11). For
ξ and κ∆

γ∆
− 1 sufficiently small with κ∆

γ∆
− 1 ↓ 0 when θ ↓ 0, the sequence of ap-

proximations produced by Algorithm 5.1 converges r-linearly to u, in that after every
iteration, ‖u − ûδ‖X decreases with a factor at least ρ < 1.

Remark 5.2.4. In practice, to ensure termination, Algorithm 5.1 has to be com-
plemented by an appropriate stopping criterium; cf. [SvVW21, Alg. 4.8]. ♦

Proof. For convenience, we denote rδ := rδ(uδ) and r̂δ := rδ(ûδ). The stopping
criterium of the solve step ensures that βδ(ûδ) ≤ ξ

(
‖r̂δ‖ + βδ(ûδ)

)
, so for

ξ < 1 we are in the situation of Lemma 5.2.2.
We have

‖r̂δ − rδ‖
(5.2.14)
� ξ‖r̂δ‖ ≤ ξ

(
‖rδ‖+ ‖r̂δ − rδ‖

)
,

so taking ξ sufficiently small and kicking back ‖r̂δ − rδ‖ yields

‖r̂δ − rδ‖ � ξ‖rδ‖. (5.2.17)

After marking, we have ‖r̂δ‖ ≤ θ−1‖r̂δ|J‖, which shows that

‖rδ‖
(5.2.14)
� ‖r̂δ‖ � ‖r̂δ|J‖ ≤ ‖rδ|J‖+ ‖rδ − r̂δ‖

(5.2.17)
� ‖rδ|J‖+ ξ‖rδ‖;

for ξ small enough, kicking back ‖rδ‖ we find for a θ̂ > 0 dependent on θ,

‖rδ|J‖ ≥ θ̂‖rδ‖.

From [SvVW21, Prop. 4.3] we now find that, for κ∆
γ∆

− 1 ↓ 0 when θ ↓ 0, there
is a ρ̄ < 1 for which

‖u − uδ̃‖X ≤ ρ̄‖u − uδ‖X . (5.2.18)

Combining the results shows that

‖u − ûδ̃‖X ≤ ‖u − uδ̃‖X + ‖uδ̃ − ûδ̃‖X

(5.2.14),(5.2.16)
≤ (1 +O(ξ))‖u − uδ̃‖X

(5.2.18)
≤ (1 +O(ξ))ρ̄‖u − uδ‖X

≤ (1 +O(ξ))ρ̄(‖u − ûδ‖X + ‖uδ − ûδ‖X)

(5.2.14),(5.2.15)
≤ (1 +O(ξ))ρ̄︸ ︷︷ ︸

=:ρ

‖u − ûδ‖X ,

so for ξ small enough, ρ < 1, completing the proof of r-linear convergence.
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5.2.3 Adaptive trial- and test spaces

The convergence rate of our adaptive loop is determined by the approxima-
tion properties of the family (Xδ)δ∈∆. We want to construct a family that al-
lows for local refinements. Here, the crucial problem is guaranteeing the inf-
sup stability condition (5.2.6). It is known that inf-sup stability is satisfied for
full tensor-products of (non-uniform) finite element spaces, and in [And13,
Prop. 4.2], this result was generalized to families of sparse tensor-products.
Unfortunately, neither family allows for adaptive refinements both locally in
time and space.

In §5.4 we will solve this by first equipping X with a tensor-product of
(infinite) bases: a wavelet basis Σ in time, and a hierarchical basis in space.
We then construct Xδ as the span of a (finite) subset of this tensor-product
basis, which we grow by adding particular functions.

By imposing a double-tree constraint on the index set of the basis of Xδ, we
can apply tensor-product operators in linear complexity; see §5.3. Moreover,
this constraint implies that for our model problem the inf-sup condition (5.2.6)
is satisfied and we can construct optimal preconditioners Kδ

Y and Kδ
X .

5.3 Applying linear operators in linear complexity

An efficient implementation of our adaptive loop requires the efficient ap-

plication of the operators Eδ
Y
′
BEδ

X and Eδ
X
′
γ′

0γ0Eδ
X appearing in (5.2.9). Both

terms are finite sums of tensor-products of operators in time and space. When
we equip our trial and test spaces with tensor-products of multilevel bases, it
turns out that we can evaluate these operators in linear complexity.

More precisely, this section will show the abstract result that given
• tensor-products Ψ := Ψ0 × Ψ1, Ψ̆ := Ψ̆0 × Ψ̆1 of multilevel bases Ψ0, Ψ1,

Ψ̆0, Ψ̆1 indexed by ∨0, ∨1, ∨̆0, ∨̆1, and
• (finite) subsets Λ ⊂ ∨0 ×∨1, Λ̆ ⊂ ∨̆0 × ∨̆1 that are double-trees, and
• linear operators Ai : spanΨi → (spanΨ̆i)′ that are local (i ∈ {0, 1}),

we can apply the matrix ((A0 ⊗ A1)Ψ|Λ)(Ψ̆|Λ̆) in O(#Λ + #Λ̆) operations
even though this matrix is not uniformly sparse.

Example. For our model problem, Ψ0 and Ψ̆0 will be wavelets for H1(I) or
L2(I) in time, and Ψ1 = Ψ̆1 will be a hierarchical finite element basis for
H1

0(Ω) in space. We will apply the result of this section to the operators γ′
0γ0

and B = ∂t + A. ♦

We will achieve this complexity using a variant of the unidirectional prin-
ciple. Denote with IΛ the extension with zeros of a vector supported on Λ to
one on ∨0 ×∨1, and with RΛ its adjoint; define IΛ̆ and RΛ̆ analogously. Define
Ai := (AiΨi)(Ψ̆i). We will split A0 in its upper and strictly lower triangular
parts U0 and L0, so that

RΛ̆(A0 ⊗ A1)IΛ = RΛ̆(L0 ⊗ Id)(Id ⊗ A1)IΛ + RΛ̆(U0 ⊗ Id)(Id ⊗ A1)IΛ.

5.3 Applying linear operators in linear complexity 81



This in itself is useless, as (Id⊗ A1)IΛ maps into a space which dimension we
cannot control. However, the restriction RΛ̆ gives us elbow room: in Theo-
rem 5.3.7 we construct double-trees Σ, Θ with #Σ + #Θ � #Λ̆ + #Λ s.t.

{
RΛ̆(L0 ⊗ Id)(Id ⊗ A1)IΛ = RΛ̆(L0 ⊗ Id)RΣ IΣ(Id ⊗ A1)IΛ,
RΛ̆(U0 ⊗ Id)(Id ⊗ A1)IΛ = RΛ̆(U0 ⊗ Id)RΘ IΘ(Id ⊗ A1)IΛ.

(5.3.1)

These right hand sides we can apply efficiently, and their application boils
down to applications of L0, U0, and A1 in a single coordinate direction only.
Simple matrix-vector products are inefficient though, as these matrices are
again not uniformly sparse. However, by using the properties of a double-
tree and the sparsity of the operator in single scale, we can evaluate U0, L0 and
A1 in linear time; see §5.3.1.

We follow the structure of [KS14, §3], which applies the aforementioned
idea to multi-trees though with a slightly more restrictive definition of a tree.
For readability, we defer the proofs of Theorems 5.3.3–5.3.7 to Appendix 5.A.

5.3.1 Applying linear operators on trees

Let Ψ be a (multilevel) collection of functions on some domain Q.

Example 5.3.1. In our application, Q will be either the time interval I with Ψ
being a collection of wavelets, or the spatial domain Ω, in which case Ψ is a
collection of hierarchical basis functions. ♦

Writing Ψ = {ψλ : λ ∈ ∨}, we assume that the ψλ are locally supported in
the sense that with |λ| ∈ N0 denoting the level of λ,

sup
λ∈∨

2|λ| diam supp ψλ < ∞, (5.3.2)

sup
�∈N0

sup
x∈Q

#{λ ∈ ∨ : |λ| = � ∧ supp ψλ ∩ B(x; 2−�) �= ∅} < ∞. (5.3.3)

We will refer to the functions ψλ as being wavelets, although not necessarily
they have vanishing moments or other specific wavelet properties.

For � ∈ N0, and any Λ ⊂ ∨, we set Λ� := {λ ∈ Λ : |λ| = �} and
Λ�↑ := {λ ∈ Λ : |λ| ≥ �}, and write Ψ� := Ψ|∨�

.
For � ∈ N0, we assume a collection Φ� = {φλ : λ ∈ ∆�}, whose members

will be referred to as being scaling functions, with

span Φ�+1 ⊇ span Φ� ∪ Ψ�+1, Φ0 = Ψ0 (∆0 := ∨0), (5.3.4)

sup
�∈N0

sup
λ∈∆�

2� diam supp φλ < ∞, (5.3.5)

sup
�∈N0

sup
x∈Q

#{λ ∈ ∆� : supp φλ ∩ B(x; 2−�) �= ∅} < ∞, (5.3.6)

{φλ|Σ : λ ∈ ∆�, φλ|Σ �≡ 0} is independent (Σ ⊂ Q open, � ∈ N0). (5.3.7)
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W.l.o.g. we assume that the index sets ∆� for different � are mutually disjoint,
and set Φ := ∪�∈N0 Φ� with index set ∆ := ∪�∈N0 ∆�. For λ ∈ ∆, we set
|λ| := � when λ ∈ ∆�.

Viewing Ψ�, Φ� as column vectors, the assumptions we made so far guar-
antee the existence of matrices p�, q� such that

[
(Φ�−1)

� (Ψ�)
�
]
= (Φ�)

�
[
p� q�

]
,

where the number of non-zeros per row and column of p� and q� is finite,
uniformly in the rows and columns and in � ∈ N (here also (5.3.7) has been
used). We refer to p� as the prolongation matrix. Columns of p� contain the mask
of the scaling functions, and those of q� contain the mask of the wavelets.

To each λ ∈ ∨ with |λ| > 0, we associate one or more µ ∈ ∨ with |µ| =
|λ| − 1 and | supp ψλ ∩ supp ψµ| > 0. We call µ a parent of λ, and so λ a child
of µ. To each λ ∈ ∨, we associate some neighbourhood S(λ) of supp ψλ, with
diameter � 2−|λ|, such that for |λ| > 0, S(λ) ⊂ ∪µ∈parent(λ)S(µ).

Remark. Such a neighborhood always exists even when a child has only
one parent. With C := supλ∈∨ 2|λ| diam supp ψλ and S(λ) := {x ∈ Q :
dist(x, supp ψλ) < C2−|λ|}, for µ a parent of λ and x ∈ S(λ), dist(x, supp ψµ) ≤
dist(x, supp ψλ) + diam supp ψλ < 2C2−|λ| = C2−|µ|, i.e., x ∈ S(µ). ♦

Definition 5.3.2 (Tree). A finite Λ ⊂ ∨�↑ is called an �-tree, or simply a tree
when � = 0, when for any λ ∈ Λ its parents in ∨�↑ are in Λ. This is not a tree
in the graph-theoretical sense, but rather in the family history sense. ♦

Example (Hierarchical basis in 1D). Figure 5.1 shows an example multilevel
collection Ψ of functions defined on the interval [0, 1]. Its index set ∨I with
parent-child relations is shown left, with a tree Λ ⊂ ∨I visualised in red. This
collection is called the hierarchical basis. With S(λ) := supp ψλ for λ ∈ ∨I, the
hierarchical basis satisfies conditions mentioned above. ♦
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Figure 5.1 Hierarchical basis for the interval [0, 1].
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A routine eval Let (Ψ, Φ) and (Ψ̆, Φ̆) satisfy the conditions of the previ-
ous subsection, and let A : span Φ → (span Φ̆)′ be local in that (Au)(v) =
(Au|supp v)(v). Typically, A is a (partial) differential operator in variational
form; e.g. A ∈ L(H1(I), L2(I)′) with (Au)(v) =

∫
I

du
dt v dt. For trees Λ ⊂ ∨

and Λ̆ ∈ ∨̆, we want to apply the matrix (AΨ|Λ)(Ψ̆|Λ̆) efficiently.
Just for brevity of the following argument, assume Ψ = Ψ̆ and Φ = Φ̆. The

matrix (AΨ|Λ)(Ψ|Λ) is not uniformly sparse, so a straight-forward matrix-
vector product is not of linear complexity. However, for Λ a uniform tree up
to level �, i.e. Λ = {λ ∈ ∨ : |λ| ≤ �}, a solution is provided by the multi- to
single-scale transform T characterized by Ψ|Λ = T�Φ� through the equality
(AΨ|Λ)(Ψ|Λ) = T�(AΦ�)(Φ�)T, as the transforms can be applied in linear
complexity and the single-scale matrix is uniformly sparse.

For general trees however, we don’t have dim Φ� � dim Ψ|Λ so the pre-
vious approach is not of linear complexity. Clever level-by-level multi-to-
singlescale transformations and the prolongation of only relevant functions
does allow applying (AΨ|Λ)(Ψ̆|Λ̆) at linear cost; see Algorithm 5.2 below.

On several places the restriction of a vector (of scalars or of functions) to
its indices in some subset of the index set should be read as the vector of full
length where the entries with indices outside this subset are replaced by zeros.
For index sets ∆ and ∆̆, matrix m ∈ R#∆̆×#∆, and subset Π ⊂ ∆, we write
supp(m, Π) ⊂ ∆̆ for the index set corresponding to the image of m under
{x|Π : x ∈ R#∆}.

Data: � ∈ N, Π̆ ⊂ ∆̆�−1, Π ⊂ ∆�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑,
d ∈ R#Π, c ∈ R#Λ.

Result: [e, f ] where e = (Au)(Φ̆|Π̆), f = (Au)(Ψ̆|Λ̆), with
u := d�Φ|Π + c�Ψ|Λ.

if Π̆ ∪ Λ̆ �= ∅ then
Π̆B := {λ ∈ Π̆ :

∣∣∣ supp φ̆λ ∩ ∪µ∈Λ�
S(µ)

∣∣∣ > 0}, Π̆A := Π̆ \ Π̆B

ΠB := {λ ∈ Π :
∣∣∣ supp φλ ∩

(
∪µ∈Λ̆�

S̆(µ) ∪γ∈Π̆B
supp φ̆γ

)∣∣∣ > 0}
ΠA := Π \ ΠB
Π̆ := supp(p̆�, Π̆B) ∪ supp(q̆�, Λ̆�)
Π := supp(p�, ΠB) ∪ supp(q�, Λ�)
d := p�d|ΠB + q�c|Λ�

[e, f ] := eval(A)(�+ 1, Π̆, Λ̆�+1↑, Π, Λ�+1↑, d, c|Λ�+1↑)

e =

[
e|Π̆A
e|Π̆B

]
:=

[
(AΦ|Π)(Φ̆|Π̆A

)d
(p̆�� e)|Π̆B

]

f =

[
f |Λ̆�

f |Λ̆�+1↑

]
:=

[
(q̆�� e)|Λ̆�

f

]

Algorithm 5.2 Function eval(A).
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du
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and Λ̆ ∈ ∨̆, we want to apply the matrix (AΨ|Λ)(Ψ̆|Λ̆) efficiently.
Just for brevity of the following argument, assume Ψ = Ψ̆ and Φ = Φ̆. The

matrix (AΨ|Λ)(Ψ|Λ) is not uniformly sparse, so a straight-forward matrix-
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singlescale transformations and the prolongation of only relevant functions
does allow applying (AΨ|Λ)(Ψ̆|Λ̆) at linear cost; see Algorithm 5.2 below.

On several places the restriction of a vector (of scalars or of functions) to
its indices in some subset of the index set should be read as the vector of full
length where the entries with indices outside this subset are replaced by zeros.
For index sets ∆ and ∆̆, matrix m ∈ R#∆̆×#∆, and subset Π ⊂ ∆, we write
supp(m, Π) ⊂ ∆̆ for the index set corresponding to the image of m under
{x|Π : x ∈ R#∆}.

Data: � ∈ N, Π̆ ⊂ ∆̆�−1, Π ⊂ ∆�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑,
d ∈ R#Π, c ∈ R#Λ.

Result: [e, f ] where e = (Au)(Φ̆|Π̆), f = (Au)(Ψ̆|Λ̆), with
u := d�Φ|Π + c�Ψ|Λ.

if Π̆ ∪ Λ̆ �= ∅ then
Π̆B := {λ ∈ Π̆ :

∣∣∣ supp φ̆λ ∩ ∪µ∈Λ�
S(µ)

∣∣∣ > 0}, Π̆A := Π̆ \ Π̆B

ΠB := {λ ∈ Π :
∣∣∣ supp φλ ∩

(
∪µ∈Λ̆�

S̆(µ) ∪γ∈Π̆B
supp φ̆γ

)∣∣∣ > 0}
ΠA := Π \ ΠB
Π̆ := supp(p̆�, Π̆B) ∪ supp(q̆�, Λ̆�)
Π := supp(p�, ΠB) ∪ supp(q�, Λ�)
d := p�d|ΠB + q�c|Λ�

[e, f ] := eval(A)(�+ 1, Π̆, Λ̆�+1↑, Π, Λ�+1↑, d, c|Λ�+1↑)

e =

[
e|Π̆A
e|Π̆B

]
:=

[
(AΦ|Π)(Φ̆|Π̆A

)d
(p̆�� e)|Π̆B

]

f =

[
f |Λ̆�

f |Λ̆�+1↑

]
:=

[
(q̆�� e)|Λ̆�

f

]

Algorithm 5.2 Function eval(A).
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Remark. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ �2(Λ), then

(AΨ|Λ)(Ψ̆|Λ̆)c = eval(A)(1, Λ̆0, Λ̆1↑, Λ0, Λ1↑, c|Λ0 , c|Λ1↑). ♦

Theorem 5.3.3. A call of eval yields the output as specified, at the cost of O(#Π̆ +
#Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 5.A.

Routines evalupp, evallow For A : span Φ → (span Φ̆)′ local and linear, set

A := (AΨ)(Ψ̆) = [(Aψµ)(ψ̆λ)](λ,µ)∈∨̆×∨

as well as U := [(Aψµ)(ψ̆λ)]|λ|≤|µ| and L := [(Aψµ)(ψ̆λ)]|λ|>|µ| so A = L +U.
As sketched in the introduction of this section, this splitting is going to be
necessary for the application of system matrices in the tensor-product setting;
cf. (5.3.1). Algorithms 5.3 and 5.4 below evaluate U and L in linear complexity.

Data: � ∈ N, Π̆ ⊂ ∆̆�−1, Π ⊂ ∆�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑,
d ∈ R#Π, c ∈ R#Λ.

Result: [e, f ] where e = (Au)(Φ̆|Π̆), f = U|Λ̆×Λc, with
u := d�Φ|Π + c�Ψ|Λ.

if Π̆ ∪ Λ̆ �= ∅ then
Π̆B := {λ ∈ Π̆ :

∣∣∣ supp φ̆λ ∩ ∪µ∈Λ�
S(µ)

∣∣∣ > 0}, Π̆A := Π̆ \ Π̆B

Π̆ := supp(p̆�, Π̆B) ∪ supp(q̆�, Λ̆�)
Π := supp(q�, Λ�)
d := q�c|Λ�

[e, f ] := evalupp(A)(�+ 1, Π̆, Λ̆�+1↑, Π, Λ�+1↑, d, c|Λ�+1↑)

e =

[
e|Π̆A
e|Π̆B

]
:=

[
(AΦ|Π)(Φ̆|Π̆A

)d
(AΦ|Π)(Φ̆|Π̆B

)d + (p̆�� e)|Π̆B

]

f =

[
f |Λ̆�

f |Λ̆�+1↑

]
:=

[
(q̆�� e)|Λ̆�

f

]

Algorithm 5.3 Function evalupp(A).

Remark. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ �2(Λ), then

U|Λ̆×Λc = evalupp(A)(1, Λ̆0, Λ̆1↑, Λ0, Λ1↑, c|Λ0 , c|Λ1↑). ♦

Theorem 5.3.4. A call of evalupp yields the output as specified, at the cost of
O(#Π̆ + #Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 5.A.
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Data: � ∈ N, Π ⊂ ∆�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑, d ∈ R#Π,
c ∈ R#Λ.

Result: f = (AΦ|Π)(Ψ̆|Λ̆)d + L|Λ̆×Λc.
if Π̆ ∪ Λ̆ �= ∅ then

ΠB := {λ ∈ Π :
∣∣∣ supp φλ ∩ ∪µ∈Λ̆�

S̆(µ)
∣∣∣ > 0},

Π := supp(p�, ΠB) ∪ supp(q�, Λ�)
ΠB := supp(p�, ΠB)
Π̆ := supp(q̆�, Λ̆�)
d := p�d|ΠB + q�c|Λ�

e := (AΦ|ΠB)(Φ̆|Π̆)p�d|ΠB

f =

[
f |Λ̆�

f |Λ̆�+1↑

]
:=

[
(q̆�� e)|Λ̆�

evallow(A)(�+ 1, Λ̆�+1↑, Π, Λ�+1↑, d, c|Λ�+1↑)

]

Algorithm 5.4 Function evallow(A).

Remark. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ �2(Λ), then

L|Λ̆×Λc = evallow(A)(1, Λ̆1↑, Λ0, Λ1↑, c|Λ0 , c|Λ1↑). ♦

Theorem 5.3.5. A call of evallow yields the output as specified, at the cost of
O(#Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 5.A.

5.3.2 Applying tensor-product operators on double-trees

For i ∈ {0, 1}, let Ai : span Φi → span Φ̆′
i be local and linear and let

Ai = (AΨi)(Ψ̆i) = [(Aψi
µ)(ψ̆

i
λ)]λ∈∨̆i ,µ∈∨i = Li + U i,

where U i := [(Ai)λ,µ]|λ|≤|µ| and Li := [(Ai)λ,µ]|λ|>|µ|. Set ¬i := 1 − i.

Definition 5.3.6 (Double-tree). Define the coordinate projector Pi(b0, b1) := bi.
We call Λ ⊂ {∨̆0 × ∨̆1,∨0 × ∨̆1, ∨̆0 × ∨1,∨0 × ∨1} a double-tree when for i ∈
{0, 1} and any µ ∈ P¬iΛ, the fiber

Λi,µ := Pi(P¬i|Λ)−1{µ}

is a tree (in ∨̆i or ∨i), i.e., Λ is a double-tree when ‘frozen’ in each of its coor-
dinates, at any value of that coordinate, it is a tree in the other coordinate. ♦

From Λ = ∪µ∈P¬iΛ(P¬i|Λ)−1{µ}, we have PiΛ = ∪µ∈P¬iΛΛi,µ, which, be-
ing a union of trees, is a tree itself. See also Figure 5.2.

For a subset � of a (double) index set ♦, let I♦� denote the extension oper-
ator with zeros of a vector supported on � to one on ♦, and let R♦

� denotes its
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Data: � ∈ N, Π ⊂ ∆�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑, d ∈ R#Π,
c ∈ R#Λ.

Result: f = (AΦ|Π)(Ψ̆|Λ̆)d + L|Λ̆×Λc.
if Π̆ ∪ Λ̆ �= ∅ then

ΠB := {λ ∈ Π :
∣∣∣ supp φλ ∩ ∪µ∈Λ̆�

S̆(µ)
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e := (AΦ|ΠB)(Φ̆|Π̆)p�d|ΠB

f =

[
f |Λ̆�

f |Λ̆�+1↑

]
:=

[
(q̆�� e)|Λ̆�

evallow(A)(�+ 1, Λ̆�+1↑, Π, Λ�+1↑, d, c|Λ�+1↑)

]

Algorithm 5.4 Function evallow(A).

Remark. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ �2(Λ), then

L|Λ̆×Λc = evallow(A)(1, Λ̆1↑, Λ0, Λ1↑, c|Λ0 , c|Λ1↑). ♦

Theorem 5.3.5. A call of evallow yields the output as specified, at the cost of
O(#Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 5.A.

5.3.2 Applying tensor-product operators on double-trees

For i ∈ {0, 1}, let Ai : span Φi → span Φ̆′
i be local and linear and let

Ai = (AΨi)(Ψ̆i) = [(Aψi
µ)(ψ̆
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λ)]λ∈∨̆i ,µ∈∨i = Li + U i,

where U i := [(Ai)λ,µ]|λ|≤|µ| and Li := [(Ai)λ,µ]|λ|>|µ|. Set ¬i := 1 − i.

Definition 5.3.6 (Double-tree). Define the coordinate projector Pi(b0, b1) := bi.
We call Λ ⊂ {∨̆0 × ∨̆1,∨0 × ∨̆1, ∨̆0 × ∨1,∨0 × ∨1} a double-tree when for i ∈
{0, 1} and any µ ∈ P¬iΛ, the fiber

Λi,µ := Pi(P¬i|Λ)−1{µ}

is a tree (in ∨̆i or ∨i), i.e., Λ is a double-tree when ‘frozen’ in each of its coor-
dinates, at any value of that coordinate, it is a tree in the other coordinate. ♦

From Λ = ∪µ∈P¬iΛ(P¬i|Λ)−1{µ}, we have PiΛ = ∪µ∈P¬iΛΛi,µ, which, be-
ing a union of trees, is a tree itself. See also Figure 5.2.

For a subset � of a (double) index set ♦, let I♦� denote the extension oper-
ator with zeros of a vector supported on � to one on ♦, and let R♦

� denotes its
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Figure 5.2 With ∨I from Fig. 5.1: ∨I×∨I in black; a double-tree Λ ⊂ ∨I×∨I

in red; the projection P0Λ in gray, and a fiber Λ0,µ for µ ∈ P1Λ in brown.

(formal) adjoint, being the restriction operator of a vector supported on ♦ to
one on �. Since the set ♦ will always be clear from the context, we will denote
these operators simply by I� and R�.

As sketched in the introduction of this section, the pieces are now in place
to apply RΛ̆(A0 ⊗ A1)IΛ in linear complexity.

Theorem 5.3.7. Let Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 ×∨1 be finite double-trees. Then

Σ :=
⋃

λ∈P0Λ

(
{λ} ×

⋃
{

µ∈P0Λ̆:|µ|=|λ|+1, |S̆0(µ)∩S0(λ)|>0
} Λ̆1,µ

)
,

Θ :=
⋃

λ∈P1Λ

(
{µ ∈ P0Λ̆ : ∃γ ∈ Λ0,λ s.t. |γ| = |µ|, |S̆0(µ) ∩ S0(γ)| > 0} × {λ}

)
,

are double-trees with #Σ � #Λ̆ and #Θ � #Λ, and

RΛ̆(A0 ⊗ A1)IΛ =RΛ̆(L0 ⊗ Id)IΣRΣ(Id ⊗ A1)IΛ+

RΛ̆(Id ⊗ A1)IΘRΘ(U0 ⊗ Id)IΛ.

Proof. See Appendix 5.A.

Applying RΛ̆(L0 ⊗ Id)IΣ boils down to applying RΛ̆0,µ
L0 IΣ0,µ for every

µ ∈ P1Σ ∩ P1Λ̆. Such an application can be performed in O(#Λ̆0,µ + #Σ0,µ)
operations by means of a call of evallow(A0); see also Algorithm 5.9. Since
∑µ∈∨̆1

#Λ̆0,µ + #Σ0,µ = #Λ̆ + #Σ, we conclude that the application of RΛ̆(L0 ⊗
Id)IΣ can be performed in O(#Λ̆ + #Σ) operations.

Similarly, applications of RΣ(Id ⊗ A1)IΛ, RΛ̆(Id ⊗ A1)IΘ, and RΘ(U0 ⊗
Id)IΛ using calls of eval(A1), eval(A1), and evalupp(A0) respectively, can
be done in O(#Σ + #Λ), O(#Λ̆ + #Θ), and O(#Θ + #Λ) operations. From
#Σ � #Λ̆ and #Θ � #Λ we conclude the following.

Corollary 5.3.8. Let Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 × ∨1 be finite double-trees, then
RΛ̆(A0 ⊗ A1)IΛ can be applied in O(#Λ̆ + #Λ) operations.
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5.4 The heat equation and practical realization

In this section, we consider the numerical approximation of the heat equation
{

du
dt (t)− (∆xu)(t) = g(t) (t ∈ I),

u(0) = u0.
(5.4.1)

For some bounded domain Ω ⊂ R2, we take H := L2(Ω) and V := H1
0(Ω), so

that X = L2(I; H1
0(Ω)) ∩ H1(I; H−1(Ω)) and Y = L2(I; H1

0(Ω)). We define

a(t; η, ζ) :=
∫

Ω
∇η · ∇ζ dx,

and aim to solve the parabolic initial value problem (5.2.1) numerically. The
bilinear forms present in our variational formulation (5.2.4) satisfy

A = Mt ⊗ Ax, B = Dt ⊗ Mx + A, and γ′
0γ0 = Gt ⊗ Mx

where

(Mtv)(w) :=
∫

I
vw dt, (Dtv)(w) :=

∫

I
v′w dt, (Gtv)(w) := v(0)w(0),

(Axη)(ζ) :=
∫

Ω
∇η · ∇ζ dx, (Mxη)(ζ) :=

∫

Ω
ηζ dx. (5.4.2)

In this section, we first construct suitable tensor-product bases for X and Y
which functions are wavelets in time and hierarchical finite element functions
in space. We then build our discrete ‘trial’ and ‘test’ spaces (Xδ, Yδ)δ∈∆ as the
span of subsets of these tensor-product bases. We finish with concrete precon-
ditioners Kδ

X and Kδ
Y, the basis necessary for error estimation in the adaptive

loop, and evaluation of the right-hand side of (5.2.9) using interpolants.

5.4.1 Wavelets in time

We construct piecewise linear wavelet bases Σ for H1(I) and Ξ for L2(I).

Basis on the trial side For Σ, we choose the three-point wavelet from [Ste98];
for completeness, we include its construction. For � ≥ 0, define the scaling
functions as the nodal continuous piecewise linears w.r.t. a uniform partition
into 2� subintervals, i.e., ΦΣ

� := {φ(�,n) : 0 ≤ n ≤ 2�} with φ(�,n)(k2−�) = δkn

for 0 ≤ k ≤ 2�. Set Σ0 := ΦΣ
0 , and Σ� := {σλ : λ := (�, n) with 0 ≤ n < 2�−1}

with σλ = σ(�,n) for � ≥ 1 as in the right of Figure 5.3. Note that each tree-point
wavelet σλ is a linear combination of three nodal functions from ΦΣ

� .
By imposing the parent-child structure

λ̃ �Σ λ ⇐⇒ |λ̃|+ 1 = |λ| and | supp σλ ∩ supp σλ̃| > 0, (5.4.3)

on any two indices λ̃, λ, we get the tree shown left in Figure 5.3.
Define Σ := ∪�≥0Σ�, ∨Σ := {λ : σλ ∈ Σ}, and S(σλ) := supp σλ. We see

that Σ satisfies (5.3.2)–(5.3.3) and that the ΦΣ
� satisfy (5.3.4)–(5.3.7). Moreover,

one can show that Σ is a Riesz basis for L2(I) (cf. [Ste98, Thm. 4.2]), and that
{2−|λ|σλ} is a Riesz basis for H1(I) (cf. [Ste98, Thm. 4.3]).
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5.4 The heat equation and practical realization
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u(0) = u0.
(5.4.1)

For some bounded domain Ω ⊂ R2, we take H := L2(Ω) and V := H1
0(Ω), so

that X = L2(I; H1
0(Ω)) ∩ H1(I; H−1(Ω)) and Y = L2(I; H1

0(Ω)). We define

a(t; η, ζ) :=
∫

Ω
∇η · ∇ζ dx,

and aim to solve the parabolic initial value problem (5.2.1) numerically. The
bilinear forms present in our variational formulation (5.2.4) satisfy

A = Mt ⊗ Ax, B = Dt ⊗ Mx + A, and γ′
0γ0 = Gt ⊗ Mx

where

(Mtv)(w) :=
∫

I
vw dt, (Dtv)(w) :=

∫

I
v′w dt, (Gtv)(w) := v(0)w(0),

(Axη)(ζ) :=
∫

Ω
∇η · ∇ζ dx, (Mxη)(ζ) :=

∫

Ω
ηζ dx. (5.4.2)

In this section, we first construct suitable tensor-product bases for X and Y
which functions are wavelets in time and hierarchical finite element functions
in space. We then build our discrete ‘trial’ and ‘test’ spaces (Xδ, Yδ)δ∈∆ as the
span of subsets of these tensor-product bases. We finish with concrete precon-
ditioners Kδ

X and Kδ
Y, the basis necessary for error estimation in the adaptive

loop, and evaluation of the right-hand side of (5.2.9) using interpolants.

5.4.1 Wavelets in time

We construct piecewise linear wavelet bases Σ for H1(I) and Ξ for L2(I).

Basis on the trial side For Σ, we choose the three-point wavelet from [Ste98];
for completeness, we include its construction. For � ≥ 0, define the scaling
functions as the nodal continuous piecewise linears w.r.t. a uniform partition
into 2� subintervals, i.e., ΦΣ

� := {φ(�,n) : 0 ≤ n ≤ 2�} with φ(�,n)(k2−�) = δkn

for 0 ≤ k ≤ 2�. Set Σ0 := ΦΣ
0 , and Σ� := {σλ : λ := (�, n) with 0 ≤ n < 2�−1}

with σλ = σ(�,n) for � ≥ 1 as in the right of Figure 5.3. Note that each tree-point
wavelet σλ is a linear combination of three nodal functions from ΦΣ

� .
By imposing the parent-child structure

λ̃ �Σ λ ⇐⇒ |λ̃|+ 1 = |λ| and | supp σλ ∩ supp σλ̃| > 0, (5.4.3)

on any two indices λ̃, λ, we get the tree shown left in Figure 5.3.
Define Σ := ∪�≥0Σ�, ∨Σ := {λ : σλ ∈ Σ}, and S(σλ) := supp σλ. We see

that Σ satisfies (5.3.2)–(5.3.3) and that the ΦΣ
� satisfy (5.3.4)–(5.3.7). Moreover,

one can show that Σ is a Riesz basis for L2(I) (cf. [Ste98, Thm. 4.2]), and that
{2−|λ|σλ} is a Riesz basis for H1(I) (cf. [Ste98, Thm. 4.3]).
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Figure 5.3 Left: three-point wavelet index set ∨Σ with parent-child relations;
right: three-point wavelets.

Basis on the test side We construct an L2(I)-orthonormal basis Ξ.
For � ≥ 0, define the (discontinuous) piecewise linear scaling functions

w.r.t. a uniform partition into 2� subintervals by ΦΞ
� := {φ(�,n) : 0 ≤ n < 2�+1}

where φ(0,0)(t) := 1[0,1](t) and φ(0,1)(t) :=
√

3(2t − 1)1[0,1], and for � ≥ 1,
φ(�,2k)(t) := φ(0,0)(2

�t − k) and φ(�,2k+1)(t) := φ(0,1)(2
�t − k). Let Ξ0 := ΦΞ

0 ,
and define Ξ1 := {ξ(1,0), ξ(1,1)} as in the right of Figure 5.4. For � ≥ 2, we take
Ξ� := {ξ(�,n) : 0 ≤ n < 2�} with

ξ(�,2k)(t) := 2(�−1)/2ξ(1,0)(2
�−1t− k), ξ(�,2k+1)(t) := 2(�−1)/2ξ(1,1)(2

�−1t− k).

The resulting Ξ := ∪�≥0Ξ� is an orthonormal basis for L2(I), and together
with its scaling functions ∪�ΦΞ

� , the conditions from §5.3.1 are satisfied with
S(ξµ) := supp ξµ. We impose a parent-child relation analogously to (5.4.3);
see the left of Figure 5.4.
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Figure 5.4 Left: orthonormal wavelet index set ∨Ξ with parent-child relations;
right: the wavelets at levels 0 and 1.

5.4.2 Finite elements in space

Let T be the family of all conforming partitions of Ω into triangles that can be
created by Newest Vertex Bisection from some given conforming initial tri-
angulation T⊥ with an assignment of newest vertices satisfying the matching
condition; cf. [Ste08].
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Define T := ∪T ∈T{T : T ∈ T }. For T ∈ T, set gen(T) as the num-
ber of bisections needed to create T from its ‘ancestor’ T′ ∈ T⊥. With N the
set of all vertices of all T ∈ T, for ν ∈ N we set gen(ν) := min{gen(T) :
ν is a vertex of T ∈ T}.

Any ν ∈ N with gen(ν) > 0 is the midpoint of an edge eν of one or two
T ∈ T with gen(T) = gen(ν) − 1. The set of newest vertices ν̃ of these T,
so those vertices of T with |ν̃| = gen(ν)− 1, are defined as the parents of ν,
denoted ν̃ �N ν. The set of godparents of ν, denoted gp(ν), are defined as the
two endpoints of eν. Vertices with gen(ν) = 0 have no parents or godparents.

Example 5.4.1. In Fig. 5.5, the parents of ν4 are ν1 and ν3 and its godparents
are ν0, ν2; the sole parent of ν5 is ν4, and its godparents are ν0 and ν3. ♦

Proposition ([DKS16]). An (essentially) non-overlapping partition T of Ω into
triangles is in T if and only if the set NT of vertices of all T ∈ T forms a tree in the
sense of §5.3.1, meaning that it contains every vertex of generation zero as well as all
parents of any ν ∈ NT ; see also Figure 5.5.

ν1

ν2

ν0

ν3

× ×

× ×

T0

ν4•

T1

ν5

ν6

•

•

T2

ν7•

T3

×
ν0 ×

ν1 ×
ν2 ×

ν3

•ν4

•ν6•ν5

•ν7

NT

Figure 5.5 Vertex tree NT and its triangulation T shown level-by-level.

Let O be the collection of spaces WT of continuous piecewise linears over
T ∈ T vanishing on ∂Ω. For ν ∈ N, we set ψν as that continuous piecewise
linear function on the uniform partition Tν := {T ∈ T : gen(T) = gen(ν)} ∈ T

for which ψν(ν̃) = δνν̃ for ν̃ ∈ Tν. Setting N0 := N \ ∂Ω, the collection {ψν :
ν ∈ N0} is known as the hierarchical basis. For T ∈ T, write NT ,0 := NT \ ∂Ω
and ΨT := {ψν : ν ∈ NT ,0}; it holds that WT = spanΨT .

Applying stiffness matrices The hierarchical basis satisfies conditions (5.3.2)
and (5.3.3), and so, the application of stiffness matrices (AΨT )(ΨT ) for A ∈
{Ax, Mx} can be done through eval(A).1 However, the computation in The-
orem 5.3.7 does not involve the lower and upper parts of A. This crucial in-
sight allows for a faster and easier approach using standard finite element
techniques: spanΨT is a continuous piecewise linear finite element space,
so it has a canonical single-scale basis ΦT := span{φT ,ν} characterized by
φT ,ν(ν̃) = δνν̃ for ν̃ ∈ NT ,0, for which the application of (AΦT )(ΦT ) at lin-
ear cost using local element matrices is standard. This is different from the

1This would require the definition of a suitable single-scale basis.
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general setting in §5.3.1, in that dim ΦT = dim ΨT also for locally refined
triangulations. With T the transformation defined by ΨT = T�ΦT , we find

(AΨT )(ΨT ) = T�(AΦT )(ΦT )T. (5.4.4)

We can apply T in linear complexity by iterating over the vertices bottom-up
while applying elementary local transformations in which not parent-child,
but godparent-child relations play a role.

5.4.3 Inf-sup stable family of trial- and test spaces

With Σ and Ξ from §5.4.1 and ΨN0 := {ψν : ν ∈ N0} from §5.4.2, we find that
X = span(Σ ⊗ ΨN0) and Y = span(Ξ ⊗ ΨN0). We now turn to the construc-
tion of Xδ and Yδ.

Definition 5.4.2. For a double-tree Λδ ⊂ ∨Σ ×N, define Λδ
0 := Λδ \ ∨Σ × ∂Ω.

We construct our ‘trial’ space as

Xδ := span{σλ ⊗ ψν : (λ, ν) ∈ Λδ
0}.

Defining the double-tree Λδ
Y,0 ⊂ ∨Ξ ×N0 as

Λδ
Y,0 := {(µ, ν) : ∃(λ, ν) ∈ Λδ

0, µ ∈ ∨Ξ, |µ| = |λ|, | supp ξµ ∩ supp σλ| > 0},

we set the ‘test’ space to be Yδ = Yδ(Xδ) := span{ξµ ⊗ψν : (µ, ν) ∈ Λδ
Y,0}. ♦

Theorem 5.4.3 ([SvVW21, Props. 5.2, 5.3]). Define ∆ := {δ : Λδ ⊂ ∨Σ ×
N is a double-tree} equipped with the partial ordering δ � δ̃ ⇐⇒ Λδ ⊆ Λδ̃.
With Xδ and Yδ as above, uniform inf-sup stability holds; cf. (5.2.6).

Definition 5.4.4. Given a double-tree Λδ ⊂ ∨Σ ×N, we define Λδ ⊃ Λδ by
adding, for (λ, ν) ∈ Λδ and any child λ̃ of λ and descendant ν̃ of ν up to
generation 2, all pairs (λ̃, ν) and (λ, ν̃). We expect this choice of Xδ to provide
saturation; cf. (5.2.8). ♦

5.4.4 Preconditioners

We follow [SvVW21, §5.6] for the construction of optimal preconditioners Kδ
Y

for Eδ
Y
′AEδ

Y and Kδ
X for Sδδ necessary for solving (5.2.9). With notation from

Definition 5.3.6, we equip Xδ and Yδ with bases




⋃
λ∈P0Λδ

0

σλ ⊗ Ψδ
λ with Ψδ

λ := {ψν : ν ∈ (Λδ
0)1,λ},

⋃
µ∈P0Λδ

Y,0

ξµ ⊗ Ψδ
µ with Ψδ

µ := {ψν : ν ∈ (Λδ
Y,0)1,µ}.
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In matrix form, the preconditioners from [SvVW21, §5.6] then satisfy



Kδ
Y := blockdiag[Kδ

µ]µ∈P0Λδ
Y,0

where Kδ
µ � (Aδ

µ)
−1,

Kδ
X := blockdiag[Kδ

λ Aδ
λKδ

λ]λ∈P0Λδ
0

where Kδ
λ � (Aδ

λ + 2|λ|Mδ
λ)

−1

with Aδ
µ := (AxΨδ

µ)(Ψδ
µ), Aδ

λ := (AxΨδ
λ)(Ψ

δ
λ), and Mδ

λ := (MxΨδ
λ)(Ψ

δ
λ). Suit-

able spatial preconditioners Kδ
µ are provided by multigrid methods. In [OR00]

it was shown that for quasi-uniform meshes, under a ‘full-regularity’ assump-
tion, a multiplicative multigrid method yields suitable Kδ

λ, and we assume
these results to transfer to our locally refined triangulations T ∈ T. In §5.5.1,
we detail our linear-complexity multigrid implementation following [WZ17].

5.4.5 Right-hand side

We follow [SvVW21, §6.4]. For g ∈ C(I × Ω), u0 ∈ C(Ω), we can approximate
the right-hand side of (5.2.9) by interpolants, avoiding quadrature issues.

The procedure of §5.4.2 for constructing the hierarchical basis ΨN := {ψν :
ν ∈ N} can be applied in time as well, yielding the basis {ψλ : λ ∈ ∨I} from
Figure 5.1 which index set ∨I coincides with ∨Σ. We construct {ψ̃ν : ν ∈ N} ⊂
C(Ω)′ biorthogonal to ΨN, with ψ̃ν := δν −∑ν̃∈gp(ν) δν̃/2. In time, define {ψ̃λ :
λ ∈ ∨I} ⊂ C(I)′ analogously. Define the vectors g := [(ψ̃λ ⊗ ψ̃ν)(g)](λ,ν)∈Λδ

and u0 := [ψ̃ν(u0)]ν∈P1Λδ . Upon replacing (g, u0) in (5.2.9) by the interpolants

δg := ∑
(λ,ν)∈Λδ

g(λ,ν)ψλ ⊗ ψν, δu0 := ∑
ν∈P1Λδ

u0,νψν,

we can evaluate its right-hand side in linear complexity through the quantities

[〈ξµ ⊗ ψν, δg〉L2(I×Ω)](µ,ν)∈Λδ̂
Y,0

= R
Λδ̂

Y,0
(Mt ⊗ Mx)I

Λδ g,

[σλ(0)〈ψν, δu0〉L2(Ω)](λ,ν)∈Λδ
0
= [σλ(0)wν](λ,ν)∈Λδ

0

where w = (MxΨN|P1Λδ)(ΨN|P1Λδ)u0.

5.4.6 Two-level basis

We now discuss the construction of a uniformly X-stable basis Θδ, needed
in the local error estimator rδ of (5.2.12). Following [SvVW21, §6.3], define a
modified hierarchical basis {ψ̂ν : ν ∈ N0} by

ψ̂ν = ψν when gen(ν) = 0, else ψ̂ν := ψν −
∑{ν̃∈N:ν̃�Nν}

∫
Ω ψν dx∫
Ω ψν̃ dx ψν̃

#{ν̃ ∈ N : ν̃ �N ν} .

For any T ∈ T, WT = span{ψ̂ν : ν ∈ NT ,0} = spanΨT and the transformation
from modified to unmodified hierarchical basis can be performed in linear
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complexity. For T � T ∈ T, d ∈ �2(NT ,0 \ NT ,0) and v ∈ WT , [SvVW21,
Lem. 6.7] shows that



‖v + ∑ν dνψ̂ν‖2

H1(Ω)
� ‖v‖2

H1(Ω)
+ ‖d‖2,

‖v + ∑ν dνψ̂ν‖2
H−1(Ω)

� ‖v‖2
H−1(Ω)

+ ∑ν 4− gen(ν)|dν|2,
(5.4.5)

where the constants in the �-symbols depend on max
{T �T⊂T∈T }

{gen(T)− gen(T)}

only. We then construct a basis for Xδ � Xδ as

Θδ := {eλνσλ ⊗ ψ̂ν : (λ, ν) ∈ Λ
δ
0 \ Λδ

0} with
1

eλν
=

√
1 + 4|λ|−gen(ν).

Define the gradedness of a double-tree Λδ ⊂ ∨Σ ×N as the smallest Lδ ∈ N

for which every (λ, ν) ∈ Λδ with ν̃ an ancestor of ν with gen(ν)−gen(ν̃) = Lδ,
it holds that (λ̆, ν̃) ∈ Λδ for all λ̆ �Σ λ. Thanks to Σ being a (scaled) Riesz basis
for L2(I) and H1(I), together with the H1(Ω)- and H−1(Ω)-stable splittings
of (5.4.5), it holds that

‖z + c�Θδ‖2
X � ‖z‖2

X + ‖c‖2 (c ∈ �2(Λ
δ
0 \ Λδ

0), z ∈ Xδ),

with the constant in the �-symbol dependent on Lδ only, so when Lδ is uni-
formly bounded, condition (5.2.11) is satisfied.

5.5 Implementation

A tree-based implementation of the aforementioned adaptive algorithm in
C++ can be found at [vVW21b]. In this section, we describe our design choices
for a linear complexity implementation.

5.5.1 Trees and linear operators in one axis

In §5.3, we consider an abstract multilevel collection Ψ indexed on ∨Ψ. En-
dowed with a parent-child relation, ∨Ψ has a tree-like structure that we call a
mother tree; see also Figures 5.3 and 5.4.

In our applications, the support of a wavelet ψλ is a union of simplices of
generation |λ|. In time, these simplices are subintervals of I found by dyadic
refinement. In space, they are elements of T, the collection of all triangles
found by newest vertex bisection. Endowed with the natural parent-child
relation, both collections of simplices have a tree structure we call the domain
mother tree. Every wavelet ψλ stores references to the simplices T of generation
|λ| that make up its support; conversely, every T stores a reference to ψλ.

Every mother tree ∨ is stored once in memory, and every node λ ∈ ∨
stores references to its parents, children, and siblings. We treat the mother tree
as infinite by lazy initialization, constructing new nodes as they are needed.
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Trees We store a tree Λ ⊂ ∨ using the parent-child relation, and additionally,
at each λ ∈ Λ store a reference to the corresponding node in ∨. This allows us
to compare different trees subject to the same mother tree. This tree-like rep-
resentation does not allow direct access of arbitrary nodes: in any operation,
we traverse Λ from its roots in breadth-first, or level-wise, order.

Tree operations One important operation is the union of one tree Λ into an-
other Λ̆. This can be implemented by traversing both trees simultaneously in
breadth-first order. The union allows us to easily perform high-level opera-
tions, such as vector addition: given two vectors c ∈ �2(Λ), d ∈ �2(Λ̆) on the
same mother tree ∨, we use the union to perform c := c + d. See Figure 5.6
for an example.

•2 •3

•1

• •2

• • • •

•1 •2

•3

•4 •

•1 •1 • •

•3 •5

•4

•4 •2

•1 •1 • •

Figure 5.6 Left: c ∈ �2(Λ) for Λ ⊂ ∨I; Middle: d ∈ �2(Λ̆) for Λ̆ ⊂ ∨I; Right:
in-place sum c := c + d.

Tree operations in time The routines eval, evalupp, and evallow from §5.3.1
involve various level-wise index sets (represented as arrays of references into
their mother trees) like Π̆B = {λ ∈ Π̆ : | supp φ̆λ ∩ ∪µ∈Λ�

S(µ)| > 0}. We con-
structed such sets efficiently using the domain mother tree; see Algorithm 5.5.

We can apply the linear operators appearing in the routines of §5.3.1 effi-
ciently by again traversing the domain mother tree; for example, Algorithm 5.6
details a matrix-free application of (AΦ|Π)(Φ̆|Π̆).

Operations in space We can construct a triangulation T from a vertex tree NT
in linear complexity. First mark every ν ∈ NT in its mother tree, then traverse
the domain mother tree T. A triangle T visited in this traversal is in T exactly
when the newest vertex of its children is not marked.

For the preconditioners Kδ
µ and Kδ

λ from §5.4.4 we use multigrid. We apply
multiplicative V-cycle multigrid, in each cycle applying one pre- and one post
Gauss–Seidel smoother with reversed ordering of the unknowns.

To obtain a linear cost algorithm, at level k we restrict smoothing to the
vertices of generation k and their godparents, cf. [WZ17]. For T ∈ T consider
WT , the space of continuous piecewise linears w.r.t. T , zero on ∂Ω, equipped
with single-scale basis ΦT . With L = L(T ) := maxT∈T gen(T), define

T⊥ = T0 ≺ T1 ≺ · · · ≺ TL = T ⊂ T
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Data: � ∈ N, Π̆ ⊂ ∆̆�−1, Λ� ⊂ ∨�.
Result: [Π̆A, Π̆B] where Π̆A = Π̆ \ Π̆B,

Π̆B = {λ ∈ Π̆ : | supp φ̆λ ∩ ∪µ∈Λ�
S(µ)| > 0}.

Π̆A := Π̆B := ∅;
for µ ∈ Λ� do

for T ∈ ψµ.support do // We have S(ψµ) = supp ψµ.
T.parent.marked := true;

for λ ∈ Π̆ do
if ∃T ∈ φ̆λ.support with T.marked = true then

Π̆B.insert(λ);
else Π̆A.insert(λ);

for µ ∈ Λ� do
for T ∈ ψµ.support do T.parent.marked := false;

Algorithm 5.5 The construction of Π̆B.

Data: Index sets Π ⊂ ∆�, Π̆ ⊂ ∆̆�, d ∈ �2(Π), local and linear
A : spanΦ → spanΦ̆′.

Result: e = (AΦ|Π)(Φ̆|Π̆)d
for λ ∈ Π do φλ.data := dλ;
for µ ∈ Π̆ do

eλ := 0;
for T ∈ φ̆µ.support do

for φλ ∈ T.functions(∆�) do
// {φλ : λ ∈ ∆�, | supp φλ ∩ T| > 0}

eλ := eλ + A(φλ)(φ̆µ|T) · φλ.data;
for λ ∈ Π do φλ.data := 0;

Algorithm 5.6 The computation of e = (AΦ|Π)(Φ̆|Π̆)d.

where Tk−1 is constructed from Tk by removing all vertices ν ∈ NTk for which
gen(ν) = k. For 1 ≤ k ≤ L, let Mk be the set of new vertices and their godpar-
ents, i.e., Mk :=

⋃
ν∈NTk

\NTk−1
{ν} ∪ gp(ν), and let Mk,0 := Mk \ ∂Ω be the set

of interior vertices. We consider the multilevel decomposition, cf. [WZ17],

WTL = WT0 +
L

∑
k=1

∑
ν∈Mk,0

spanφk,ν, where φk,ν := φTk ,ν. (5.5.1)

For 1 ≤ k ≤ L, let Pk be the prolongation matrix, i.e., the matrix represen-
tation of the embedding WTk−1

→ WTk , and enumerate the vertices Mk,0 as
(νi

k)
nk
i=1. Algorithm 5.7 details a (non-recursive) implementation of a single

multiplicative V-cycle for the multilevel decomposition (5.5.1) using Gauss–
Seidel smoothing. We assume the availability of an efficient coarse-grid solver;
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in our application, a direct solve suffices. For linear complexity, we use in-
place vector updates restricted to non-zeros.

Note that this multigrid method is given in terms of the single-scale basis
ΦT ; it can be transformed to the hierarchical basis ΨT using (5.4.4). Multiple
V-cycles are done by setting u0 := 0 and iterating uk := MG(A, f − Auk−1).

Data: Some f ∈ W ′
T and a linear operator A : WT → W ′

T .
Result: u = u�ΦT ∈ WT , the result of a single V-cycle applied to f .
r := f (ΦT );
for L ≥ k ≥ 1 do

for ν = ν1
k , . . . , ν

nk
k do

rk,ν := rν;
ek,ν := rk,ν/(Aφk,ν)(φk,ν);
r := r − ek,ν(Aφk,ν)(ΦTk );

r := P�
k r;

Solve (AΦT0)(ΦT0)u = r;

for 1 ≤ k ≤ L do
u := Pku;
for ν = ν

nk
k , . . . , ν1

k do
uν := uν + ek,ν;
uν := uν + (rk,ν − (Aφk,ν)(u�ΦTk ))/(Aφk,ν)(φk,ν);

Algorithm 5.7 Single multiplicative V-cycle multigrid MG(A, f ).

5.5.2 Double-trees and tensor-product operators

For every node in a double-tree Λ ⊂ ∨0 × ∨1, we store a reference to the
underlying pair of nodes in their mother trees. This allows growing double-
trees intuitively, and allows comparing different double-trees over the same
pair of mother trees. C++ templates allow us to re-use much of the tree code
without runtime performance loss.

In §5.3.2 we saw how to apply a tensor-product operator using the double-
trees Σ and Θ. Construction of Σ is illustrated in Algorithm 5.8, and evalu-
ation of the operator then reduces to the four simple steps of Algorithm 5.9.

Memory optimizations As the memory consumption of a double-tree is signif-
icant, at around 280 bytes per node, we want to have as few double-trees in
memory as possible. By storing the nodes of Λ in a persistent container, ev-
ery node is uniquely identified with its index in the container. This induces a
bijection R#Λ ↔ �2(Λ) and allows us to overlay multiple vectors on the same
underlying double-tree in a memory-friendly way.

The Σ generated by Algorithm 5.8 for the application of a tensor-product
operator can play the role of Θ necessary for the application of its transpose
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Data: Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 ×∨1

Result: Σ for application of Theorem 5.3.7 with Λ̆ and Λ.
Σ := P0Λ × {ν ∈ P1Λ̆ : |ν| = 0};
for λ ∈ Σ.project(0) do

for T ∈ φλ.support do
for µ ∈ T.functions(∨̆0

|λ|) do
Σ.fiber(1, λ).union(Λ̆.fiber(1, µ));

Algorithm 5.8 Function GenerateSigma(Λ̆, Λ).

Data: Λ ⊂ ∨0 ×∨1, Λ̆ ⊂ ∨̆0 × ∨̆1, c ∈ �2(Λ), d ∈ �2(Λ̆).
Σ := GenerateSigma(Λ̆, Λ);
Θ := GenerateTheta(Λ̆, Λ);
s := 0 ∈ �2(Σ);
t := 0 ∈ �2(Θ);
l := 0 ∈ �2(Λ̆);

for λ ∈ s.project(0) do eval(A1)(s.fiber(1, λ), c.fiber(1, λ));
for µ ∈ l.project(1) do evallow(A0)(l.fiber(0, µ), s.fiber(0, µ));
for µ ∈ t.project(1) do evalupp(A0)(t.fiber(0, µ), c.fiber(0, µ));
for λ ∈ d.project(0) do eval(A1)(d.fiber(1, λ), t.fiber(1, λ));

d := d + l;

Algorithm 5.9 Algorithm to evaluate d = RΛ̆(A0 ⊗ A1)IΛc.

operator (and vice versa). This allows tensor-product operators and their
transposes to share the double-trees Σ and Θ.

With these insights, our implementation of the heat equation has at most 5
different double-trees in memory.

5.5.3 The adaptive loop

In the refine step of the adaptive loop, we first mark a set J of nodes in Λδ \ Λδ

using Dörfler marking (possible in linear complexity; cf. [PP20]). We then
refine Λδ to the smallest double-tree containing J:

1. mark all nodes in Λδ that are also present in Λδ ((ii) in Fig. 5.7);
2. from every node in J, traverse top-down in level-wise order, until hitting

an already marked node. Mark all nodes along the way ((iii)–(iv));
3. union the marked nodes of Λδ into Λδ ((v) in Fig. 5.7).

As #Λδ � #Λδ and we visit every node of Λδ at most twice, the traversal is
linear in #Λδ. See also Figure 5.7.
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Figure 5.7 Refinement of a double-tree with underlying unary mother trees. Left
to right: (i) Λδ; (ii) Λδ with nodes in Λδ \ Λδ in white; (iii) nodes in J marked in
red; (iv) nodes marked in the top-down traversal; (v) refined Λδ.

5.6 Numerical experiments

We consider the heat equation (5.4.1), and assess our implementation of the
adaptive Algorithm 5.1 for its numerical solution. Complementing the con-
vergence results gathered in [SvVW21, §7], here we provide results on the
practical performance of the adaptive loop. Results were gathered on a multi-
core 2.2 GHz machine, provided by the Dutch national e-infrastructure with
the support of SURF Cooperative.

5.6.1 The adaptive loop

We summarize the main results from [SvVW21, §7]. We run Algorithm 5.1
with θ = 1

2 and ξ = 1
2 . We consider four problems.

In the smooth problem, we select Ω := [0, 1]2 and prescribe the solution

u(t, x, y) := (1 + t2)x(1 − x)y(1 − y).

In the moving peak problem, we select Ω := [0, 1]2 with prescribed solution

u(t, x, y) := x(1 − x)y(1 − y) exp(−100[(x − t)2 + (y − t)2]);

u is essentially zero outside a small strip along the diagonal (0, 0, 0)–(1, 1, 1).
In the cylinder problem, we select Ω := [−1, 1]2 \ [−1, 0]2 with data

u0 ≡ 0, and g(t, x, y) := t · 1{x2+y2<1/4}.

The solution has singularities in the re-entrant corner and along the wall of
the cylinder {(t, x, y) : x2 + y2 = 1/4}.

In the singular problem, we select Ω := [−1, 1]2 \ [−1, 0]2 with data u0 ≡ 1
and g ≡ 0; the solution then has singularities along {0}× ∂Ω and I ×{(0, 0)}.
This problem especially is interesting, as uniform refinement makes almost no
progress. The adaptive algorithm performs very well. Looking at Figure 5.8,
we see strong adaptivity towards the singularities, and observe basis func-
tions with a barycenter at t = 2−14 ≈ 10−4.

Convergence To estimate the error ‖u − ûδ‖X , we measure the residual error
estimator ‖rδ(ûδ)‖ from (5.2.12); see also Lemma 5.2.2. In the left pane of
Figure 5.9, for the first three problems, we observe a convergence rate of 1/2,
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Figure 5.8 Barycenters of supports of basis functions σλ ⊗ φν spanning Xδ of
dimension 81 074 for the singular problem. Left: a top-down view, with a 10×
zoom to the origin; right: centers in spacetime, logarithmic in time.

Figure 5.9 Error convergence and peak memory usage of the adaptive loop for
the four problems of §5.6.1.

which is the best that can be expected from our family of trial spaces (Xδ)δ∈∆.
For the singular problem, the reduced rate 0.4 is found; it is unknown if a
better rate can be expected.

Memory The right pane of Figure 5.9 shows peak memory consumption af-
ter every iteration of the adaptive algorithm. We see that it is linear in dim Xδ,
stabilizing to around 15kB per degree of freedom. This is relatively high due
to our implementation based on double-trees. In fact, the double-trees to-
gether make up around 85% of the total memory. For the singular problem,
the largest double-tree Λ

δ
Y occupies around 40% of the total memory.
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Figure 5.10 Time (in ms) per DoF of bilinear form evaluations in time.

5.6.2 Linearity of operations

The majority of our runtime is spent in the application of bilinear forms. In
this section, we measure the application times to assert their linear complexity.

In time We select three sequences {ΛU}, {ΛL}, {ΛR} of trees in ∨Σ, one
uniformly refined and two graded towards the left and right respectively. For
each such tree Λ ⊂ ∨Σ, we define a corresponding tree Λ̆ := {µ ∈ ∨Ξ : ∃λ ∈
Λ, |λ| = |µ|, | supp ξµ ∩ supp σλ| > 0} ⊂ ∨Ξ.

We select the bilinear forms Mt and Dt from (5.4.2), and run the algorithms
from §5.3.1. We see in Figure 5.10 that the runtime per degree of freedom
stabilizes to 10−3 ms, essentially independent of the bilinear form and the
trees. We suspect the increase until 107 degrees of freedom has to do with
cache locality.

In space On the L-shaped domain Ω := [−1, 1]2 \ [−1, 0]2, we select two se-
quences of hierarchical basis trees, one uniformly refined and the other refined
by a standard adaptive loop on −∆u = 1, u|∂Ω = 0.

For a hierarchical basis tree ΨT = {ψν : ν ∈ NT ,0}, we denote the stiffness
matrix 〈∇ΨT ,∇ΨT 〉L2(Ω) as AT . We measure the runtime of the conversion
from vertex tree NT to triangulation T (cf. §5.5.1), the application time of AT
through (5.4.4), and that of multigrid on AT (with 1 and 3 V-cycles) through
Algorithm 5.7. Figure 5.11 confirms that the relative runtime of every opera-
tion is essentially independent of the refinement strategy. Interesting is again
the increase until 105 degrees of freedom.

In space-time Solving (5.2.9) using PCG requires the application of the four
linear operators Eδ

YBEδ
X , Eδ

X
′
γ′

0γ0Eδ
X , Kδ

X , and Kδ
Y. For the first two, Corol-

lary 5.3.8 asserts that their application time is of linear complexity, while for
the preconditioners Kδ

X and Kδ
Y, this follows from block-diagonality of their

matrix representation.
We run the adaptive algorithm on the four problems of §5.6.1. Figure 5.12

shows that the application time of the aforementioned operators is essentially
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Figure 5.11 Time (in ms) per DoF of important operations in space, for uniform
and adaptive refinements.

Figure 5.12 Time (in ms) per DoF of the four bilinear forms applied in the solve
step of the adaptive algorithm.

independent of the problem, even though the underlying double-trees differ
vastly. Note the increase in relative runtime until 106 degrees of freedom.

Figure 5.13 shows the runtimes of the solve, estimate, mark and refine
steps of the adaptive loop. We confirm that each step is of linear complex-
ity, and that the total runtime is governed by the solve and estimate steps.

5.6.3 Shared-memory parallelism

Most of our execution time is spent applying the linear operators from Fig-
ure 5.12. We can obtain a significant speedup with multithreading. In Algo-
rithm 5.9, all fibers inside each of the four for-loops are disjoint, and we can
easily parallelize each loop using OpenMP.

We run the parallel code on the smooth and singular problems. The right
pane of Figure 5.14 shows decent parallel performance for the singular prob-
lem, with 10× speedup at 16 cores. The left pane however reveals a load
balancing issue: as u is smooth, the two fibers (Λδ

0)1,λ with |λ| = 0 contain the
majority of the degrees of freedom. This results in poor parallel efficiency for
the first and fourth loop in Algorithm 5.9.

5.6 Numerical experiments 101



Figure 5.13 Time (in ms) per DoF of the steps in the adaptive loop.

Figure 5.14 Speedup and time (in ms) per DoF of the solve step in the adaptive
loop, for different number of parallel processors.

5.7 Conclusion

We discussed an implementation of a space-time adaptive solver for parabolic
evolution equations where every step is of linear complexity.

We constructed a family of trial spaces spanned by tensor-products of
wavelets in time and hierarchical basis functions in space. The resulting adap-
tive loop is able to resolve singularities locally in space and time, and we
proved its r-linear convergence.

After imposing a double-tree constraint on the index set of the trial spaces,
we devised an abstract algorithm that is able to apply the system matrices in
linear complexity. We achieve this complexity in practice by a tree-based im-
plementation. The numerical results show high performance of the adaptive
loop as a whole.
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5.A Proofs of Theorems in §5.3

Theorem 5.3.3. A call of eval yields the output as specified, at the cost of O(#Π̆ +
#Λ̆ + #Π + #Λ) operations.

Proof. By locality of the collections Φ̆ and Ψ̆, and sparsity of the matrices p̆�
and q̆�, we see that #Π̆ � #Π̆B + #Λ̆� � #Λ� + #Λ̆�. So after sufficiently many
recursive calls, the current set Π̆ ∪ Λ̆ will be empty. For use later, we note that
similarly #Π � #ΠB + #Λ� � #Λ̆� + #Π̆B + #Λ� � #Λ� + #Λ̆�.

For Π̆ ∪ Λ̆ = ∅, the call produces nothing, which is correct.
Now let Π̆ ∪ Λ̆ �= ∅. From Λ being an �-tree, the definitions of S(·) and

Π̆A, and the locality of A, one has

e|Π̆A
= (Au)(Φ̆|Π̆A

) = (A(d�Φ|Π))(Φ̆|Π̆A
).

By choice of Π we have

u := d�Φ|Π + c|�Λ�+1↑
Ψ|Λ�+1↑ = (d|ΠB)

�Φ|ΠB + c�Ψ|Λ = u − (d|ΠA)
�Φ|ΠA .

The recursive call yields e = (Au)(Φ̆|Π̆), and f = (Au)(Ψ̆|Λ̆�+1↑
). From Λ̆

being an �-tree, the definitions of S̆(·) and ΠA, and the locality of A, we have

(Au)(Ψ̆|Λ̆�↑
) = (Au)(Ψ̆|Λ̆�↑

),

and so in particular f |Λ�+1,↑ = f .
The definition of Π̆ shows that

Φ̆|Π̆B
= (p̆�� Φ̆|Π̆)|Π̆B

, Ψ̆|Λ̆�
= (q̆�� Φ̆|Π̆)|Λ̆�

.

We conclude that

f |Λ̆�
= (Au)(Ψ̆|Λ̆�

) = (Au)(Ψ̆|Λ̆�
) =

(
q̆�� e

)
|Λ̆�

,

and from | supp φλ ∩ supp φ̆µ| = 0 for (λ, µ) ∈ ΠA × Π̆B, that

e|Π̆B
= (Au)(Φ̆|Π̆B

) = (Au)(Φ̆|Π̆B
) =

(
p̆�� e

)
|Π̆B

.

From the assumptions on the collections Φ, Φ̆, Ψ̆, and Ψ, and their conse-
quences on the sparsity of the matrices p�, p̆�, q�, and q̆�, one infers that the
total cost of the evaluations of the statements in eval is O(#Π̆ + #Λ̆� + #Π +
#Λ�) plus the cost of the recursive call. Using #Π̆ + #Π � #Λ̆� + #Λ� and
induction, we conclude the second statement of the theorem.

Theorem 5.3.4. A call of evalupp yields the output as specified, at the cost of
O(#Π̆ + #Λ̆ + #Π + #Λ) operations.
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Proof. By locality of the collections Φ̆ and Ψ̆, and sparsity of the matrices p̆�
and q̆�, we see that #Π̆ � #Π̆B + #Λ̆� � #Λ� + #Λ̆�. So after sufficiently many
recursive calls, the current set Π̆ ∪ Λ̆ will be empty. Notice that #Π � #Λ�.

For Π̆ ∪ Λ̆ = ∅, the call produces nothing, which is correct.
Now let Π̆ ∪ Λ̆ �= ∅. From Λ being an �-tree, the definitions of S(·) and

Π̆A, and the locality of A, one has

e|Π̆A
= (Au)(Φ̆|Π̆A

) = (A(d�Φ|Π))(Φ̆|Π̆A
).

By definition of Π we have

u := d�Φ|Π + c|�Λ�+1↑
Ψ|Λ�+1↑ = c�Ψ|Λ = u − d�Φ|Π.

The recursive call yields e=(Au)(Φ̆|Π̆) and f=UΛ̆�+1↑×Λ�+1↑
c|Λ�+1↑=f |Λ̆�+1↑

.

The definition of Π̆ shows that

Φ̆|Π̆B
= (p̆�� Φ̆|Π̆)|Π̆B

, Ψ̆|Λ̆�
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We conclude that

f |Λ̆�
= (A(c�Ψ|Λ))(Ψ̆|Λ̆�

) = (Au)(Ψ̆|Λ̆�
) =

(
q̆�� e

)
|Λ̆�

,

and

e|Π̆B
= (Au)(Φ̆|Π̆B

) = (Au)(Φ̆|Π̆B
) + (A(d�Φ|Π))(Φ̆|Π̆B

)

=
(
p�� e

)
|Π̆B

+ (A(d�Φ|Π))(Φ̆|Π̆B
).

From the assumptions on the collections Φ, Φ̆, Ψ̆, and Ψ, and their conse-
quences on the sparsity of the matrices p�, p̆�, q�, and q̆�, one infers that the
total cost of the evaluations of the statements in eval is O(#Π̆ + #Λ̆� + #Π +
#Λ�) plus the cost of the recursive call. Using #Π̆ + #Π � #Λ̆� + #Λ� and
induction, we conclude the second statement of the theorem.

Theorem 5.3.5. A call of evallow yields the output as specified, at the cost of
O(#Λ̆ + #Π + #Λ) operations.

Proof. Notice that #Π � #Λ� + #ΠB � #Λ� + #Λ̆�.
For Π̆ ∪ Λ̆ = ∅, the call produces nothing, which is correct.
Now let Π̆ ∪ Λ̆ �= ∅. The definitions of Π̆ and ΠB show that

f |Λ̆�
= (AΦ|Π)(Ψ̆|Λ̆�

)d = (AΦ|Π)(Ψ̆|Λ̆�
)d|ΠB

=
(
q̆�� (AΦ|ΠB)(Φ̆|Π̆)p�d|ΠB

)
|Λ̆�

= (q̆�� e)|Λ̆�
.
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f |Λ̆�
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)d = (AΦ|Π)(Ψ̆|Λ̆�
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=
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From Λ̆ being an �-tree, the definitions of S̆(·) and ΠB, and the locality of
a, and for the third equality, the definition of Π, one has

f |Λ̆�+1↑
= a(Ψ̆|Λ̆�+1↑

, Φ|Π)d + L|Λ̆�+1↑×Λ�
c|Λ�

+ L|Λ̆�+1↑×Λ�+1↑
c|Λ�+1↑

= (AΦ|Π)(Ψ̆|Λ̆�+1↑)
d|ΠB+(AΨ|Λ�

)(Ψ̆|Λ̆�+1↑
)c|Λ�

+L|Λ̆�+1↑×Λ�+1↑
c|Λ�+1↑

= (AΦ|Π)(Ψ̆|Λ̆�+1↑
)d + L|Λ̆�+1↑×Λ�+1↑

c|Λ�+1↑

= evallow(A)(�+ 1, Λ̆�+1↑, Π, Λ�+1↑, d, c|Λ�+1↑)

by induction.
From the assumptions on the collections Φ, Ψ̆, and Ψ, and their conse-

quences on the sparsity of the matrices p�, q�, and q̆�, one easily infers that
the total cost of the evaluations of the statements in evallow is O(#Λ̆� + #Π +
#Λ�) plus the cost of the recursive call. Using #Π � #Λ̆� + #Λ� and induction,
we conclude the second statement of the theorem.

Theorem 5.3.7. Let Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 ×∨1 be finite double-trees. Then

Σ :=
⋃

λ∈P0Λ

(
{λ} ×

⋃
{

µ∈P0Λ̆:|µ|=|λ|+1, |S̆0(µ)∩S0(λ)|>0
} Λ̆1,µ

)
,

Θ :=
⋃

λ∈P1Λ

(
{µ ∈ P0Λ̆ : ∃γ ∈ Λ0,λ s.t. |γ| = |µ|, |S̆0(µ) ∩ S0(γ)| > 0} × {λ}

)
,

are double-trees with #Σ � #Λ̆ and #Θ � #Λ, and

RΛ̆(A0 ⊗ A1)IΛ =RΛ̆(L0 ⊗ Id)IΣRΣ(Id ⊗ A1)IΛ+

RΛ̆(Id ⊗ A1)IΘRΘ(U0 ⊗ Id)IΛ.

Proof. We write

RΛ̆(A0 ⊗ A1)IΛ =RΛ̆((L0 + U0)⊗ A1)IΛ

=RΛ̆(L0 ⊗ Id)(Id ⊗ A1)IΛ+ (5.A.1)
RΛ̆(Id ⊗ A1)(U0 ⊗ Id)IΛ. (5.A.2)

Considering (5.A.1), the range of (Id ⊗ A1)IΛ consists of vectors whose
entries with first index outside P0Λ are zero. In view of the subsequent ap-
plication of L0 ⊗ Id, furthermore only those indices (λ, γ) ∈ P0Λ × ∨̆1 of
these vectors might be relevant for which ∃(µ, γ) ∈ Λ̆, i.e. γ ∈ Λ1,µ, with
|µ| > |λ| and |S̆0(µ) ∩ S0(λ)| > 0. Indeed |S̆0(µ) ∩ S0(λ)| = 0 implies
| supp ψ̆0

µ ∩ supp ψ0
λ| = 0, and so A0(ψ̆

0
µ, ψ0

λ) = 0. If for given (λ, γ) such
a pair (µ, γ) exists for |µ| > |λ|, then such a pair exists for |µ| = |λ| + 1 as
well, because Λ̆0,γ is a tree, and S̆0(µ′) ⊃ S̆0(µ) for any ancestor µ′ of µ. In
order words, the condition |µ| > |λ| can be read as |µ| = |λ|+ 1. The set of
(λ, γ) that we just described is given by the set Σ, and so we infer that

RΛ̆(L0 ⊗ Id)(Id ⊗ A1)IΛ = RΛ̆(L0 ⊗ Id)IΣRΣ(Id ⊗ A1)IΛ.
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Now let (λ, γ) ∈ Σ. Using that P0Λ is a tree, and S0(λ) ⊂ S0(λ′) for any
ancestor λ′ of λ, we infer that (λ′, γ) ∈ Σ. Using that for any µ ∈ P0Λ̆, Λ̆1,µ
is a tree, we infer that for any ancestor γ′ of γ, (λ, γ′) ∈ Σ, so that Σ is a
double-tree.

For µ ∈ ∨̆0, the number of λ ∈ ∨0 with |µ| = |λ|+ 1 and |S̆0(µ)∩ S0(λ)| >
0 is uniformly bounded, from which we infer that #Σ � ∑µ∈P0Λ̆ #Λ̆1,µ = #Λ̆.

Considering (5.A.2), the range of (U0 ⊗ Id)IΛ consists of vectors that can
only have non-zero entries for indices (µ, λ) ∈ ∨̆0 × P1Λ for which there exists
a γ ∈ Λ0,λ with |γ| ≥ |µ| and |S̆0(µ) ∩ S0(γ)| > 0. Since Λ0,λ is a tree, and
S0(γ′) ⊃ S0(γ) for any ancestor γ′ of γ, equivalently |γ| ≥ |µ| can be read as
|γ| = |µ|. Furthermore, in view of the subsequent application of RΛ̆(Id⊗ A1),
it suffices to consider those indices (µ, λ) with µ ∈ P0Λ̆. The set of (µ, λ) that
we just described is given by the set Θ, and so we infer that

RΛ̆(Id ⊗ A1)(U0 ⊗ Id)IΛ = RΛ̆(Id ⊗ A1)IΘRΘ(U0 ⊗ Id)IΛ.

Now let (µ, λ) ∈ Θ. If λ′ is an ancestor of λ, then from P0Λ being a tree,
and Λ0,λ ⊂ Λ0,λ′ , we have (µ, λ′) ∈ Θ. If µ′ is an ancestor of µ, then from P0Λ̆

being a tree, and S̆0(µ′) ⊃ S̆0(µ), we infer that (µ′, λ) ∈ Θ, and thus that Θ is
a double-tree.

For γ ∈ ∨0, the number of µ ∈ ∨̆0 with |µ| = |γ| and |S̆0(µ)∩ S0(γ)| > 0 is
uniformly bounded, from which we infer that #Θ � ∑λ∈P1Λ #Λ0,λ = #Λ.
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6 A space-time parallel algorithm for
parabolic PDEs

Abstract We present an algorithm for the solution of a simultaneous
space-time discretization of linear parabolic evolution equations with a
symmetric differential operator in space. Building on earlier work, we re-
cast this discretization into a Schur-complement equation whose solution
is a quasi-optimal approximation to the weak solution of the equation at
hand. Choosing a tensor-product discretization, we arrive at a remarkably
simple linear system. Using wavelets in time and standard finite elements
in space, we solve the resulting system in linear complexity on a single
processor, and in polylogarithmic complexity when parallelized in both
space and time. We complement these theoretical findings with large-
scale parallel computations showing the effectiveness of the method.

Source code is available at [vVW20b].

6.1 Introduction

This chapter deals with solving parabolic evolution equations numerically in
a time-parallel fashion using tensor-product discretizations. Time-parallel al-
gorithms for solving parabolic evolution equations have become a focal point
following the enormous increase in parallel computing power. Spatial paral-
lelism is a ubiquitous component in large-scale computations, but when spa-
tial parallelism is exhausted, parallelization of the time axis is of interest.

Time-stepping methods first discretize the problem in space, and then solve
the arising system of coupled ODEs sequentially. This immediately reveals a
primary source of difficulty for time-parallel computation.

Alternatively, one can solve simultaneously in space and time. Originally
introduced in [BJ89, BJ90], these space-time methods are very flexible: some
can guarantee quasi-best approximations, meaning that their error is propor-
tional to that of the best approximation from the trial space [And13, DS18,
FK21, SZ20], or drive adaptive routines [SY18, RS19]. Many are especially
well-suited for time-parallel computation [GN16, NS19]. Since the first con-
tribution to time-parallel algorithms [Nie64] in 1964, many methods suitable
for parallel computation have surfaced; see the review [Gan15].

This chapter is a minor modification of A parallel algorithm for solving linear parabolic
evolution equations, R. van Venetië and J. Westerdiep, to appear in Parallel-in-Time Integration
Methods, arXiv:2009.08875.
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Parallel complexity The (serial) complexity of an algorithm measures asymp-
totic runtime on a single processor in terms of the input size. Parallel complexity
measures asymptotic runtime given sufficiently many parallel processors hav-
ing access to a shared memory, i.e., assuming communication is free.

In the current context of tensor-product discretizations of parabolic PDEs,
we write Nt and Nx for the number of unknowns in time and space.

The parareal method [LMT01] aims at time-parallelism by alternating a
serial coarse-grid solve with fine-grid computations in parallel. Each itera-
tion has a time-parallel complexity of O(

√
NtNx), and combined with paral-

lel multigrid in space, a parallel complexity of O(
√

Nt log Nx). The popular
MGRIT algorithm extends these ideas to multiple levels in time; cf. [FFK+14].

Recently, Neumüller and Smears proposed an iterative algorithm that uses
a Fast Fourier Transform in time. Each iteration runs in O(Ntlog(Nt)Nx) on a
serial computer, and parallel in time, in O(log(Nt)Nx). By incorporating par-
allel multigrid in space, its parallel runtime is reduced to O(log Nt + log Nx).

Our contribution We study the variational formulation introduced in Chap-
ter 3 which was based on work by Andreev [And13, And16]. In [SvVW21] and
Chapter 5, we studied this formulation in the context of space-time adaptiv-
ity and its efficient implementation in serial and on shared-memory parallel
computers. The current chapter instead focuses on its massively parallel im-
plementation and time-parallel performance.

Our method has remarkable similarities with the approach of [NS19], and
the most essential difference is the substitution of their Fast Fourier Transform
by our Fast Wavelet Transform. The strengths of both methods include a solid
inf-sup theory that enables quasi-optimal approximate solutions from the trial
space, ease of implementation, and excellent parallel performance in practice.

Our method has another strength: based on a wavelet transform, for fixed
algebraic tolerance, it runs serially in linear complexity. Parallel in time, in
complexity O(log(Nt)Nx); parallel in space and time, in O(log(NtNx)). More-
over, when solving to an algebraic error proportional to the discretization er-
ror, incorporating a nested iteration (cf. [Hac85, Ch. 5]) results in complexities
O(NtNx), O(log(Nt)Nx), and O(log2(NtNx)) respectively. This is on par with
best-known results on parallel complexity for elliptic problems; cf. [Bra81].

Organization of this chapter In §6.2, we introduce the problem, derive a saddle-
point formulation, and provide sufficient conditions for quasi-optimality of
discrete solutions. In §6.3, we detail on the efficient computation of these dis-
crete solutions. In §6.4 we take a concrete example—the reaction-diffusion
equation—and analyze the serial and parallel complexity of our algorithm. In
§6.5, we test these theoretical findings in practice. We conclude in §6.6.

Notations For normed linear spaces U and V, in this chapter for convenience
over R, L(U, V) will denote the space of bounded linear mappings U → V en-
dowed with the operator norm ‖ · ‖L(U,V). The subset of invertible operators
in L(U, V) with inverses in L(V, U) will be denoted as Lis(U, V).
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serial coarse-grid solve with fine-grid computations in parallel. Each itera-
tion has a time-parallel complexity of O(

√
NtNx), and combined with paral-

lel multigrid in space, a parallel complexity of O(
√

Nt log Nx). The popular
MGRIT algorithm extends these ideas to multiple levels in time; cf. [FFK+14].

Recently, Neumüller and Smears proposed an iterative algorithm that uses
a Fast Fourier Transform in time. Each iteration runs in O(Ntlog(Nt)Nx) on a
serial computer, and parallel in time, in O(log(Nt)Nx). By incorporating par-
allel multigrid in space, its parallel runtime is reduced to O(log Nt + log Nx).

Our contribution We study the variational formulation introduced in Chap-
ter 3 which was based on work by Andreev [And13, And16]. In [SvVW21] and
Chapter 5, we studied this formulation in the context of space-time adaptiv-
ity and its efficient implementation in serial and on shared-memory parallel
computers. The current chapter instead focuses on its massively parallel im-
plementation and time-parallel performance.

Our method has remarkable similarities with the approach of [NS19], and
the most essential difference is the substitution of their Fast Fourier Transform
by our Fast Wavelet Transform. The strengths of both methods include a solid
inf-sup theory that enables quasi-optimal approximate solutions from the trial
space, ease of implementation, and excellent parallel performance in practice.

Our method has another strength: based on a wavelet transform, for fixed
algebraic tolerance, it runs serially in linear complexity. Parallel in time, in
complexity O(log(Nt)Nx); parallel in space and time, in O(log(NtNx)). More-
over, when solving to an algebraic error proportional to the discretization er-
ror, incorporating a nested iteration (cf. [Hac85, Ch. 5]) results in complexities
O(NtNx), O(log(Nt)Nx), and O(log2(NtNx)) respectively. This is on par with
best-known results on parallel complexity for elliptic problems; cf. [Bra81].

Organization of this chapter In §6.2, we introduce the problem, derive a saddle-
point formulation, and provide sufficient conditions for quasi-optimality of
discrete solutions. In §6.3, we detail on the efficient computation of these dis-
crete solutions. In §6.4 we take a concrete example—the reaction-diffusion
equation—and analyze the serial and parallel complexity of our algorithm. In
§6.5, we test these theoretical findings in practice. We conclude in §6.6.

Notations For normed linear spaces U and V, in this chapter for convenience
over R, L(U, V) will denote the space of bounded linear mappings U → V en-
dowed with the operator norm ‖ · ‖L(U,V). The subset of invertible operators
in L(U, V) with inverses in L(V, U) will be denoted as Lis(U, V).
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Given a finite-dimensional subspace Uδ of a normed linear space U, we de-
note the trivial embedding Uδ → U by Eδ

U . For a basis Φδ—viewed formally
as a column vector—of Uδ, we define the synthesis operator as

FΦδ : Rdim Uδ → Uδ : c �→ c�Φδ =: ∑
φ∈Φδ

cφφ.

Equip Rdim Uδ
with the Euclidean inner product and identify (Rdim Uδ

)′ with
Rdim Uδ

using the corresponding Riesz map. We find the adjoint of FΦδ , the
analysis operator, to satisfy

(FΦδ)′ : (Uδ)′ → Rdim Uδ
: f �→ f (Φδ) := [ f (φ)]φ∈Φδ .

For quantities f and g, by f � g, we mean that f ≤ C · g with a constant
that does not depend on parameters that f and g may depend on. By f � g,
we mean that f � g and g � f . For matrices A and B ∈ RN×N , by A � B we
will denote spectral equivalence, i.e. x�Ax � x�Bx for all x ∈ RN .

6.2 Quasi-best approximations to the parabolic problem

Let V, H be separable Hilbert spaces of functions on a spatial domain so that V
is continuously embedded in H, i.e. V ↪→ H, with dense compact embedding.
Identifying H with its dual yields the Gelfand triple V ↪→ H � H′ ↪→ V′.

For a.e.
t ∈ I := (0, T),

let a(t; ·, ·) denote a bilinear form on V × V so that for any η, ζ ∈ V, t �→
a(t; η, ζ) is measurable on I, and such that for a.e. t ∈ I,

|a(t; η, ζ)| � ‖η‖V‖ζ‖V (η, ζ ∈ V) (boundedness),

a(t; η, η) � ‖η‖2
V (η ∈ V) (coercivity).

With (A(t)·)(·) := a(t; ·, ·) ∈ Lis(V, V′), given a forcing function g and
initial value u0, we want to solve the parabolic initial value problem of

finding u : I → V s.t.

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.
(6.2.1)

6.2.1 An equivalent self-adjoint saddle-point system

In a simultaneous space-time variational formulation, the parabolic problem
reads as finding u from a suitable space of functions of time and space s.t.

(Bw)(v) :=
∫

I
〈dw

dt (t), v(t)〉H + a(t; w(t), v(t))dt =
∫

I
〈g(t), v(t)〉H =: g(v)

for all v from another suitable space of functions of time and space. We can
enforce the initial condition by testing against additional test functions.
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Theorem 6.2.1 ([SS09]). With Y := L2(I; V), X := Y ∩ H1(I; V′), we have[
B
γ0

]
∈ Lis(X, Y′ × H),

where for t ∈ Ī, γt : u �→ u(t, ·) denotes the trace map. In other words,

finding u ∈ X s.t. (Bu, γ0u) = (g, u0) given (g, u0) ∈ Y′ × H (6.2.2)

is a well-posed simultaneous space-time variational formulation of (6.2.1).

We define A ∈ Lis(Y, Y′) and ∂t ∈ Lis(X, Y′) as

(Au)(v) :=
∫

I
a(t; u(t), v(t))dt, and ∂t := B − A.

Following Chapter 3, we assume that A is symmetric. This is however not a
necessary assumption, and the results extend naturally to the nonsymmetric
case discussed in Chapter 4. We can reformulate (6.2.2) as the self-adjoint
saddle point problem

finding (v, σ, u) ∈ Y × H × X s.t.




A 0 B
0 Id γ0
B′ γ′

0 0







v
σ
u


 =




g
u0
0


 . (6.2.3)

By taking a Schur complement w.r.t. the H-block, we can reformulate this as

finding (v, u) ∈ Y × X s.t.

[
A B
B′ −γ′

0γ0

] [
v
u

]
=

[
g

−γ′
0u0

]
. (6.2.4)

We equip Y and X with ‘energy’-norms

‖ · ‖2
Y := (A·)(·), ‖ · ‖2

X := ‖∂t · ‖2
Y′ + ‖ · ‖2

Y + ‖γT · ‖2
H ,

which are equivalent to the canonical norms on Y and X.

6.2.2 Uniformly quasi-optimal Galerkin discretizations

Our numerical scheme is based on the saddle-point formulation (6.2.4). Let
(Yδ, Xδ)δ∈∆ be a collection of closed subspaces of Y × X satisfying

Xδ ⊂ Yδ, ∂tXδ ⊂ Yδ (δ ∈ ∆), (6.2.5)

and
1 ≥ γ∆ := inf

δ∈∆
inf

0 �=u∈Xδ
sup

0 �=v∈Yδ

(∂tu)(v)
‖∂tu‖Y′ ‖v‖Y

> 0. (6.2.6)

Remark 6.2.2. In §3.4, we verify these conditions for Xδ and Yδ being tensor-
products of (locally refined) finite element spaces in time and space. In [SvVW21],
we verify them for Xδ

t and Yδ being adaptive sparse grids, allowing adaptive re-
finement locally in space and time simultaneously. ♦
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For δ ∈ ∆, let (vδ, uδ) ∈ Yδ × Xδ solve the Galerkin discretization of (6.2.4):
[

Eδ
Y
′AEδ

Y Eδ
Y
′BEδ

X
Eδ

X
′B′Eδ

Y −Eδ
X
′
γ′

0γ0Eδ
X

] [
vδ

uδ

]
=

[
Eδ

Y
′g

−Eδ
X
′
γ′

0u0

]
. (6.2.7)

The solution (vδ, uδ) of (6.2.7) exists uniquely, and is uniformly quasi-optimal in
that ‖u − uδ‖X ≤ γ−1

∆ infuδ∈Xδ ‖u − uδ‖X for all δ ∈ ∆.
Instead of solving a matrix representation of (6.2.7) using e.g. precondi-

tioned MINRES, we opt for a computationally more attractive method. Taking
the Schur complement w.r.t. the Yδ-block in (6.2.7), and replacing (Eδ

Y
′AEδ

Y)
−1

in the resulting formulation by a preconditioner Kδ
Y that can be applied cheaply,

we arrive at the Schur complement formulation of finding uδ ∈ Xδ s.t.

Eδ
X
′
(B′Eδ

YKδ
YEδ

Y
′
B + γ′

0γ0)Eδ
X︸ ︷︷ ︸

=:Sδ

uδ = Eδ
X
′
(B′Eδ

YKδ
YEδ

Y
′
g + γ′

0u0)︸ ︷︷ ︸
=: f δ

. (6.2.8)

The resulting operator Sδ ∈ Lis(Xδ, Xδ ′) is self-adjoint and elliptic. Given a
self-adjoint operator Kδ

Y ∈ L(Yδ ′, Yδ) satisfying, for some κ∆ ≥ 1,

((Kδ
Y)

−1v)(v)
(Av)(v)

∈ [κ−1
∆ , κ∆] (δ ∈ ∆, v ∈ Yδ), (6.2.9)

the solution uδ of (6.2.8) exists uniquely as well. In fact, the following holds.

Theorem 6.2.3 (Remark 3.3.8). Take (Yδ × Xδ)δ∈∆ satisfying (6.2.5)–(6.2.6), and
Kδ

Y satisfying (6.2.9). Solutions uδ ∈ Xδ of (6.2.8) are uniformly quasi-optimal:

‖u − uδ‖X ≤ κ∆
γ∆

inf
uδ∈Xδ

‖u − uδ‖X (δ ∈ ∆).

6.3 Solving efficiently on tensor-product discretizations

We assume that Xδ := Xδ
t ⊗ Xδ

x and Yδ := Yδ
t ⊗ Yδ

x are tensor-products, and for
ease of presentation, we assume that the spatial discretizations on Xδ and Yδ

coincide, i.e. Xδ
x = Yδ

x , reducing (6.2.5) to Xδ
t ⊂ Yδ

t and d
dt Xδ

t ⊂ Yδ
t .

We equip Xδ
t with a basis Φδ

t , Xδ
x with Φδ

x, and Yδ
t with Ξδ.

6.3.1 Construction of Kδ
Y

With O := 〈Ξδ, Ξδ〉L2(I), Ax := 〈Φδ
x, Φδ

x〉V , and Kx � A−1
x uniformly in δ, take

KY := O−1 ⊗ Kx.

Then Kδ
Y := FΞδ⊗Φδ

x
KY(FΞδ⊗Φδ

x
)′ ∈ L(Yδ ′, Yδ) satisfies (6.2.9); cf. [SvVW21,

§5.6.1]. When Ξδ is orthogonal, O is diagonal and can be inverted exactly. For
standard finite element bases Φδ

x, suitable Kx that can be applied efficiently
(at linear cost) are provided by symmetric multigrid methods.
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6.3.2 Preconditioning the Schur complement formulation

We will solve a matrix representation of (6.2.8) with an iterative solver, thus
requiring a preconditioner. Inspired by the constructions of [And16, NS19],
we build an optimal self-adjoint coercive preconditioner Kδ

X ∈ L(Xδ ′, Xδ) as a
wavelet-in-time block-diagonal matrix with multigrid-in-space blocks.

Let U be a separable Hilbert space of functions over some domain. A given
collection Ψ = {ψλ}λ∈∨Ψ is a Riesz basis for U when

spanΨ = U, and ‖c‖�2(∨Ψ)
� ‖c�Ψ‖U for all c ∈ �2(∨Ψ).

Thinking of Ψ being a basis of wavelet-type, for indices λ ∈ ∨Ψ, its level is
denoted |λ| ∈ N0. We call Ψ uniformly local when for all λ ∈ ∨Ψ,

diam(supp ψλ) � 2−|λ|, #{µ ∈ ∨Ψ : |µ| = |λ|, | supp ψµ ∩ supp ψλ| > 0} � 1.

Assume Σ := {σλ : λ ∈ ∨Σ} is a uniformly local Riesz basis for L2(I) with
{2−|λ|σλ : λ ∈ ∨Σ} Riesz for H1(I). Writing w ∈ X as ∑λ∈∨Σ

σλ ⊗ wλ for some
wλ ∈ V, we define the bounded, symmetric, and coercive bilinear form

(DX ∑
λ∈∨Σ

σλ ⊗ wλ)( ∑
µ∈∨Σ

σµ ⊗ vµ) := ∑
λ∈∨Σ

〈wλ, vλ〉V + 4|λ|〈wλ, vλ〉V′ .

The operator Dδ
X := Eδ

X
′DXEδ

X is in Lis(Xδ, Xδ ′). Its norm and that of its
inverse are bounded uniformly in δ ∈ ∆. When Xδ = spanΣδ ⊗ Φδ

x for some
Σδ := {σλ : λ ∈ ∨Σδ} ⊂ Σ, the matrix representation of Dδ

X w.r.t. Σδ ⊗ Φδ
x is

(FΣδ⊗Φδ)′Dδ
XFΣδ⊗Φδ =: Dδ

X = blockdiag[Ax + 4|λ|〈Φδ
x, Φδ

x〉V′ ]λ∈∨Σδ
.

Theorem 6.3.1 ([SvVW21, §5.6.2]). Define Mx := 〈Φδ
x, Φδ

x〉H. With matrices
K j � (Ax + 2j Mx)−1 uniformly in δ ∈ ∆ and j ∈ N0, it follows that

D−1
X � KX := blockdiag[K|λ|AxK|λ|]λ∈∨Σδ

.

We find the optimal preconditioner Kδ
X := FΣδ⊗Φδ KX(FΣδ⊗Φδ)′∈Lis(Xδ ′, Xδ).

In [OR00] it was shown that under a ‘full-regularity’ assumption, for quasi-
uniform meshes, a multiplicative multigrid method yields K j satisfying the
conditions of Thm. 6.3.1, which can moreover be applied in linear time.

6.3.3 Wavelets in time

The preconditioner KX requires Xδ
t to be equipped with a wavelet basis Σδ,

whereas one typically uses a different (single-scale) basis Φδ
t on Xδ

t . To bridge
this gap, a basis transformation from Σδ to Φδ

t is required. We define the
wavelet transform as W t := (FΦδ

t
)−1FΣδ .1

1In literature, this transform is typically called an inverse wavelet transform.
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Define Vj := span{σλ ∈ Σ : |λ| ≤ j}. Equip each Vj with a (single-scale)
basis Φj, and assume that Φδ

t := ΦJ for some J, so that Xδ
t := VJ . Since

Vj+1 = Vj ⊕ spanΣj where Σj := {σλ : |λ| = j}, there exist matrices Pj and Qj

such that Φ�
j = Φ�

j+1Pj and Ψ�
j = Φ�

j+1Qj, with M j := [Pj|Qj] invertible.

Writing v ∈ VJ in both forms v = c�0 Φ0 + ∑J−1
j=0 d�

j Ψj and v = c�J ΦJ , the

transformation W t := W J mapping wavelet coordinates (c�0 , d�
0 , . . . , d�

J−1) to
single-scale coordinates cJ satisfies

W J = M J−1

[
W J−1 0

0 Id

]
, and W0 := Id. (6.3.1)

Uniform locality of Σ implies uniform sparsity of the M j, i.e. with O(1) nonze-
ros per row and column. Then, assuming a geometrical increase in dim Vj in
terms of j, which is true in the concrete setting below, matrix-vector products
x �→ W tx can be performed (serially) in linear complexity; cf. [Ste03].

6.3.4 Solving the system

The matrix representation of Sδ, f δ from (6.2.8) w.r.t. a basis Φδ
t ⊗ Φδ

x of Xδ is

S := (FΦδ
t ⊗Φδ

x
)′SδFΦδ

t ⊗Φδ
x

and f := (FΦδ
t ⊗Φδ

x
)′ f δ.

Envisioning an iterative solver, using §6.3.2 we have a preconditioner in terms
of the wavelet-in-time basis Σδ ⊗ Φδ

x. In this basis, we define

Ŝ := (FΣδ⊗Φδ
x
)′SδFΣδ⊗Φδ

x
and f̂ := (FΣδ⊗Φδ

x
)′ f δ. (6.3.2)

These two forms are related: with the transform W := W t ⊗ Idx, we have
Ŝ = W�SW and f̂ = W� f , and the matrix representation of (6.2.8) becomes

finding w s.t. Ŝw = f̂ . (6.3.3)

We can then recover the solution in single-scale coordinates as u = Ww.
We use Preconditioned Conjugate Gradients (PCG), with preconditioner

KX , to solve (6.3.3). Given an algebraic error tolerance ε > 0 and current guess
wk, we monitor r�k KXrk ≤ ε2 where rk := f̂ − Ŝwk. This data is available
within PCG, and is a stopping criterium: with uδ

k := FΣδ⊗Φδ
x
wk ∈ Xδ, we see

r�k KXrk = ( f δ − Sδuδ
k)(K

δ
X( f δ − Sδuδ

k)) � ‖uδ − uδ
k‖

2
X (6.3.4)

with � following from [SvVW21, (4.12)]. Then ‖uδ−uδ
k‖X � ε.

6.4 A concrete setting: the reaction-diffusion equation

On a bounded Lipschitz domain Ω ⊂ Rd, take H := L2(Ω), V := H1
0(Ω), and

a(t; η, ζ) :=
∫

Ω
D∇η · ∇ζ + cηζ dx
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where D = D� ∈ Rd×d is positive definite, and c ≥ 0.2 We note that A(t) is
symmetric and coercive. W.l.o.g. we take I := (0, 1), i.e. T := 1.

Fix pt, px ∈ N. With {TI} the family of quasi-uniform partitions of I into
subintervals, and {TΩ} that of conforming quasi-uniform triangulations of Ω,
we take ∆ as the collection of pairs (TI , IΩ). We construct trial- and test spaces

Xδ := Xδ
t ⊗ Xδ

x, Yδ := Yδ
t ⊗ Xδ

x,

where, with P−1
p (T ) the space of piecewise degree-p polynomials on T ,

Xδ
t := H1(I) ∩ P−1

pt (TI), Xδ
x := H1

0(Ω) ∩ P−1
px (TΩ), Yδ

t := P−1
pt (TI).

These spaces satisfy condition (6.2.5), and the spatial discretizations on Xδ and
Yδ coincide. For this choice of ∆, condition (6.2.6) follows from Theorem 3.4.3.

For Xδ
t , we choose Φδ

t to be the Lagrange basis of degree pt on TI ; for Xδ
x,

we choose Φδ
x to be that of degree px on TΩ. An orthogonal basis Ξδ for Yδ

t
may be built as piecewise shifted Legendre polynomials of degree pt w.r.t. TI .

For pt = 1, one finds a suitable wavelet basis Σ in [Ste98]. For pt > 1, one
can split the basis into lowest- and higher-order parts and do the transform on
the lowest-order part only, or build higher-order wavelets directly; cf. [Dij09].

Owing to the tensor-product structure of Xδ and Yδ and of the operators
A and ∂t, the matrix of our formulation becomes remarkably simple.

Lemma 6.4.1. Define g := (FΞδ⊗Φδ
x
)′g, u0 := Φδ

t (0)⊗ 〈u0, Φδ
x〉L2(Ω), and

T := 〈 d
dt Φδ

t , Ξδ〉L2(I), N := 〈Φδ
t , Ξδ〉L2(I), Γ0 := Φδ

t (0)[Φ
δ
t (0)]

�

Mx := 〈Φδ
x, Φδ

x〉L2(Ω), Ax := 〈Φδ
x, Φδ

x〉V , B := T ⊗ Mx + N ⊗ Ax.

With KY := O−1 ⊗ Kx from §6.3.1, we can write S and f from §6.3.4 as

S = B�KYB + Γ0 ⊗ Mx, f = B�KYg + u0.

Note that N and T are non-square, Γ0 is very sparse, and T is bidiagonal.

In fact, assumption (6.2.5) allows us to write S in an even simpler form.

Lemma 6.4.2. The matrix S can be written as

S = At ⊗ (MxKx Mx) + Mt ⊗ (AxKx Ax) + L� ⊗ (MxKx Ax)

+ L ⊗ (AxKx Mx) + Γ0 ⊗ Mx

where

L := 〈 d
dt Φδ

t , Φδ
t 〉L2(I), Mt := 〈Φδ

t , Φδ
t 〉L2(I), At := 〈 d

dt Φδ
t , d

dt Φδ
t 〉L2(I).

This matrix representation does not depend on Yδ
t or Ξδ at all.

2This is easily generalized to variable coefficients, but notation becomes more obtuse.
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Proof. The expansion of B := T ⊗ Mx + N ⊗ Ax in S yields a sum of five
Kronecker products, one of which is

(T� ⊗ Mx)KY(T ⊗ Ax) = (T�O−1N)⊗ (MxKx Ax).

We show that T�O−1N = L�; similar arguments hold for the other terms.
Thanks to Xδ

t ⊂ Yδ
t , we can take the trivial embedding Fδ

t : Xδ
t → Yδ

t . With

Tδ : Xδ
t → Yδ

t
′
, (Tδu)(v) := 〈 d

dt u, v〉L2(I),

Mδ : Yδ
t → Yδ

t
′
, (Mδu)(v) := 〈u, v〉L2(I),

we find O = (FΞδ)′MδFΞδ , N = (FΞδ)′MδF δ
t FΦδ

t
and T = (FΞδ)′TδFΦδ

t
, so

T�O−1N = (FΦδ
t
)′Tδ ′Fδ

t FΦδ
t
= 〈Φt, d

dt Φt〉L2(I) = L�.

6.4.1 Parallel complexity

The parallel complexity of our algorithm is the asymptotic runtime of solv-
ing (6.3.3) for u ∈ RNt Nx in terms of Nt := dim Xδ

t and Nx := dim Xδ
x, given

sufficiently many parallel processors and assuming no communication cost.
We understand the serial (resp. parallel) cost of a matrix B, denoted Cs

B
(resp. Cp

B), as the asymptotic runtime of performing x �→ Bx ∈ RN in terms of
N, on a single (resp. sufficiently many) processors at no communication cost.
For uniformly sparse matrices, i.e. with O(1) nonzeros per row and column, the
serial cost is O(N); the parallel cost is O(1) (compute cells of Bx concurrently).

From Theorem 6.3.1, we see that KX is such that κ2(KX Ŝ) � 1 uniformly in
δ ∈ ∆. Therefore, for a given algebraic error tolerance ε, we require O(log ε−1)
PCG iterations. Assuming that the parallel cost of matrices dominates that of
vector addition and inner products, the parallel complexity of a single PCG
iteration is dominated by the cost of applying KX and Ŝ. As Ŝ = W�SW , our
algorithm runs in complexity

O(log ε−1[C◦
KX

+ C◦
W� + C◦

S + C◦
W ]) (◦ ∈ {s, p}). (6.4.1)

Theorem 6.4.3. For fixed algebraic error tolerance ε > 0, our solver runs in
• serial complexity O(NtNx);
• time-parallel complexity O(log(Nt)Nx);
• space-time-parallel complexity O(log(NtNx)).

Proof. We absorb the constant factor log ε−1 of (6.4.1) into O. We analyse the
cost of every matrix separately.

The (inverse) wavelet transform As W = W t ⊗ Idx, its serial cost is O(Cs
W t

Nx).
For this wavelet, x �→ W tx has linear serial cost (cf. §6.3.3), so Cs

W = O(NtNx).
Using (6.3.1), we write W t as the composition of J matrices, each uniformly

sparse and hence at parallel cost O(1). Because the mesh in time is quasi-
uniform, we have J � log Nt. We find Cp

W t
= O(J) = O(log Nt), so the time-

parallel cost of W equals O(log(Nt)Nx). By exploiting spatial parallelism as
well, we find Cp

W = O(log Nt). Analogous arguments hold for W�
t and W�.

6.4 A concrete setting 117



The preconditioner Recall that KX := blockdiag[K|λ|AxK|λ|]λ. Since the cost
of K j is independent of j, we see that

Cs
KX

= O(Nt · (2Cs
K j

+ Cs
Ax
)) = O(2NtCs

K j
+ NtNx).

Implementing the K j as typical multiplicative multigrid solvers with linear
serial cost, we find Cs

KX
= O(NtNx).

Through temporal parallelism, we can apply each block of KX concur-
rently, resulting in a time-parallel cost of O(2Cs

K j
+ Cs

Ax
) = O(Nx).

By parallelizing in space too, we reduce the cost of the uniformly sparse
Ax to O(1). The parallel cost of multiplicative multigrid on quasi-uniform
triangulations is O(log Nx); cf. [MFL+91]. It follows that Cp

KX
= O(log Nx).

The Schur matrix Using Lemma 6.4.1, we write S = B�KYB+Γ0 ⊗ Mx where
B = T ⊗ Mx + N ⊗ Ax, which immediately reveals that

Cs
S = Cs

B� + Cs
KY

+ Cs
B + Cs

Γ0
· Cs

M = O(NtNx + Cs
KY

), and

Cp
S = max

{
Cp

B� + Cp
KY

+ Cp
B, Cp

Γ0
· Cp

M

}
= O(Cp

KY
)

as every matrix except KY is uniformly sparse. With arguments similar to the
previous paragraph, we see that KY (and hence S) has serial cost O(NtNx),
time-parallel cost O(Nx), and space-time-parallel cost O(log Nx).

6.4.2 Solving to higher accuracy

Instead of fixing the algebraic error tolerance, maybe more realistic is is to de-
sire a solution ũδ ∈ Xδ for which the error is proportional to the discretization
error, i.e. ‖u − ũδ‖X � infuδ∈Xδ ‖u − uδ‖X .

Assuming that this error decays with a (problem-dependent) rate s > 0,
i.e. infuδ∈Xδ ‖u − uδ‖X � (NtNx)−s, then the same holds for the solution uδ

of (6.2.8); cf. Thm. 6.2.3. When the algebraic error tolerance decays as ε �
(NtNx)−s, a triangle inequality and (6.3.4) show that the error of our solution
ũδ obtained by PCG decays at rate s too.

In this case, log ε−1 = O(log(NtNx)); (6.4.1) and the proof of Theorem 6.4.3
yield that the solver has superlinear serial complexity O(NtNx log(NtNx)),
time-parallel complexity O(log2(Nt) log(Nx)Nx), and polylogarithmic com-
plexity O(log2(NtNx)) parallel in space and time.

For elliptic PDEs, algorithms are available that offer quasi-optimal solu-
tions, serially in linear complexity O(Nx)—the cost of a serial solve to fixed
algebraic error—and in parallel in O(log2Nx), by combining a nested iteration
with parallel multigrid; cf. [Hac85, Ch. 5] and [Bra81].

In [HVW95], the question is posed whether “good serial algorithms for
parabolic PDEs are intrinsically as parallel as good serial algorithms for ellip-
tic PDEs”, basically asking if the lower bound O(log2(NtNx)) can be attained
by an algorithm running serially in O(NtNx); see [Wor91, §2.2] for details.
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Nested iteration drives down the serial complexity of our algorithm to a
linear O(NtNx), and improves the time-parallel complexity to O(log(Nt)Nx).3

This is on par with the best-known results for elliptic problems, so we answer
the question posed in [HVW95] in the affirmative.

6.5 Numerical experiments

We take the simple heat equation, i.e. D = Idx and c = 0. We select pt = px =
1, i.e. lowest order finite elements in space and time. We will use the 3-point
wavelet introduced in [Ste98].

We implemented our algorithm in Python using the open source finite el-
ement library NGSolve [Sch14] for meshing and discretization of the bilinear
forms in space and time, MPI through mpi4py [DPS05] for distributed com-
putations, and SciPy [Vir20] for the sparse matrix-vector computations. The
source code is available at [vVW20b].

6.5.1 Preconditioner calibration on a 2D problem

Our wavelet-in-time, multigrid-in-space preconditioner is optimal, so we have
κ2(KX Ŝ) � 1. Here we will investigate this condition number quantitatively.

As a model problem, we partition the temporal interval I uniformly into
2J subintervals. We consider the domain Ω := [0, 1]2 triangulated uniformly
into 4K triangles. Set Nt := dim Xδ

t = 2J + 1 and Nx := dim Xδ
x = (2K − 1)2.

We start by using direct inverses K j = (Ax + 2j Mx)−1 and Kx = A−1
x to

determine the best possible condition numbers. We found that replacing K j

by Kα
j = (αAx + 2j Mx)−1 for α = 0.3 gave better conditioning; see also the left

of Table 6.5.1. At the right of Table 6.5.1, we see that the condition numbers
are very robust with respect to spatial refinements, but less so for refinements
in time. Still, at Nt = 16 129, we observe a modest κ2(KX Ŝ) of 8.74.

Replacing the direct inverses with multigrid solvers, we found a good
balance between speed and conditioning at 2 V-cycles with 3 Gauss–Seidel
smoothing steps per grid. We decided to use these for our experiments.

6.5.2 Time-parallel results

We perform computations on Cartesius, the Dutch supercomputer. Each node
has 64GB of memory and 12 cores (at 2 threads per core) running at 2.6GHz.
Using the preconditioner detailed above, we iterate PCG on (6.3.3) with S
computed as in Lemma 6.4.2, until achieving an algebraic error of ε = 10−6;
see also §6.3.4. For the spatial multigrid solvers, we use 2 V-cycles with 3
Gauss–Seidel smoothing steps per grid.

3Interestingly, nested iteration offers no improvements parallel in space and time, with com-
plexity still O(log2(Nt Nx)).
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Nt = 65 129 257 513 1 025 2 049 4 097 8 193

Nx = 49 6.34 7.05 7.53 7.89 8.15 8.37 8.60 8.78
225 6.33 6.89 7.55 7.91 8.14 8.38 8.57 8.73
961 6.14 6.89 7.55 7.93 8.15 8.38 8.57 8.74

3 969 6.14 7.07 7.56 7.87 8.16 8.38 8.57 8.74
16 129 6.14 6.52 7.55 7.86 8.16 8.37 8.57 8.74

Table 6.1 Condition numbers κ2(KX Ŝ). Left: fixed Nt = 1025, Nx = 961 for
varying α. Right: fixed α = 0.3 for varying Nt and Nx.

Memory-efficient time-parallel implementation For X ∈ RNx×Nt , denote the
vector obtained by stacking columns of X vertically by Vec(X) ∈ RNt Nx .
For memory efficency, we do not build the Kronecker matrices Bt ⊗ Bx of
Lemma 6.4.2 directly, but instead perform matrix-vector products using

(Bt ⊗ Bx)Vec(X) = Vec(Bx(BtX�)�) = (Idt ⊗ Bx)Vec(BtX�). (6.5.1)

Each parallel processor stores only a subset of the temporal degrees of free-
dom, i.e. a subset of columns of X. When Bt is uniformly sparse, which holds
true for all our temporal matrices, using (6.5.1) we evaluate (Bt ⊗ Bx)Vec(X)
in O(Cs

Bx
) operations parallel in time: on each parallel processor, we compute

‘our’ columns of Y := BtX� by receiving the necessary columns of X from
neighbouring processors, and then compute BxY� without communication.

The preconditioner KX is block-diagonal, making its time-parallel applica-
tion trivial. Representing the wavelet transform of §6.3.3 as the composition of
J Kronecker products allows a time-parallel implementation using the above.

2D problem We select Ω := [0, 1]2 with a uniform triangulation TΩ, and we
triangulate I uniformly into TI . We select the smooth solution

u(t, x, y) := exp(−2π2t) sin(πx) sin(πy),

so the problem has vanishing forcing data g.
Table 6.2 details the strong scaling results, i.e. fixing the problem size and

increasing the number of processors P. We triangulate I into 214 time slabs,
yielding Nt = 16 385 temporal degrees of freedom, and Ω into 48 triangles,
yielding a Xδ

x of dimension Nx = 65 025. The resulting system has 1 065 434 625
degrees of freedom and our solver reaches the algebraic error tolerance after
16 iterations. In perfect strong scaling, the total number of CPU-hours remains
constant. Even at 2 048 processors, we observe a parallel efficiency of around
92.9%, solving this system in a modest 11.7 CPU-hours. Acquiring strong scal-
ing results on a single node was not possible due to memory limitations.

Table 6.3 details the weak scaling results, i.e. fixing the problem size per
processor and increasing the number of processors. In perfect weak scaling,
the time per iteration should remain constant. We observe a slight increase in
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P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs

1–16 16 385 65 025 1 065 434 625 out of memory
32 16 385 65 025 1 065 434 625 16 1224.85 76.55 10.89
64 16 385 65 025 1 065 434 625 16 615.73 38.48 10.95

128 16 385 65 025 1 065 434 625 16 309.81 19.36 11.02
256 16 385 65 025 1 065 434 625 16 163.20 10.20 11.61
512 16 385 65 025 1 065 434 625 16 96.54 6.03 13.73
512 16 385 65 025 1 065 434 625 16 96.50 6.03 13.72

1 024 16 385 65 025 1 065 434 625 16 45.27 2.83 12.88
2 048 16 385 65 025 1 065 434 625 16 20.59 1.29 11.72

Table 6.2 Strong scaling results for the 2D problem.

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs

si
ng

le
no

de

1 9 261 121 2 350 089 8 33.36 4.17 0.01
2 17 261 121 4 439 057 11 46.66 4.24 0.03
4 33 261 121 8 616 993 12 54.60 4.55 0.06
8 65 261 121 16 972 865 13 65.52 5.04 0.15

16 129 261 121 33 684 609 13 86.94 6.69 0.39

m
ul

ti
pl

e
no

de
s 32 257 261 121 67 108 097 14 93.56 6.68 0.83

64 513 261 121 133 955 073 14 94.45 6.75 1.68
128 1 025 261 121 267 649 025 14 93.85 6.70 3.34
256 2 049 261 121 535 036 929 15 101.81 6.79 7.24
512 4 097 261 121 1 069 812 737 15 101.71 6.78 14.47

1 024 8 193 261 121 2 139 364 353 16 108.32 6.77 30.81
2 048 16 385 261 121 4 278 467 585 16 109.59 6.85 62.34

Table 6.3 Weak scaling results for the 2D problem.

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs

1–64 16 385 250 047 4 097 020 095 out of memory
128 16 385 250 047 4 097 020 095 18 3 308.49 174.13 117.64
256 16 385 250 047 4 097 020 095 18 1 655.92 87.15 117.75
512 16 385 250 047 4 097 020 095 18 895.01 47.11 127.29

1 024 16 385 250 047 4 097 020 095 18 451.59 23.77 128.45
2 048 16 385 250 047 4 097 020 095 18 221.12 12.28 125.80

Table 6.4 Strong scaling results for the 3D problem.

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs
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Table 6.5 Weak scaling results for the 3D problem.
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time per iteration on a single node, but when scaling to multiple nodes, we
observe a near-perfect parallel efficiency of around 96.7%, solving the final
system with 4 278 467 585 degrees of freedom in a mere 109 seconds.

3D problem We select Ω := [0, 1]3, and prescribe the solution

u(t, x, y, z) := exp(−3π2t) sin(πx) sin(πy) sin(πz),

so the problem has vanishing forcing data g.
Table 6.4 shows the strong scaling results. We triangulate I uniformly into

214 time slabs, and Ω uniformly into 86 tetrahedra. The arising system has
N = 4 097 020 095 unknowns, which we solve to tolerance in 18 iterations.
The results are comparable to those in two dimensions, albeit a factor two
slower at similar problem sizes.

Table 6.5 shows the weak scaling results for the 3D problem. As in the
two-dimensional case, we observe excellent scaling properties, and see that
the time per iteration is nearly constant.

6.6 Conclusion

We have presented a framework for solving linear parabolic evolution equa-
tions massively in parallel. Based on earlier ideas [And16, NS19] and Chap-
ter 3, we found a remarkably simple symmetric Schur-complement equation.
With a tensor-product discretization of the space-time cylinder using standard
finite elements in time and space together with a wavelet-in-time multigrid-
in-space preconditioner, we were able to solve the arising systems to fixed
accuracy in a uniformly bounded number of PCG steps.

We found that our algorithm runs in linear complexity on a single pro-
cessor. Moreover, when sufficiently many parallel processors are available and
communication is free, its runtime scales logarithmically in the discretization
size. This complexity translates to a highly efficient algorithm in practice.

The numerical experiments serve as a showcase for the described space-
time method, and exhibit its excellent time-parallelism by solving a linear sys-
tem with over four billion unknowns in just 109 seconds, using just over two
thousand parallel processors. By incorporating spatial parallelism as well, we
expect these results to scale well to much larger problems.

Although performed in the rather restrictive setting of the heat equation
discretized using piecewise linear polynomials on uniform triangulations, the
parallel framework already allows solving more general linear parabolic PDEs
using polynomials of varying degree on locally refined (tensor-product) meshes.
In this more general setting, we envision load balancing to become the main
hurdle in achieving good scaling results.

122 Chapter 6 A space-time parallel algorithm for parabolic PDEs



time per iteration on a single node, but when scaling to multiple nodes, we
observe a near-perfect parallel efficiency of around 96.7%, solving the final
system with 4 278 467 585 degrees of freedom in a mere 109 seconds.

3D problem We select Ω := [0, 1]3, and prescribe the solution

u(t, x, y, z) := exp(−3π2t) sin(πx) sin(πy) sin(πz),

so the problem has vanishing forcing data g.
Table 6.4 shows the strong scaling results. We triangulate I uniformly into

214 time slabs, and Ω uniformly into 86 tetrahedra. The arising system has
N = 4 097 020 095 unknowns, which we solve to tolerance in 18 iterations.
The results are comparable to those in two dimensions, albeit a factor two
slower at similar problem sizes.

Table 6.5 shows the weak scaling results for the 3D problem. As in the
two-dimensional case, we observe excellent scaling properties, and see that
the time per iteration is nearly constant.

6.6 Conclusion

We have presented a framework for solving linear parabolic evolution equa-
tions massively in parallel. Based on earlier ideas [And16, NS19] and Chap-
ter 3, we found a remarkably simple symmetric Schur-complement equation.
With a tensor-product discretization of the space-time cylinder using standard
finite elements in time and space together with a wavelet-in-time multigrid-
in-space preconditioner, we were able to solve the arising systems to fixed
accuracy in a uniformly bounded number of PCG steps.

We found that our algorithm runs in linear complexity on a single pro-
cessor. Moreover, when sufficiently many parallel processors are available and
communication is free, its runtime scales logarithmically in the discretization
size. This complexity translates to a highly efficient algorithm in practice.

The numerical experiments serve as a showcase for the described space-
time method, and exhibit its excellent time-parallelism by solving a linear sys-
tem with over four billion unknowns in just 109 seconds, using just over two
thousand parallel processors. By incorporating spatial parallelism as well, we
expect these results to scale well to much larger problems.

Although performed in the rather restrictive setting of the heat equation
discretized using piecewise linear polynomials on uniform triangulations, the
parallel framework already allows solving more general linear parabolic PDEs
using polynomials of varying degree on locally refined (tensor-product) meshes.
In this more general setting, we envision load balancing to become the main
hurdle in achieving good scaling results.

122 Chapter 6 A space-time parallel algorithm for parabolic PDEs





7 Accuracy controlled data assimilation for
parabolic PDEs

Abstract This chapter is concerned with the recovery of (approximate)
solutions to parabolic problems from incomplete and possibly inconsis-
tent observational data, given on a time-space cylinder that is a strict sub-
set of the computational domain under consideration. Unlike previous
approaches to this and related problems our starting point is a regularized
least squares formulation in a continuous infinite-dimensional setting that is
based on stable variational time-space formulations of the parabolic PDE.
This allows us to derive a priori as well as a posteriori error bounds for
the recovered states with respect to a certain reference solution. In these
bounds the regularization parameter is disentangled from the underlying
discretization. An important ingredient for the derivation of a posteriori
bounds is the construction of suitable Fortin operators which allow us to
control oscillation errors stemming from the discretization of dual norms.
Moreover, the variational framework allows us to contrive precondition-
ers for the discrete problems whose application can be performed in linear
time, and for which the condition numbers of the preconditioned systems
are uniformly proportional to that of the regularized continuous problem.
In particular, we provide suitable stopping criteria for the iterative solvers
based on the a posteriori error bounds. The presented numerical experi-
ments quantify the theoretical findings and demonstrate the performance
of the numerical scheme in relation with the underlying discretization and
regularization.

7.1 Introduction

7.1.1 Background

Ever-increasing computational resources encourage considering more and more
complex mathematical models for the simulation or prediction of physical or
technological processes. However, striving for increasing quantifiable accu-
racy such models typically exhibit significant bias or are incomplete in that
important model data or accurate constitutive laws are missing. It is all too

This chapter is a minor modification of Accuracy controlled data assimilation for parabolic
problems, W. Dahmen, R. Stevenson, and J. Westerdiep, to appear in Mathematics of Computation,
arXiv:2105.05836.
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natural to gather complementary information from data provided by also ever-
improving sensor capabilities. Such a process of fusing models and data is of-
ten referred to as data assimilation which seems to originate from climatology
[Dal94, LLD06]. In this context, streaming data are used to stabilize otherwise
chaotic dynamical systems for prediction purposes, typically with the aid of
(statistical) filtering techniques. While this is still an expanding and vibrant
research area [Maj16], the notion of data assimilation is by now understood
in a wider sense referring to efforts of improving quantifiable information ex-
traction from synthesizing model-based and data driven approaches. Incom-
pleteness of underlying models or model deficiencies could come in different
forms. For instance, one could lack model data such as initial conditions, or
the model involves uncalibrated coefficients represented e.g. by a parameter-
dependent family of coefficients.

In this chapter we focus on such a problem scenario where the physical
law takes the form of a parabolic partial differential equation (PDE), in the
simplest case just the heat equation in combination with a known source term.
We then assume that the state of interest, a (near-)solution to this PDE, can be
observed on some restricted time-space cylinder while its initial conditions are
unknown. We are then interested in recovering the partially observed state on
the whole time-space domain from the given information.

This problem is known to be (mildly) ill-posed. This or related prob-
lems have been treated in numerous articles. In particular, the recent work in
[BO18, BIHO18] proposes a finite element method with built-in mesh-dependent
regularization terms has been a primary motivation for the present chapter.
Moreover, similar concepts for an analogous data-assimilation problem asso-
ciated with the wave equation have been applied in [BFMO21]. Consider-
ing first a semi-discretization in [BO18], the main results for a fully discrete
scheme in [BIHO18] provide a priori estimates for the recovered state on a
domain that excludes a small region around the location of initial data.

The results obtained in the present chapter, although similar in nature, are
instead based on a different approach and exhibit a few noteworthy distinc-
tions explained below. In fact, our starting point is the formulation of a regu-
larized estimation problem in terms of a least squares functional in an infinite-
dimensional function space setting. We postpone for a moment the particular
role of the regularization parameter in the present context and remark first
that our approach resembles a number of other prior studies of ill-posed oper-
ator equations, that are also based on a Tikhonov regularization in terms of sim-
ilar mixed variational formulations, see e.g. [BBFD15, BR18, BLO18, DHH13,
MS17]. These contributions are typically formulated in more general setting
(see e.g. [BR18]), covering also problems that exhibit a stronger level of ill-
posedness such as the Cauchy problem for second order elliptic equations, or
the backward heat equation. Although a direct comparison with these works
is therefore difficult, there are noteworthy relevant conceptual links as well as
distinctions that we will briefly comment on next.

For instance, in [BR18], one arrives at a similar mixed formulation as in the
present chapter exploiting then, however, just coercivity where, for a regular-
izing term ε‖ · ‖, the coercivity constant decreases proportionally to the regu-
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larization parameter. The results in [BBFD15] for related numerical schemes
indeed confirm a corresponding adverse dependence of error bounds on the
regularization parameter. Moreover, these bounds are obtained only under
additional regularity assumptions. In contrast, our approach is based on nu-
merically realizing inf-sup stability needed to handle dual norms, resulting in
the present context in ε-independent error estimates without any a priori ad-
ditional regularity assumptions.

This hints at the perhaps main principal distinction from the above prior
related work. Our guiding theme is that, how well one can solve the inverse
problem, depends on the condition of the corresponding forward problem
(already on an infinite-dimensional level), in the present context a parabolic
initial-boundary value problem. Specifically, this requires identifying first a
suitable pair X, Y of (infinite-dimensional) trial- and test-spaces, for which the
forward operator takes X onto the dual Y′ of Y, without imposing any “excess
regularity” assumptions on the solution beyond membership to X. This is tan-
tamount to a stable variational formulation of the forward problem in the sense
of the Babuska–Necas theorem. We briefly refer to this as “natural mapping
properties”. Drawing on the works of [And13, RS18b] and Chapter 3, the
present approach is solely based on such natural mapping properties. As a
consequence, the basic error analysis is independent of any data-consistency
assumptions or of the regularity of solutions in the case of consistent data,
which in general never occur in practice.

In summary, the guiding “general hope” is that, just exploiting natural
mapping properties rather than assuming any excess regularity, should “help”
minimizing the necessary amount of regularization in an inverse problem.
This in turn, is intimately related to the central motivation of this chapter,
namely the development of efficient and certifiable numerical methods that
should not rely on unverifiable assumptions. In a nutshell, for the particular
problem type at hand, significant consequences of a stable variational formu-
lation of the forward problem are: the proposed numerical solvers exhibit a fa-
vorable quantifiable performance to be commented on further below; regard-
less of data consistency and without imposing any regularity assumptions we
derive sharp a priori error bounds that do not degrade when the regulariza-
tion parameter tends to zero; there is no need for tuning parameters inside
any mesh-dependent stabilization terms; we can derive computable a posteri-
ori error bounds that are valid without any excess regularity assumptions, for
arbitrary (inconsistent) data, and, in the present particular inverse problem,
are independent of the regularization parameter.

However, it should be emphasized that our “general hope” could so far
be realized only for the current rather mildly ill-posed problem class. The
following remarks elaborate a bit more on some of the related aspects.

(i) Respecting natural mapping properties reveals, in particular, that a unique
minimizer of the objective functional exists for any arbitrarily small regulariza-
tion parameter and even for a vanishing regularization parameter. In fact, a least
squares formulation by itself turns out to be already a sufficient regulariza-
tion. However, the condition number of corresponding discrete systems may in-
crease with decreasing regularization parameter. Our numerical experiments
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will shed some light on this interdependence. We use this insight to develop
efficient preconditioners for the discrete problems. In fact, within the limita-
tions of the infinite-dimensional formulation the solvers will be seen to exhibit
a quasi-optimal performance for any fixed regularization parameter. Even for
the mildly-ill posed problem under consideration this seems to be unprece-
dented in the literature. In that sense, the primary role of a non-vanishing
regularization parameter for us is to facilitate a rigorous performance analy-
sis of the iterative solver in favor of its quantitative improvement.

(ii) A stable infinite dimensional variational formulation is also an essential
prerequisite for deriving rigorous a posteriori regularity-free - meaning they
are valid without any excess regularity assumptions - error bounds for the
recovered states. As shown later, such bounds can be used, in particular, to
identify suitable stopping criteria for iterative solvers. Finally, we demon-
strate some practical consequences of regularity-free computable a posteriori
bounds in Section 7.6. We indicate their use for estimating data consistency
errors as well as for choosing the regularization parameter in a way that accu-
racy of the results is not compromized in any essential way while enhancing
solver performance.

(iii) Respecting natural mapping properties allows to “disentangle” dis-
cretization and regularization by studying the intrinsic necessary “strength”
of the regularization in the infinite-dimensional setting. Moreover, it turns
out that additional regularization beyond the least squares formulation is not
necessary on the infinite-dimensional level, persists to remain true for the pro-
posed inf-sup stable discretizations. Choosing nevertheless a positive regu-
larization parameter in favor of a better and rigorously founded solver per-
formance, still requires a balanced choice so as to warrant optimal achiev-
able accuracy of the state estimate. Our formulation reveals that the relevant
balance criterion is then the achievable approximation accuracy of the trial
space. Only sufficiently high regularity, typically hard to check in practice,
allows one to express this quantity in terms of a uniform mesh-size. Our ap-
proach will be seen to offer more flexibility and potentially different choices of
regularization parameters than those stemming from the a priori fixed mesh-
dependent approach in [BO18, BIHO18] or [DHH13]. This concerns, for in-
stance, adaptively refined meshes or higher order discretizations.

A perhaps more subtle further consequence of exploiting natural mapping
properties are somewhat stronger a priori estimates than those obtained in pre-
vious works.

Of course, the robustness of our results with respect to the regularization
parameter reflects the mild degree of ill-posedness of the data-assimilation
problem under consideration. This cannot be expected to carry over to less
stable problems in exactly the same fashion. We claim though that important
elements will persist to hold, for instance, for conditionally stable problems.
In particular, non-vanishing regularization parameters will then be essential
and regularity-free a posteriori bounds will be all the more important for ar-
riving at properly balanced choices in the spirit of the strategy indicated in
Section 7.6. A detailed discussion is beyond the scope of this chapter and is
therefore deferred to forthcoming work.
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7.1.2 Layout

In Section 7.2 we present a stable weak time-space formulation of a parabolic
model problem and introduce the data assimilation problem considered in
this work. Based on these findings we propose in Section 7.3 a regularized
least squares formulation of the state estimation task. This formulation permits
model as well as data errors as the recovered states are neither required to sat-
isfy the parabolic equation exactly nor to match the data. We then derive a pri-
ori as well as a posteriori error estimates for the infinite-dimensional minimizer
as well as for the minimizer over a finite dimensional trial space revealing the
basic interplay between model inconsistencies, data errors, and regularization
strength.

Since the “ideal” infinite-dimensional objective functional involves a dual-
norm a practical numerical method needs to handle this term. We show that
a proper discretization of the dual norm is tantamount to identifying a stable
Fortin operator. For the given formulation of the parabolic problem this turns
out to impose theoretical limitations on discretizations based on a standard
second order variational formulation. Therefore we consider in Section 7.4 an
equivalent first order system least squares formulation. Section 7.5 is devoted
to the construction of Fortin operators for both settings. Moreover, we present
in Sections 7.3.4 and 7.4.2 effective preconditioners for the iterative solution of
the arising discrete problems along with suitable stopping criteria. Section 7.6
is devoted to numerical experiments that quantify the theoretical findings and
illustrate the performance of the numerical schemes, in particular, depending
on the choice of the regularization parameter which, in principal, could be
chosen as zero. We conclude in Section 7.7 with a brief discussion of several
ramifications of the results, including the application of a posteriori bounds
for estimating data-consistency errors.

7.1.3 Notations

In this work, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Exceptions
are given by the parameters η and ω in the Carleman estimate (7.2.7), the
polynomial degrees of various finite element spaces, and the dimension d of
the spatial domain Ω. Obviously, C � D is defined as D � C, and C � D as
C � D and C � D.

For normed linear spaces E and F, by L(E, F) we will denote the normed
linear space of bounded linear mappings E → F, and by Lis(E, F) its subset
of boundedly invertible linear mappings E → F. We write E ↪→ F to denote
that E is continuously embedded into F. For simplicity only, we exclusively
consider linear spaces over the scalar field R.

7.2 Problem formulation and preview

For a given domain Ω ⊂ Rd and time-horizon T > 0, let I := [0, T]. Let
a(t; ·, ·) denote a bilinear form on H1

0(Ω) × H1
0(Ω) such that for any θ, ζ ∈

7.2 Problem formulation and preview 129



H1
0(Ω), the function t �→ a(t; θ, ζ) is measurable on I. Moreover, we assume

that for almost all t ∈ I, a(t; ·, ·) : H1
0(Ω)× H1

0(Ω) → R is bounded and coercive,
i.e.

|a(t; θ, ζ)| � ‖θ‖H1(Ω)‖ζ‖H1(Ω) (θ, ζ ∈ H1
0(Ω)), (7.2.1)

a(t; θ, θ) � ‖θ‖2
H1(Ω) (θ ∈ H1

0(Ω)), (7.2.2)

hold with constants independent of t ∈ I. By Lax Milgram’s Theorem, the
operator A(t), defined by (A(t)θ)(ζ) := a(t; θ, ζ), (θ, ζ ∈ H1

0(Ω)), belongs to
Lis(H1

0(Ω), H−1(Ω)).
Before discussing the parabolic data assimilation problem, we recall some

facts about a time-space variational formulation of the parabolic initial value
problem—the corresponding forward problem—of the form

{
dz
dt (t) + A(t)z(t) = h(t) (t ∈ I a.e.),

γ0z = z0,
(7.2.3)

with trace map γt : z �→ z(t). With the spaces

X := L2(I; H1
0(Ω)) ∩ H1(I; H−1(Ω)), Y := L2(I; H1

0(Ω)),

the operator B defined by

(Bw)(v) :=
∫

I
dw
dt (t)(v(t)) + a(t; w(t), v(t))dt,

belongs to L(X, Y′). Recall also that

X ↪→ C(I; L2(Ω)) (7.2.4)

with the latter space being equipped with the norm on L∞(I; L2(Ω)). In par-
ticular, this implies that γt ∈ L(X, L2(Ω)), with a norm that is uniformly
bounded in t ∈ I. The resulting weak formulation of (7.2.3) reads as

Bz = h, γ0z = z0,

and it is known (e.g. see [DL92, Ch.XVIII, §3], [Wlo82, Ch. IV, §26], [SS09]) to
be well-posed in the sense that

[
B
γ0

]
∈ Lis(X, Y′ × L2(Ω)). (7.2.5)

Turning to the data assimilation problem, suppose in what follows that
ω ⊂ Ω is a fixed non-empty sub-domain (possibly much smaller than Ω) and
that we are given data f ∈ L2(I × ω) as well as g ∈ Y′. The data-assimilation
problem considered in this chapter is to seek a state u ∈ X, that approximately
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problem considered in this chapter is to seek a state u ∈ X, that approximately
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satisfies Bu = g, while also closely agreeing with f in L2(I × ω), see [BO18,
BIHO18]. To make this precise, ideally one would like to solve

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I a.e.),

u(t)|ω = f (t) (t ∈ I).
(7.2.6)

However, in general such data (g, f ) may be inconsistent, i.e., (7.2.6) has no
solution and is therefore ill-posed. To put this formally, denoting by Γω the
restriction of a function on I × Ω to a function on I × ω, we have Γω ∈
L(X, L2(I × ω)), i.e., Γω is bounded on X. However, the range of the oper-
ator

Bω :=

[
B

Γω

]
∈ L(X, Y′ × L2(I × ω))

induced by (7.2.6), is a strict subset of Y′ × L2(I × ω).
Before addressing this issue, it is instructive to understand the case of a

consistent pair (g, f ) ∈ ran Bω, i.e., when there exists a u ∈ X such that (g, f ) =
(Bu, Γωu).

Remark 7.2.1. Any data consistent pair (g, f ) ∈ ran Bω determines a unique
state u ∈ X satisfying (7.2.6). ♦

That this is indeed the case can be derived from the following crucial tool
that has been employed in prior related studies such as [BO18, BIHO18] and
will be heavily used in what follows as well. For η ∈ (0, T) let

Xη := L2([η, T]; H1
0(Ω)) ∩ H1([η, T]; H−1(Ω)).

Fixing both η and a subdomain ω ⊂ Ω, a version of the so-called Carleman
Estimate says in the present terms

‖w‖Xη � ‖Γωw‖L2(I×ω) + ‖Bw‖Y′ (w ∈ X). (7.2.7)

Remark 7.2.2. The validity of (7.2.7) has been established in [BO18, Thm. 2]
for the heat operator (i.e., a(t; θ, ζ) =

∫
Ω ∇θ(t) · ∇ζ(t)dx) and Ω ⊂ Rd being

a convex polytope. It holds in greater generality though. For instance, the ar-
gument in the proof of [BO18, Lemma 7] still works when Ω is star-shaped
w.r.t. an x0 ∈ Ω and any open ω ⊂ Ω that contains x0. In what follows up to
this point we will tacitly assume at this point suitable problem specifications
that guarantee the validity of (7.2.7) without further mentioning. ♦

Returning to the uniqueness of u given consistent data (g, f ), suppose
there exist two solutions, then their difference e ∈ X satisfies ‖Γωe‖L2(I×ω) +

‖Be‖Y′ = 0, meaning in view of (7.2.7) that ‖e‖Xη = 0, and so thanks to Xη ↪→
C([η, T]; L2(Ω)), that e(t) = 0 for t ∈ [η, T]. From X ↪→ C([0, T]; L2(Ω)), and
the fact that η > 0 is arbitrary, it follows that e = 0.

7.2 Problem formulation and preview 131



However, the nature of the Carleman Estimate indicates that one cannot
stably recover the trace γ0u which would then together with g stably recover
u. In fact, one may convince oneself that significantly different initial data
(far) outside ω may give rise to homogeneous solutions of (7.2.3) that hardly
differ on I × ω. Thus, even for a state u ∈ X from (nearly) consistent data
(g, f ) ∈ Y′ × L2(I × ω) we cannot expect to find an accurate numerical ap-
proximation to u on the whole time-space cylinder I × Ω. Moreover, any per-
turbation of the data may land outside ran Bω.

In practice, neither will the data/measurements (g, f ) ∈ Y′ × L2(I × ω) be
exact, nor will the observed state behind f satisfy the model—here a parabolic
PDE—exactly. Thus, in general a pair of data (g, f ) ∈ Y′ × L2(I × ω) allows
one to recover any hypothetical source u ∈ X only within some uncertainty. A
central theme in this article is to quantify this uncertainty (theoretically and
numerically) by properly exploiting the information provided by the PDE
model, and the data. While any such assimilation attempt rests on the ba-
sic hypothesis that the data (g, f ) are “close” in Y′ × L2(I × ω) to a consistent
pair (Bu, u|I×ω) ∈ ran Bω, for some u ∈ X, this “closeness” is generally not
known beforehand.

To perform such a recovery we formulate in the next section a family of
regularizations of the ill-posed problem (7.2.6) involving a parameter ε ≥ 0,
taking data errors and model bias into account. We then show, first on the
continuous infinite-dimensional level, that for each ε ≥ 0 there exists a unique
regularized solution uε ∈ X. Letting this precede an actual discrete scheme,
will be important for a number of issues, such as the design of efficient iter-
ative solvers, the derivation of a posteriori error bounds, as well as disentan-
gling regularization and discretization in favor of an overall good balance of
uncertainties. Aside from the question what a preferable choice of ε would
be in that latter respect, a central issue will be to assess the quality of a regu-
larized state uε and of its approximation uδ,δ

ε from a given finite-dimensional
trial space Xδ ⊂ X provided by our numerical scheme.

To that end, recall that generally (for inconsistent data) the idealized as-
similation problem (7.2.6) has no solution. So whatever state u ∈ X may be
used to “explain” the data, should be viewed as a candidate or reference state
that is connected with the recovery task through the consistency error

econs(u) :=
√
‖Bu − g‖2

Y′ + ‖Γωu − f ‖2
L2(I×ω)

. (7.2.8)

At the heart of our analysis is then an a priori estimate of the type

‖u − uδ,δ
ε ‖Xη � econs(u) + eδ

approx(u) + ε‖γ0u‖L2(Ω), (7.2.9)

where eδ
approx(u) denotes the error of the best approximation to u from Xδ in

X, thereby implicitly quantifying the regularity of the state u. Recall that, as
always, the constant in this estimate absorbed by the �-symbol may depend
on η > 0, but neither on u nor on ε.

It is important to note that (7.2.9) is valid for any u ∈ X, not making use
of the assumption that (Bu, Γωu) be close to (g, f ). It is of evident value, of
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course, for states u with small or at least moderate consistency error. This
suggests singling out a particular state

u0 := arg min
u∈X

econs(u)

that minimizes the consistency error. As in the case of consistent data, we will
see that u0 is unique, and, and as is suggested by its notation, it will turn out to
be the limit for ε ↓ 0 of the regularized solutions uε that will be defined later.
One reason for not confining the error estimates—or perhaps better termed
distance estimates—to the specific state u0 is the potential significant model
bias. In fact, we view it as a strength to keep (7.2.9) general since this cov-
ers automatically various somewhat specialized scenarios. For instance, if the
data were exact, i.e., econs(u0) = 0, (7.2.9), for u = u0, shows the dependence
of the error just on ε and the choice of the discretization. Moreover, if the
model is exact (or the model bias is negligible compared with data accuracy)
it will later be seen how to get a “nearly-computable” bound for econs(u0)
and hence an idea of the model bias (due to g) and measurement errors in f .
Another case of interest is u = uε because this is the “compromise-solution”
suggested by the chosen regularization and targeted by the numerical scheme.

Finally, while in principle, ε can be chosen as small as we wish (even zero),
it will be seen to benefit solving the discrete problems by choosing ε as large
as possible so as to remain just dominated, ideally, by econs(u0), in practice, by
the announced a posteriori bounds.

7.3 Regularized least squares

Knowing that the data assimilation problem is ill-posed and taking the pre-
ceding considerations into account, we consider for some parameter ε ≥ 0 the
regularized least squares problem of finding the minimizer uε over X of

Gε : w �→ ‖Bw − g‖2
Y′ + ‖Γωw − f ‖2

L2(I×ω) + ε2‖γ0w‖2
L2(Ω),

1 (7.3.1)

where, as before, Γω is the restriction of a function on I × Ω to a function on
I × ω. The resulting Euler–Lagrange equations read as

〈Buε−g, Bw〉Y′+〈Γωuε− f , Γωw〉L2(I×ω)+ε2〈γ0uε, γ0w〉L2(Ω) = 0 (w ∈ X).
(7.3.2)

Since Γω ∈ L(X, L2(I × ω)), and on account of (7.2.5), for w ∈ X it holds that

ε2‖w‖2
X � ‖Bw‖2

Y′ + ‖Γωw‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω) � max(1, ε2)‖w‖2
X .

(7.3.3)
By the Lax–Milgram Lemma, we thus know that for ε > 0 the minimizer uε

exists uniquely, and satisfies

‖uε‖X � max(ε−1, 1)
(
‖g‖Y′ + ‖ f ‖L2(I×ω)

)
. (7.3.4)

1We could have included additional weights in front of the first terms that could reflect a
priori knowledge on model- or data-fidelity. Since this would not affect the subsequent develop-
ments we disregard this option for simplicity of exposition.
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Selecting any reference state u ∈ X, similar to (7.3.4) one finds for ε > 0

‖u − uε‖X � max(ε−1, 1)
(

ε‖γ0u‖L2(Ω) + econs(u)
)

,

see (7.2.8). This result is by no means satisfactory. With the aid of (7.2.7), much
better bounds will be established for ‖u − uε‖Xη .

Remark 7.3.1. Also for ε = 0, the minimizer u0 of G0(·) = econs(·)2 over X
exists uniquely. Indeed, suppose there are two minimizers. Then, by (7.3.2),
their difference e0 satisfies

〈Be0, Bw〉Y′ + 〈Γωe0, Γωw〉L2(I×ω) = 0 (w ∈ X),

and so ‖Γωe0‖2
L2(I×ω) + ‖Be0‖2

Y′ = 0. As we have seen, using (7.2.4) and (7.2.7)

this implies e0 = 0. ♦

A frequently used tool reads as follows.

Lemma 7.3.2. For any w ∈ X one has

‖u − w‖Xη �
√

G0(w) + econs(u).

Proof. (7.2.7) and a triangle-inequality for the norm ‖ · ‖L2(I×ω)×Y′ yield

‖u − w‖Xη �
√
‖Γω(u − w)‖2

L2(I×ω)
+ ‖B(u − w)‖2

Y′ ≤
√

G0(w) + econs(u)

which confirms the claim.

Taking as reference state u = uε, we obtain the following a posteriori bound.

Proposition 7.3.3. For ε ≥ 0 and w ∈ X, one has

‖uε − w‖Xη �
√

Gε(w).

Proof. The proof follows from Lemma 7.3.2 and
√

G0(w) + econs(uε) ≤
√

Gε(w) +
√

Gε(uε) ≤ 2
√

Gε(w).

The same arguments, used to show for ε ≥ 0 existence and uniqueness of
the minimizer uε of Gε over X, show for any closed subspace Xδ ⊂ X unique-
ness of the minimizer uδ

ε of Gε over Xδ. An a priori bound for ‖u − uδ
ε‖Xη for an

arbitrary reference state u ∈ X is given in the next proposition.

Proposition 7.3.4. It holds that

‖u − uδ
ε‖Xη � econs(u) + eδ

approx(u) + ε‖γ0u‖L2(Ω),

where
eδ

approx(u) := min
w∈Xδ

‖u − w‖X

denotes the corresponding approximation error of the state u.
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Proof. Let PXδ denote the X-orthogonal projector onto Xδ, then using B ∈
L(X, Y′) and (7.2.4), we infer that
√

G0(uδ
ε ) ≤

√
Gε(uδ

ε ) ≤
√

Gε(PXδ u)

≤‖B(u − PXδ u)‖Y′ + ‖Bu − g‖Y′ + ‖ f − Γωu‖L2(I×ω)+

‖Γω(u − PXδ u)‖L2(I×ω) + ε‖γ0(u − PXδ u)‖L2(Ω) + ε‖γ0u‖L2(Ω)

�eδ
approx(u) + econs(u) + ε‖γ0u‖L2(Ω),

which together with Lemma 7.3.2 completes the proof.

At this point we note that because of the presence of the dual norm ‖ · ‖Y′ in
Gε, neither uδ

ε nor the a posteriori bound for ‖uε −w‖Xη from Proposition 7.3.3
for e.g. w = uδ

ε can be computed. Both problems are going to be tackled in the
next two subsections.

Remark 7.3.5. Although the upper bound from Proposition 7.3.4 is minimal
for ε = 0, a reason for nevertheless taking ε > 0, say of the order of the
expected magnitude of econs(u) + eδ

approx(u), is to enhance the numerical sta-
bility of solving the Euler–Lagrange equations. ♦

Remark 7.3.6. Notice that even when econs(u) = 0 and ε = 0, Proposition 7.3.4
does not show that uδ

0 is a quasi-best approximation to u from Xδ. Indeed the
norm ‖ · ‖X used to define eδ

approx(u) differs from the norm ‖ · ‖Xη in which
u − uδ

0 is measured. ♦

We conclude this section with a few comments on the behavior of uε when
ε tends to zero. First, note that the consistency error of uε approaches the
minimal consistency error econs(u0) when ε → 0 because

econs(uε) ≤
√

Gε(uε) ≤
√

Gε(u0)≤ econs(u0) + ε‖γ0u0‖L2(Ω).

In particular, a first trivial consequence of Proposition 7.3.4 is that, for consis-
tent and exact data, i.e., econs(u0) = 0, uε tends to the state u0 in Xη for any
η > 0. Even without the assumption econs(u0) = 0, a stronger result is derived
in the following remark.

Remark 7.3.7. One has ‖u0 − uε‖X → 0 as ε → 0. ♦

Proof. We remark first that
√

Gε Γ-converges to
√

G0 =: F. In fact, let (εn)n∈N

tend to zero. The functionals Fn :=
√

Gεn : X → R+ are uniformly coercive
(in the sense of optimization, meaning that Fn(w) → ∞ for ‖w‖X → ∞). Let
(wn)n∈N be any sequence in X with limit w ∈ X. Then

F(w)− Fn(wn) ≤ F(w)− F(wn)≤
√
‖B(w − wn)‖2

Y′ + ‖γω(w − wn)‖2
L2(I×ω)

� ‖w − wn‖X , n ∈ N,
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so that F(w) ≤ lim infn→∞ Fn(wn). Moreover, for any w ∈ X there exists a
sequence (wn)n∈N in X such that F(w) ≥ lim supn→∞ Fn(wn), as can be seen
by simply taking wn = w. Thus, by the main Theorem of Γ-convergence,
minimizers of Fn converge to the minimizer of F.

Thus, trying to solve the regularized problem, with ε as small as possible
incidentally favors u0 as target state. Thus, it is of interest to estimate econs(u0)
(see Corollary 7.3.14 below) since a relatively large econs(u0) weakens the rel-
evance of u0, favoring correspondingly larger regularization parameters.

7.3.1 Discretizing the dual norm

Minimizing Gε over Xδ does not correspond to a practical method because
the dual norm ‖ · ‖Y′ cannot be evaluated. Therefore, given a family of finite
dimensional subspaces (Xδ)δ∈∆ of X, the idea is to find a family (Yδ)δ∈∆ of
finite dimensional subspaces of Y, ideally with dim Yδ � dim Xδ, such that
‖Bw‖Y′ can be controlled for w ∈ Xδ by the computable quantity ‖Bw‖Yδ ′ .
This is ensured whenever

inf
δ∈∆

inf
{w∈Xδ : Bw �=0}

sup
0 �=µ∈Yδ

(Bw)(µ)

‖Bw‖Y′ ‖µ‖Y
> 0 (7.3.5)

is valid.
In the subsequent discussion we make heavy use of the Riesz isometry

R ∈ Lis(Y, Y′), defined by

(Rv)(w) := 〈v, w〉Y :=
∫

I

∫

Ω
∇xv · ∇xw dx dt, (v, w ∈ Y).

Introducing auxiliary variables for µε = R−1(g − Buε) ∈ Y, θε = f − Γωuε ∈
L2(I × ω), and νε = −γ0uε ∈ L2(Ω) gives rise to a mixed formulation of the
problem of finding the minimizer uε over X of Gε defined in (7.3.1) in terms of
the saddle point system

Sε(µε, θε, νε, uε) :=




R 0 0 B
0 I 0 Γω

0 0 I εγ0
B′ Γ′

ω εγ′
0 0







µε

θε

νε

uε


 =




g
f
0
0


 . (7.3.6)

(see [CDW12, Sect. 2.2]). (Equivalently, (7.3.6) characterizes the critical point
of the Lagrangian obtained when inserting in Gε these variables and append-
ing corresponding constraints by Lagrange multipliers.)

Remark 7.3.8. Eliminating the second and third variable from (7.3.6), one ar-
rives at the equivalent more compact formulation

[
R B
B′ −(Γ′

ωΓω + ε2γ′
0γ0)

] [
µε

uε

]
=

[
g

−Γ′
ω f ,

]

It serves in Section 7.3.4 as the starting point for a numerical scheme. ♦
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the saddle point system

Sε(µε, θε, νε, uε) :=




R 0 0 B
0 I 0 Γω

0 0 I εγ0
B′ Γ′

ω εγ′
0 0







µε

θε

νε

uε


 =




g
f
0
0


 . (7.3.6)

(see [CDW12, Sect. 2.2]). (Equivalently, (7.3.6) characterizes the critical point
of the Lagrangian obtained when inserting in Gε these variables and append-
ing corresponding constraints by Lagrange multipliers.)

Remark 7.3.8. Eliminating the second and third variable from (7.3.6), one ar-
rives at the equivalent more compact formulation

[
R B
B′ −(Γ′

ωΓω + ε2γ′
0γ0)

] [
µε

uε

]
=

[
g

−Γ′
ω f ,

]

It serves in Section 7.3.4 as the starting point for a numerical scheme. ♦
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Theorem 7.3.9. Let (7.3.5) be valid. For uδ,δ
ε the (unique) minimizer over Xδ of

Gδ
ε := w �→ ‖Bw − g‖2

Yδ ′ + ‖Γωw − f ‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω),

one has
‖u − uδ,δ

ε ‖Xη � econs(u) + eδ
approx(u) + ε‖γ0u‖L2(Ω).

(We recall that, as always, the constant absorbed by the �-symbol may (actually will)
depend on ω and η, but not on ε ≥ 0 or δ ∈ ∆.)

Proof. Denoting the block-diagonal operator comprized of the leading 3 × 3
block in Sε by D, the operator Sε can be rewritten as

Sε =

[
D Cε

C′
ε 0

]
,

where Cε ∈ L
(

X, Y′ × L2(I × ω)× L2(Ω)
)

is defined by

(Cεw)(µ, θ, ν) := (Bw)(µ) + 〈Γωw, θ〉L2(I×ω) + ε〈γ0w, ν〉L2(Ω).

With the usual identification of L2(I × ω) and L2(Ω) with their duals, D is
just the isometric Riesz isomorphism between Y × L2(I × ω)× L2(Ω) and its
dual. Equipping X with the (ε-dependent) “energy”-norm

|||w|||ε :=
√
‖Bw‖2

Y′ + ‖Γωw‖2
L2(I×ω)

+ ε2‖γ0w‖2
L2(Ω)

,

one verifies that ‖Cεw‖Y′×L2(I×ω)×L2(Ω) = |||w|||ε, so that in particular Cε satis-
fies an ‘inf-sup’ condition. Consequently, the operator Sε on the left hand side
of (7.3.6) is a boundedly invertible mapping from Y × L2(I × ω) × L2(Ω) ×
(X, ||| |||ε) to its dual (uniformly in ε).

Analogously to the continuous case, the minimizer uδ,δ
ε of Gδ

ε equals the
fourth component of the solution (µδ,δ

ε , θδ,δ
ε , νδ,δ

ε , uδ,δ
ε ) of the Galerkin discretiza-

tion of (7.3.6) with trial space Yδ × L2(I × ω)× L2(Ω)× Xδ. Thanks to (7.3.5),
for w ∈ Xδ we have

sup
0 �=(µ̃,θ̃,ν̃)∈Yδ×L2(I×ω)×L2(Ω)

(Bw)(µ̃) + 〈Γωw, θ̃〉L2(I×ω) + ε〈γ0w, ν̃〉L2(Ω)√
‖µ̃‖2

Y + ‖θ̃‖2
L2(I×ω)

+ ‖ν̃‖2
L2(Ω)

� |||w|||ε,

so that the so-called Ladyzhenskaya–Babuška–Brezzi condition is satisfied.
Therefore, the discretization of the saddle-point system is uniformly stable, so

‖µε−µδ,δ
ε ‖Y + ‖θε − θδ,δ

ε ‖L2(I×ω) + ‖νε − νδ,δ
ε ‖L2(Ω) + |||uε − uδ,δ

ε |||ε
� min

(µ̃,ũ)∈Yδ×Xδ
‖µε − µ̃‖Y + |||uε − ũ|||ε

≤ ‖µε‖Y + min
ũ∈Xδ

|||uε − ũ|||ε = ‖g − Buε‖Y′ + min
ũ∈Xδ

|||uε − ũ|||ε.

(7.3.7)
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From (7.2.7), we have

‖u − uδ,δ
ε ‖Xη � |||u − uδ,δ

ε |||ε ≤ |||u − uε|||ε + |||uε − uδ,δ
ε |||ε,

where, by (7.3.7),

|||uε − uδ,δ
ε |||ε � ‖g − Buε‖Y′ + |||u − uε|||ε + min

ũ∈Xδ
|||u − ũ|||ε,

� ‖g − Buε‖Y′ + |||u − uε|||ε + eδ
approx(u),

where we have used ||| |||ε � ‖ ‖X . By applying a triangle-inequality for the
norm

√
‖ · ‖2

Y′ + ‖ · ‖2
L2(I×ω)

+ ε2‖ · ‖2
L2(Ω)

, one infers that

‖g − Buε‖Y′ + |||u − uε|||ε ≤
√

G0(uε) +
√

Gε(u) +
√

Gε(uε) ≤ 3
√

Gε(u)

≤ 3(econs(u) + ε‖γ0u‖L2(Ω)).

The proof is completed by combining the last three displayed formulas.

Remark 7.3.10. Let (Xδ)δ∈∆ = (Xδn)n∈N be so that ∪nXδn = X and Xδn ⊂
Xδn+1 (∀n). Let (Yδn)n∈N be a corresponding sequence so that (7.3.5) is valid,
∪nYδn = Y and Yδn ⊂ Yδn+1 (∀n), and let (εn)n∈N be so that limn→∞ εn = 0.
Then limn→∞ G0(u

δn ,δn
εn ) = limn→∞ Gεn(u

δn ,δn
εn ) = G0(u0) = econs(u0). ♦

Proof. For convenience writing (δ, ε) = (δn, εn), for ξ ∈ {0, ε} we write

G0(u0)− Gξ(uδ,δ
ε ) = G0(u0)− Gξ(uε) + Gξ(uε)− Gξ(uδ,δ

ε ).

Since limn→∞ ‖u0 −uε‖X = 0 by Remark 7.3.7, and hence limn→∞ ‖µ0 −µε‖Y =
limn→∞ ‖B(u0 − uε)‖Y′ = 0, we have limn→∞ Gξ(uε) = G0(u0). As shown in
(7.3.7), it holds that

|Gξ(uε)− Gξ(uδ,δ
ε )| ≤ |||uε − uδ,δ

ε |||ε � min
(µ̃,ũ)∈Yδ×Xδ

‖µε − µ̃‖Y + |||uε − ũ|||ε

� min
(µ̃,ũ)∈Yδ×Xδ

‖µε − µ̃‖Y + ‖uε − ũ‖X

≤ ‖µ0 − µε‖Y + ‖u0 − uε‖X + min
(µ̃,ũ)∈Yδ×Xδ

‖µ0 − µ̃‖Y + ‖u0 − ũ‖X → 0

for n → ∞.

The above results hinge on the validity of (7.3.5). When A(t) ≡ A is a
spatial (second order elliptic) differential operator with constant coefficients on
a convex polytopal domain Ω, and Xδ is a lowest order finite element space
w.r.t. quasi-uniform prismatic elements, we will be able to verify in §7.5.2 the
inf-sup condition (7.3.5).

Since we are able to show (7.3.5) only under such restrictive conditions
on Ω and the trial spaces Xδ, we will consider in Sect. 7.4 a First Order System
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ε |||ε � min
(µ̃,ũ)∈Yδ×Xδ
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� min
(µ̃,ũ)∈Yδ×Xδ

‖µε − µ̃‖Y + ‖uε − ũ‖X

≤ ‖µ0 − µε‖Y + ‖u0 − uε‖X + min
(µ̃,ũ)∈Yδ×Xδ

‖µ0 − µ̃‖Y + ‖u0 − ũ‖X → 0

for n → ∞.

The above results hinge on the validity of (7.3.5). When A(t) ≡ A is a
spatial (second order elliptic) differential operator with constant coefficients on
a convex polytopal domain Ω, and Xδ is a lowest order finite element space
w.r.t. quasi-uniform prismatic elements, we will be able to verify in §7.5.2 the
inf-sup condition (7.3.5).

Since we are able to show (7.3.5) only under such restrictive conditions
on Ω and the trial spaces Xδ, we will consider in Sect. 7.4 a First Order System
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Least Squares formulation of the data assimilation problem, for which we show
a corresponding inf-sup condition in more general situations in §7.5.3.

Stability of the discretization, and hence (7.3.5), is in particular intimately
connected with a posteriori accuracy control. A well-known tool for establish-
ing (7.3.5) is the identification of suitable Fortin operators which also serve to
define appropriate notions of data oscillation as discussed next.

7.3.2 Fortin operators, error estimation, and data-oscillation

It is well-known that existence of uniformly bounded Fortin interpolators is a
sufficient condition for the inf-sup condition (7.3.5) to hold. In the next theorem
it is shown that existence of such interpolators is also a necessary condition,
and quantitative statements are provided.

Theorem 7.3.11. Let

Qδ ∈ L(Y, Y) with ran Qδ ⊂ Yδ and (BXδ)
(
(Id − Qδ)Y

)
= 0. (7.3.8)

Then γδ := inf{w∈Xδ : Bw �=0} sup0 �=µ∈Yδ
(Bw)(µ)

‖Bw‖Y′ ‖µ‖Y
≥ ‖Qδ‖−1

L(Y,Y).

Conversely, when γδ > 0, then there exists a Qδ as in (7.3.8), which is a projector,
and ‖Qδ‖L(Y,Y) ≤ 2 + 1/γδ.

Proof. If a Qδ as in (7.3.8) exists, then for w ∈ Xδ it holds that

‖Bw‖Y′ = sup
0 �=µ∈Y

(Bw)(µ)

‖µ‖Y
= sup

0 �=µ∈Y

(Bw)(Qδµ)

‖µ‖Y
≤ ‖Qδ‖L(Y,Y) sup

0 �=µδ∈Yδ

(Bw)(µ)

‖µ‖Y
,

or γδ ≥ ‖Qδ‖−1
L(Y,Y).

Now let γδ > 0. Equipping Xδ/ker B with ‖B · ‖(Yδ)′ , given µ ∈ Y consider
the problem: find (µδ, [wδ]) ∈ Yδ × Xδ/ker B that solves



[

R B
B′ 0

] [
µδ − µ

[wδ]

]


[
µ̃δ

[w̃δ]

]
= 0 ((µ̃δ, [w̃δ]) ∈ Yδ × Xδ/ker B). (7.3.9)

One verifies that Qδ := µ �→ µδ is a projector and satisfies (7.3.8), and so what
remains is to bound its norm.

Denoting by Iδ
Y : Yδ → Y and Iδ

X : Xδ/ker B → X/ker B the trivial embed-
dings, in operator language the above system reads as

[
(Iδ

Y)
′RIδ

Y (Iδ
Y)

′BIδ
X

(Iδ
X)

′B′ Iδ
Y 0

] [
µδ

[wδ]

]
=

[
(Iδ

Y)
′Rµ

(Iδ
X)

′B′µ

]
.

One verifies that Bδ := (Iδ
Y)

′BIδ
X : Xδ/ker B → (Yδ)′ is an isometry, and fur-

thermore that Rδ := (Iδ
Y)

′RIδ
Y : Yδ → (Yδ)′ is an isometric isomorphism.
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Therefore, the Schur complement Sδ := Bδ ′Rδ−1Bδ is an isometric isomor-
phism. From

µδ = Rδ−1[
(Iδ

Y)
′Rµ + BδSδ−1(

(Iδ
X)

′B′µ − Bδ ′Rδ−1
(Iδ

Y)
′Rµ

)]
,

‖(Iδ
Y)

′R‖L(Y,Yδ ′) ≤ 1, and

‖(Iδ
X)

′B′‖L(Y,(Xδ/ker B)′) = ‖BIδ‖L(Xδ/ker B,Y′)

= sup
{w∈Xδ : Bw �=0}

inf
0 �=µ∈Yδ

‖Bw‖Y′ ‖µ‖Y
(Bw)(µ)

= 1/γδ,

we conclude that ‖µδ‖Y ≤ (2 + 1/γδ)‖µ‖Y which completes the proof.

Lemma 7.3.12. Let (Xδ, Yδ)δ∈∆ ⊂ X × Y satisfy (7.3.5), and let (Qδ)δ∈∆ be a
corresponding family of uniformly bounded Fortin interpolators as in (7.3.8). With

eδ
osc(g) := ‖(Id − Qδ ′)g‖Y′2

one has for any ε ≥ 0 and w ∈ Xδ,
√

Gε(w) �
√

Gδ
ε (w) + eδ

osc(g).

Proof. Thanks to (Id − Qδ ′)BXδ = 0, the proof follows from

‖Bw − g‖Y′ ≤ ‖Qδ ′(Bw − g)‖Y′ + ‖(Id − Qδ ′)g‖Y′

≤ ‖Qδ‖L(Y,Y)‖Bw − g‖Yδ ′ + eδ
osc(g).

Together Proposition 7.3.3 and Lemma 7.3.12 show the following bound.

Corollary 7.3.13. In the situation of Lemma 7.3.12, one has for ε ≥ 0 and w ∈ Xδ,

‖uε − w‖Xη �
√

Gδ
ε (w) + eδ

osc(g).

Lemma 7.3.12 can also be used to compute an a posteriori upper bound,
modulo data-oscillation, for the minimal consistency error.

Corollary 7.3.14. Adhering to the setting in Lemma 7.3.12, one has for any w ∈ Xδ

econs(u0) �
√

Gδ
0(w) + eδ

osc(g).

Proof. The proof follows from econs(u0) =
√

G0(u0) ≤
√

G0(w) and an appli-
cation of Lemma 7.3.12.

2A similar data-oscillation term appears in [CDG14] within the derivation of a posteriori error
estimators for minimal residual methods w.r.t. a dual norm (as our norm on Y′).
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0 �=µ∈Yδ
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(Bw)(µ)
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we conclude that ‖µδ‖Y ≤ (2 + 1/γδ)‖µ‖Y which completes the proof.

Lemma 7.3.12. Let (Xδ, Yδ)δ∈∆ ⊂ X × Y satisfy (7.3.5), and let (Qδ)δ∈∆ be a
corresponding family of uniformly bounded Fortin interpolators as in (7.3.8). With
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osc(g) := ‖(Id − Qδ ′)g‖Y′2

one has for any ε ≥ 0 and w ∈ Xδ,
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ε (w) + eδ

osc(g).
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Corollary 7.3.14. Adhering to the setting in Lemma 7.3.12, one has for any w ∈ Xδ

econs(u0) �
√

Gδ
0(w) + eδ

osc(g).
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Using Prop. 7.3.4 or Theorem 7.3.9, this upper bound on econs(u0) narrows
the range for appropriate regularization parameters balancing accuracy of the
state estimator and the condition of corresponding discrete systems.

In the light of the error bound from Theorem 7.3.9 the above observations
hint at further desirable properties of the family (Yδ)δ∈∆ associated with given
trial spaces (Xδ)δ∈∆. Namely, they should permit the construction of uni-
formly bounded Fortin interpolators Qδ, as in (7.3.8), for which in addition,

eδ
osc(g) = O(eδ

approx(u)), or even eδ
osc(g) = o(eδ

approx(u)) (7.3.10)

hold for sufficiently smooth g. For the model case mentioned at the end of
§7.3.1, in §7.5.2 we construct (Yδ)δ∈∆ satisfying both (7.3.8) and (7.3.10).

7.3.3 Comparisons with the Forward Problem

To show that the solution of the least squares problem

arg min
w∈Xδ

‖Bw − h‖2
Yδ ′ + ‖γ0w − z0‖2

L2(Ω)

is a quasi-best approximation from Xδ to the solution of the initial-value prob-
lem (7.2.3), the corresponding inf-sup condition reads as

inf
δ∈∆

inf
0 �=w∈Xδ

sup
0 �=(µ,z)∈Yδ×L2(Ω)

(Bw)(µ) + 〈γ0w, z〉L2(Ω)

‖w‖X(‖µ‖Y + ‖z‖L2(Ω))
> 0. (7.3.11)

The inf-sup condition (7.3.5) which is relevant for our data-assimilation
problem implies (7.3.11). The converse is true when γ0w = 0 for all w ∈ Xδ. If
there is no reason to assume that the target solution u of our data-assimilation
problem vanishes at t = 0, then however this is not a relevant case.

As shown in Chapter 4, sufficient conditions for (7.3.11) are Xδ ⊂ Yδ and

inf
δ∈∆

inf
0 �=w∈Xδ

sup
0 �=µ∈Yδ

(∂tw)(µ)

‖∂tw‖Y′ ‖µ‖Y
> 0

This latter inf-sup condition can be realized in far more general discretization
settings than we are able to show (7.3.5).

Even for the initial-value problem, a benefit of having (7.3.5), i.e. (7.3.8), is
that it gives rise to the efficient and, up to a data-oscillation term, reliable a
posteriori error bound

√
‖Bw − h‖2

Yδ ′ + ‖γ0w − z0‖2
L2(Ω)

�

‖z − w‖X �
√
‖Bw − h‖2

Yδ ′ + ‖γ0w − z0‖2
L2(Ω)

+ oscδ(h).

where z is the solution of (7.2.3), and w is any element of Xδ.
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7.3.4 Numerical Solution of the Discrete Problem

As in Remark 7.3.8, by eliminating the second and third variable from the
Galerkin discretization of (7.3.6) with trial space Yδ × L2(I ×ω)× L2(Ω)×Xδ,
the minimizer uδ,δ

ε of Gδ
ε over Xδ can be found as the second component of the

solution (µδ,δ
ε , uδ,δ

ε ) ∈ Yδ × Xδ of


[

R B
B′ −(Γ′

ωΓω + ε2γ′
0γ0)

] [
µδ,δ

ε

uδ,δ
ε

]
−

[
g

−Γ′
ω f

]


[
µ̃
ũ

]
= 0 ((µ̃, ũ) ∈ Yδ ×Xδ).

To solve this system, we need to select bases. Let ΦYδ
= {φYδ

1 , φYδ

2 , . . .} and
ΦXδ

= {φXδ

1 , φXδ

2 , . . .} denote ordered bases, formally viewed as column vec-
tors, for Yδ and Xδ. Write µδ,δ

ε = (µδ,δ
ε )�ΦYδ

, uδ,δ
ε = (uδ,δ

ε )�ΦXδ
, and define the

vectors gδ := g(ΦYδ
), f δ

ω := f (ΦXδ |I×ω), the matrices Rδ := (RΦYδ
)(ΦYδ

) =

[〈φYδ

j , φYδ

i 〉Y]ij, Bδ := (BΦXδ
)(ΦYδ

), Mδ
Γω

:= 〈ΓωΦXδ
, ΓωΦXδ〉L2(I×ω), and

Mδ
γ0

:= 〈γ0ΦXδ
, γ0ΦXδ〉L2(Ω). Then (µδ,δ

ε , uδ,δ
ε ) is the solution of

[
Rδ Bδ

Bδ� −(Mδ
Γω

+ ε2Mδ
γ0
)

] [
µδ,δ

ε

uδ,δ
ε

]
=

[
gδ

− f δ
ω

]
. (7.3.12)

Remark 7.3.15. Using that ‖Buδ,δ
ε − g‖Yδ ′ = ‖µδ,δ

ε ‖Y, one verifies that for any
ε̃ ≥ 0, the a posteriori estimate from Corollary 7.3.13 for the deviation of uδ,δ

ε

from uε̃ can be evaluated as

Gδ
ε̃ (u

δ,δ
ε ) =〈Rδµδ,δ

ε , µδ,δ
ε 〉+ 〈Mδ

Γω
uδ,δ

ε , uδ,δ
ε 〉

− 2〈uδ,δ
ε , f δ

ω〉+ ‖ f ‖2
L2(I×ω) + ε̃2〈Mδ

γ0
uδ,δ

ε , uδ,δ
ε 〉.

This will later be used in the numerical experiments. ♦

For spatial domains with dimension d > 1, the realization of any reason-
able accuracy gives rise to system sizes that require resorting to an iterative
solver. When employing a discretization based on a partition of the time-space
cylinder into “time slabs”, the availability of a uniformly spectrally equivalent
preconditioner Kδ

Y � (Rδ)−1 that can be applied at linear cost, is actually a
mild assumption.

All properties we have derived for the solution of (7.3.12) remain valid
when we replace Rδ in this system by (Kδ

Y)
−1, because this replacement amounts

to replacing the Y-norm on Yδ by an equivalent norm. Therefore, despite this
replacement, we continue to denote the solution vector and corresponding
function in Xδ by uδ,δ

ε and uδ,δ
ε = (uδ,δ

ε )�ΦXδ
, respectively.

To approximate uδ,δ
ε we apply Preconditioned Conjugate Gradients to the

Schur complement equation

(Bδ�Kδ
YBδ + Mδ

Γω
+ ε2Mδ

γ0
)︸ ︷︷ ︸

Gδ
ε :=

uδ,δ
ε = f δ

ω + Bδ�Kδ
Ygδ

︸ ︷︷ ︸
hδ :=

. (7.3.13)
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
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We use a preconditioner Kδ
X that is the representation of a uniformly bound-

edly invertible operator Xδ ′ → Xδ, with Xδ and Xδ ′ being equipped with
ΦXδ

and the corresponding dual basis. Again, under the time-slab restriction,
such preconditioners Kδ

X of wavelet-in-time, multigrid-in-space type, that can
be applied at linear cost, have been constructed in [AT15, SvVW21]. Assum-
ing (7.3.5) (even (7.3.11) suffices), it follows from (7.3.3) that λmax(Kδ

XGδ
ε ) �

max(1, ε2) and λmin(Kδ
XGδ

ε ) � ε2. Consequently, the number of iterations that
is sufficient to reduce an initial algebraic error by a factor ρ in the ‖(Gδ

ε )
1
2 · ‖-

norm3 can be bounded by � ε−1 log ρ−1.
To derive a stopping criterion for the iteration, for ũδ,δ

ε ≈ uδ,δ
ε let e := uδ,δ

ε −
ũδ,δ

ε , r := hδ −Gδ
ε ũδ,δ

ε , ũδ,δ
ε := (ũδ,δ

ε )�ΦXδ
, and the algebraic error e := uδ,δ

ε − ũδ,δ
ε .

Then, from (7.3.5) we have that

Gδ
0(e) ≤ ‖Be‖2

Yδ ′ + ‖Γωe‖2
L2(I×ω) + ε2‖γ0e‖2

L2(Ω)

=
〈
(Bδ�Rδ−1

Bδ + Mδ
Γω

+ ε2Mδ
γ0
)e, e

〉

�
〈
(Bδ�Kδ

YBδ + Mδ
Γω

+ ε2Mδ
γ0
)e, e

〉
= 〈Gδ

ε e, e〉.

Moreover, for e �= 0, we have4

max(1, ε2)−1 � λmax(Kδ
XGδ

ε )
−1 ≤ 〈Gδ

ε e, e〉
〈r, Kδ

Xr〉
≤ λmin(Kδ

XGδ
ε )

−1 � ε−2. (7.3.14)

Taking u0 as the reference state, the iteration should ideally be stopped
as soon as the algebraic error is dominated by ‖u0 − uδ,δ

ε ‖Xη . Ignoring data-

oscillation, as an indication that ũδ,δ
ε is indeed close enough to uδ,δ

ε we accept
that the respective upper bounds from Corollary 7.3.13 are close enough, i.e.,√

Gδ
0(ũ

δ,δ
ε ) satisfies

√
Gδ

0(ũ
δ,δ
ε ) �

√
Gδ

0(u
δ,δ
ε ). Using

√
Gδ

0(ũ
δ,δ
ε ) ≤

√
Gδ

0(u
δ,δ
ε )+√

Gδ
0(e), and the above bound for Gδ

0(e), we conclude that for the latter to hold
true it suffices when for a sufficiently small constant µ > 0,

〈r, Kδ
Xr〉 ≤ µε2Gδ

0(ũ
δ,δ
ε ).

Since we expect (7.3.14) to be pessimistic, we simply take µ = 1 and thus will
stop the iterative solver as soon as 〈r, Kδ

Xr〉 ≤ ε2Gδ
0(ũ

δ,δ
ε ).

7.4 First order system least squares (FOSLS) form

In view of the difficulty to demonstrate the inf-sup condition (7.3.5) in general
settings for the second order weak formulation of the data assimilation prob-

3A reduction of the desired factor ρ can be achieved by applying a nested iteration approach.
4Instead of the possibly very pessimistic upper bound in (7.3.14), that moreover requires es-

timating λmin(Kδ
X Gδ

ε ), one may consult [GM97, MT13, AK01] for methods to accurately estimate
〈Gδ

ε e, e〉 using data that is obtained in the PCG iteration.
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lem, we consider in this section a regularized FOSLS formulation. Its analysis
builds to a large extent on the concepts used in Section 7.3.

For b ∈ L∞(I × Ω)d, c ∈ L∞(I × Ω), and uniformly positive definite K =
K� ∈ L∞(I × Ω)d×d, we consider a(t; θ, ζ) as in (7.2.1)–(7.2.2) of the form

a(t; θ, ζ) =
∫

Ω
K∇θ · ∇ζ dx + (b · ∇θ + cθ)ζ dx. (7.4.1)

Adhering to the definitions of the spaces X, Y from the previous sections, we
abbreviate Z := L2(I; L2(Ω)d) and define the operator C ∈ L(X × Z, Y′) as

C(w, q)(v) :=
∫

I

∫

Ω
∂twv + q · ∇xv + (b · ∇xw + cw)v dx dt. (7.4.2)

We define the corresponding least squares functional Hε : X × Z → R as

Hε(w,q) :=

‖C(w, q)− g‖2
Y′ + ‖q − K∇xw‖2

Z + ‖Γωw − f ‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω).

The following simple observations allow us to tie the analysis of the corre-
sponding minimization problem to the the concepts of the previous section.

Remark 7.4.1. One has for any w ∈ X

C(w, K∇xw)(v) = (Bw)(v), v ∈ Y,

and more generally, for any (w, q, �) ∈ X × Z × Y′,

C(w, q)− �(v) = (Bw)(v)− �(v) +
∫

I×Ω
(q − K∇xw) · ∇xv dx dt.

Hence

‖Bw − �‖Y′ ≤ ‖C(w, q)− �‖Y′ + ‖v �→
∫

I

∫

Ω
(q − K∇xw) · ∇xv dx dt‖Y′

≤ ‖C(w, q)− �‖Y′ + ‖q − K∇xw‖Z,
(7.4.3)

which, with � = g in particular implies that

Hε(w, K∇xw) = Gε(w) ≤ 2Hε(w, q), for any q ∈ Z. ♦ (7.4.4)

Using (7.4.3), one infers from (7.3.3) that

ε2�
‖C(w, q)‖2

Y′+‖q−K∇xw‖2
Z+‖Γωw‖2

L2(I×ω)+ε2‖γ0w‖2
L2(Ω)

‖w‖2
X + ‖q‖2

Z
�max(1, ε2).

By an application of the Lax–Milgram Lemma, we conclude that for ε > 0 the
minimizer (ūε, pε) over X × Z of Hε exists uniquely, and satisfies

‖ūε‖X + ‖pε‖Z � max(ε−1, 1)(‖g‖Y′ + ‖ f ‖L2(I×ω)),
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as well as, for any reference state u ∈ X,

‖u − ūε‖X + ‖K∇u − pε‖Z � max(ε−1, 1)
(

ε‖γ0u‖L2(Ω) + econs(u)
)

.

Again, using (7.2.7), much better bounds will be established for ‖u − ūε‖Xη .

Remark 7.4.2. Also for ε = 0, the minimizer (ū0, p0) exists uniquely. Indeed,
let there be two minimizers of H0 over X × Z. Then their difference (e0, e0)
is a homogeneous solution of the corresponding Euler–Lagrange equations,
so ‖C(e0, e0)‖2

Y′ + ‖e0 − K∇xe0‖2
Z + ‖Γωe0‖2

L2(I×ω) = 0, and so ‖Be0‖2
Y′ +

‖Γωe0‖2
L2(I×ω) = 0, which we know implies e0 = 0, and so e0 = 0. ♦

Proposition 7.4.3. For any w ∈ X, q ∈ Z one has

‖u − w‖Xη �
√

H0(w, q) + econs(u).

In particular, for ε ≥ 0, we have the a posteriori bound

‖ūε − w‖Xη �
√

Hε(w, q).

Proof. Lemma 7.3.2 gives ‖u − w‖Xη �
√

G0(w) + econs(u), and G0(w) ≤
2H0(w, q) by (7.4.4). The second result follows from

√
H0(w, q) + econs(ūε) ≤

√
Hε(w, q) +

√
Gε(ūε)

≤
√

Hε(w, q) +
√

2
√

Hε(ūε, pε) ≤ (1 +
√

2)
√

Hε(w, q).

The same arguments used to show for ε ≥ 0 existence and uniqueness of
the minimizer (ūε, pε) of Hε over X × Z show for any closed subspace Xδ ×
Zδ ⊂ X × Z uniqueness of the minimizer (uδ

ε , pδ
ε ) of Hε over Xδ × Zδ. An a

priori bound for ‖u − ūδ
ε‖Xη for an arbitrary reference state u ∈ X is given in

the next proposition.

Proposition 7.4.4. It holds that

‖u − ūδ
ε‖Xη � econs(u) + ēδ

approx(u) + ε‖γ0u‖L2(Ω),

where ēδ
approx(u) := min(w,q)∈Xδ×Zδ ‖u − w‖X + ‖K∇xu − q‖Z.

Proof. Let PXδ and PZδ denote the X- respectively Z-orthogonal projector onto
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Xδ respectively Zδ. Then we have
√

Hε(PXδ u, PZδ K∇xu)

≤ ‖C(PXδ u, PZδ K∇xu)− C(u, K∇xu) + Bu − g‖Y′

+ ‖PZδ K∇xu − K∇xu + K∇xu − K∇xPXδ u‖Z

+ ‖Γω(PXδ u − u) + Γωu − f ‖L2(I×ω) + ε‖γ0PXδ u‖L2(Ω)

≤ ‖C(PXδ u − u, PZδ K∇xu − K∇xu)‖Y′ + ‖Bu − g‖Y′

+ ‖PZδ K∇xu − K∇xu‖Z + ‖K∇x(u − PXδ u)‖Z

+ ‖Γω(PXδ u − u)‖L2(I×ω) + ‖Γωu − f ‖L2(I×ω)

+ ε‖γ0(u − PXδ u)‖L2(Ω) + ε‖γ0u‖L2(Ω)

� ε‖γ0u‖L2(Ω) + econs(u) + ēδ
approx(u),

where we have used C ∈ L(X × Z, Y′), K∇x ∈ L(Z, X), and (7.2.4). Since by

Proposition 7.4.3, ‖u − ūδ
ε‖Xη �

√
Hε(ūδ

ε , pδ
ε ) + econs(u) and since, by defini-

tion, Hε(ūδ
ε , pδ

ε ) ≤ Hε(PXδ u, PZδ K∇xu), the proof is completed.

Since the definition of Hε incorporates the dual norm ‖ · ‖Y′ neither its
minimizer (ūδ

ε , pδ
ε ) over Xδ × Zδ can be computed, nor the a posteriori error

bound from Proposition 7.4.3 can be evaluated. In the next subsection both
problems will be tackled by discretizing this dual norm.

Remark 7.4.5. Our FOSLS formulation of the data-assimilation problem has
been based on the fact that a well-posed FOSLS formulation of the initial-value
problem (7.2.3), with (A(t)θ)(ζ) = a(t; θ, ζ) of the form (7.4.1), is given by

arg min
(w,q)∈X×Z

‖C(w, q)− g‖2
Y′ + ‖q − K∇xw‖2

Z + ‖γ0w − z0‖2
L2(Ω),

see [RS18b, Lem. 2.3 and Rem. 2.4]. Notice that with well-posedness we mean
that (w, q) �→ (C(w, q), q − K∇xw, γ0w) ∈ Lis(X × Z, Y′ × Z × L2(Ω)). In
the recent work [FK21] it was shown that an alternative well-posed FOSLS
formulation for this problem5 is given by

arg min
{(w,q)∈X×Z :

∂tw−divx q∈L2(I;L2(Ω))}

‖C(w, q)− g‖2
L2(I;L2(Ω)) + ‖q − K∇xw‖2

Z + ‖γ0w − z0‖2
L2(Ω).

Applying the latter formulation to the data-assimilation setting would offer
the important advantage that there is no need to discretize the dual norm
‖ ‖Y′ . On the other hand, error estimates for such a formulation would be
based on the estimate ‖w‖Xη � ‖Γωw‖L2(I×ω) + ‖Bw‖L2(I;L2(Ω)), which is a
weaker version of the Carleman estimate ‖w‖Xη � ‖Γωw‖L2(I×ω) + ‖Bw‖Y′ .

5The result given in [FK21] for the heat equation immediately generalizes to the more gen-
eral parabolic problem under consideration, see [GS21]. Surjectivity of (w, q) �→ (C(w, q), q −
K∇xw, γ0w) has also been shown in the latter work.
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Furthermore, in view of an iterative solution process, a likely non-trivial issue
is the development of optimal preconditioners for the space {(w, q) ∈ X ×
Z : ∂tw − divx q ∈ L2(I; L2(Ω))} equipped with the graph norm. ♦

7.4.1 Discretizing the dual norm

Given a family of finite dimensional subspaces (Xδ × Zδ)δ∈∆ of X × Z, for
each δ ∈ ∆ we seek a finite dimensional subspace Ȳδ ⊂ Y, with dim Ȳδ �
dim Xδ + dim Zδ, such that in analogy to (7.3.5)

inf
δ∈∆

inf
0 �=(w,q)∈Xδ×Zδ

sup
0 �=µ∈Ȳδ

C(w, q)(µ)
‖C(w, q)‖Y′ ‖µ‖Y

> 0. (7.4.5)

Theorem 7.4.6. Let (7.4.5) be valid. For (ūδ,δ
ε , pδ,δ

ε ) denoting the (unique) minimizer
over Xδ × Zδ of

Hδ
ε := (w, q) �→

‖C(w, q)− g‖2
Ȳδ′ + ‖q − K∇xw‖2

Z + ‖Γωw − f ‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω),

it holds that

‖u − ūδ,δ
ε ‖Xη � econs(u) + ēδ

approx(u) + ε‖γ0u‖X .

Proof. Equipping X × Z with “energy”-norm

||||(w, q)||||ε :=
√
‖C(w, q)‖2

Y′+‖q−K∇xu‖2
Z+‖Γωw‖2

L2(I×ω)
+ε2‖γ0w‖2

L2(Ω)
,

analogously to the proof of Theorem 7.3.9, in particular following the same
reasoning that leads to (7.3.7), one concludes that

||||(ūε, pε)− (ūδ,δ
ε , pδ,δ

ε )||||ε � ‖g − C(ūε, pε)‖Y′

+ min
(w,q)∈Xδ×Zδ

||||(ūε, pε)− (w, q)||||ε. (7.4.6)

From (7.2.7), the triangle-inequality, and (7.4.3) we have

‖u − ūδ,δ
ε ‖Xη � |||u − ūε|||ε + |||ūε − ūδ,δ

ε |||ε
≤

√
2(||||(u, K∇xu)− (ūε, pε)||||ε + ||||(ūε, pε)− (ūδ,δ

ε , pδ,δ
ε )||||ε)

From (7.4.6) one infers

||||(ūε, pε)−(ūδ,δ
ε , pδ,δ

ε )||||ε
� ‖g − C(ūε, pε)‖Y′ + ||||(u, K∇xu)− (ūε, pε)||||ε + ēapprox(u),

where we have used that |||| ||||ε � ‖ ‖X×Z. An application of a triangle-inequality
for the norm

√
‖ ‖2

Y′ + ‖ ‖2
Z + ‖ ‖2

L2(I×ω)
+ ε2‖ ‖2

L2(Ω)
gives

‖g−C(ūε, pε)‖Y′ + ||||(u, K∇xu)− (ūε, pε)||||ε

≤
√

H0(ūε, pε) +
√

Hε(u, K∇xu) +
√

Hε(ūε, pε)

≤ 3
√

Hε(u, K∇xu) = 3
√

Gε(u) ≤ 3(econs(u) + ε‖γ0u‖L2(Ω)).
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Combining the last three displayed fomulas completes the proof.

Similar to Sect. 7.3.2, a necessary and sufficient condition for (7.4.5) to hold
is the existence of a family of uniformly bounded Fortin interpolators, i.e.,

Q̄δ ∈ L(Y, Ȳδ), (C(Xδ × Zδ))
(
(Id − Q̄δ)Y

)
= 0, sup

δ∈∆
‖Q̄δ‖L(Y,Y) < ∞.

(7.4.7)
Similar to Corollary 7.3.13, we have the following a posteriori error bound.

Proposition 7.4.7. Let (Xδ, Zδ, Ȳδ)δ∈∆ ⊂ X×Z×Y satisfy (7.4.5), and let (Q̄δ)δ∈∆
be a corresponding family of Fortin interpolators as in (7.4.7). Then with

ēδ
osc(g) := ‖(Id − Q̄δ′)g‖Y′ ,

for any (w, q) ∈ Xδ × Zδ it holds that

‖ūε − w‖Xη �
√

Hδ
ε (w, q) + ēδ

osc(g).

Proof. From ‖C(w, q)− g‖Y′ ≤ ‖Q̄δ‖L(Y,Y)‖C(w, q)− g‖Ȳδ′ + ēδ
osc(g) and Propo-

sition 7.4.3 the proof follows.

Bearing the a priori error bound from Theorem 7.4.6 in mind, this result
shows that a desirable additional property of the sequence of spaces (Ȳδ)δ∈∆,
associated with a given sequence of trial spaces (Xδ × Zδ)δ∈∆, gives rise to
Fortin interpolators Q̄δ, as in (7.4.7), warranting for sufficiently smooth g

ēδ
osc(g) = O(ēδ

approx(u)), or even ēδ
osc(g) = o(ēδ

approx)(u).

We conclude by remarking that, in analogy to the second order formula-
tion, condition (7.4.5) is sufficient for the well-posedness of the corresponding
forward problem, and gives in addition an a posteriori error bound.

Remark. Concerning the initial-value problem (7.2.3), if (7.4.5) holds, then

arg min
(w,q)∈Xδ×Zδ

‖C(w, q)− h‖2
Ȳδ′ + ‖q − K∇xw‖2

Z + ‖γ0w − z0‖2
L2(Ω)

is a quasi-best approximation to (z, K∇xz) ∈ X × Z from Xδ × Zδ, and for any
(w, q) ∈ Xδ × Zδ, we have

√
‖C(w, q)− h‖2

Ȳδ′ + ‖q − K∇xw‖2
Z + ‖γ0w − z0‖2

L2(Ω)

� ‖z − w‖X + ‖K∇xz − q‖Z

�
√
‖C(w, q)− h‖2

Ȳδ′ + ‖q − K∇xw‖2
Z + ‖γ0w − z0‖2

L2(Ω)
+ ēδ

osc(h). ♦
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7.4.2 Numerical Solution of the Discrete Problem

Recalling the Riesz operator R ∈ Lis(Y, Y′), we can compute ūδ,δ
ε as the second

component of the solution (λδ,δ
ε , ūδ,δ

ε , pδ,δ
ε ) ∈ Ȳδ × Xδ × Zδ of the linear system







R Cu Cp
C′

u −(∇′
xK2∇x+ Γ′

ωΓω+ε2γ′
0γ0) ∇′

xK
C′

p K∇x −Id







λδ,δ
ε

ūδ,δ
ε

pδ,δ
ε


−




g
−Γ′

ω f
0










λ̃
ũ
p̃


 = 0,

((λ̃, ũ, p̃) ∈ Ȳδ × Xδ × Zδ), where for C(·, ·) defined by (7.4.2), (Cuw)(v) :=
C(w, 0)(v) and (Cpq)(v) := C(0, q)(v).

With ordered bases ΦȲδ
, ΦXδ

, and ΦZδ
for Ȳδ, Xδ, and Zδ, and the known

or obvious notations λδ,δ
ε , ūδ,δ

ε , pδ,δ
ε , ḡδ = g(ΦȲδ

), f δ
ω, Rδ, Cδ

u, Cδ
p, Mδ

Γω
, and

Mδ
γ0

, and Jδ := 〈KΦZδ
,∇xΦXδ〉L2(Ω)d , Lδ := 〈K∇xΦXδ

, K∇xΦXδ〉L2(Ω)d , and

Nδ := 〈ΦZδ
, ΦZδ〉L2(Ω)d , we find (λδ,δ

ε , ūδ,δ
ε , pδ,δ

ε ) as the solution of




Rδ Cδ
u Cδ

p

Cδ
u
� −(Lδ + Mδ

Γω
+ ε2Mδ

γ0
) Jδ

Cδ
p
�

Jδ� −Nδ







λδ,δ
ε

ūδ,δ
ε

pδ,δ
ε


 =




ḡδ

− f δ
ω

0


 . (7.4.8)

Similar to Sect. 7.3.4, one expresses the a posteriori error bound
√

Hε(ūδ,δ
ε , pδ,δ

ε )

(modulo ēδ
osc(g)) in terms of the vectors λδ,δ

ε , ūδ,δ
ε , and pδ,δ

ε .
As in Sect. 7.3.4, in the above system we replace Rδ by a uniform precon-

ditioner (Kδ
Y)

−1, whilst keeping the notation for the resulting solution vector
and corresponding function in Ȳδ × Xδ × Zδ, and apply Preconditioned Con-
jugate Gradients to the symmetric positive definite Schur complement system

Hδ
ε

[
ūδ,δ

ε

pδ,δ
ε

]
=

[
f δ

ω + C�
u Kδ

Y ḡδ

C�
p Kδ

Y ḡδ

]
(7.4.9)

where

Hδ
ε :=


Lδ + Mδ

Γω
+ ε2Mδ

γ0
+ Cδ

u
�

Kδ
YCδ

u Cδ
u
�

Kδ
YCδ

p − Jδ

Cδ
p
�

Kδ
YCδ

u − Jδ� Nδ + Cδ
p
�

Kδ
YCδ

p


 .

With Kδ
X from Sect. 7.3.4, and Kδ

Z being spectrally equivalent to the inverse of

the mass matrix of ΦZδ
, the eigenvalues of the preconditioned system

[
Kδ

X 0
0 Kδ

Z

]
Hδ

ε

are bounded from above and below, up to constant factors, by max(1, ε2) and
ε2, respectively.

For ũδ,δ
ε ≈ uδ,δ

ε , p̃δ,δ
ε ≈ pδ,δ

ε , with eu := uδ,δ
ε − ũδ,δ

ε , ep := pδ,δ
ε − p̃δ,δ

ε , eu :=
(eu)�ΦXδ

, ep := (ep)�ΦZδ
, we apply (7.2.7) and the arguments from the proof
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of Proposition 7.4.3 to obtain

‖eu‖2
Xη

� ‖Γωeu‖2
L2(I×ω)+‖Beu‖2

Y′

≤ ‖Γωeu‖2
L2(I×ω)+‖C(eu, ep)‖2

Y′+‖ep − K∇xeu‖2
X

� ‖Γωeu‖2
L2(I×ω)+‖C(eu, ep)‖2

Ȳδ′+‖ep − K∇xeu‖2
X

≤ ‖Γωeu‖2
L2(I×ω)+‖C(eu, ep)‖2

Ȳδ′+‖ep − K∇xeu‖2
X+ε2‖γ0eu‖2

L2(ω)

�
〈

Hδ
ε

[
eu
ep

]
,

[
eu
ep

]〉
,

where the last “�”-symbol reads as an equality for (Kδ
Y)

−1 = Rδ.

For the residuals

[
ru
rp

]
:=

[
f δ

ω + C�
u Kδ

Y ḡδ

C�
p Kδ

Y ḡδ

]
− Hδ

ε

[
eu
ep

]
it then holds that

max(1, ε2)−1

〈[
ru
rp

]
,

[
Kδ

Xru
Kδ

Zrp

]〉
�

〈
Hδ

ε

[
eu
ep

]
,

[
eu
ep

]〉
� ε−2

〈[
ru
rp

]
,

[
Kδ

Xru
Kδ

Zrp

]〉
,

uniformly in δ.

Remark 7.4.8. A reasonable stopping criterion can be determined by the same
reasoning as used in Section 7.3.4. Ignoring again data oscillation we use the
a posteriori bound from Proposition 7.4.7 to see whether the pair (ũδ,δ

ε , p̃δ,δ
ε ) is

sufficiently close to (uδ,δ
0 , pδ,δ

0 ). Specifically, we stop the iteration as soon as

〈[
ru
rp

]
,

[
Kδ

Xru
Kδ

Zrp

]〉
≤ ε2Hδ

0(ũ
δ,δ
ε , p̃δ,δ

ε ). ♦

7.5 Construction of a suitable Fortin interpolator

The spaces Xδ and Yδ, or Xδ, Zδ and Ȳδ, that we are going to employ, will be fi-
nite element spaces w.r.t. a partition of the time-space cylinder into ‘time slabs’
with each time-slab being partitioned into prismatic elements. As a prepara-
tion for the derivation of a suitable Fortin interpolator for both the standard
second order formulation from §7.3 and the first order order formulation from
§7.4, we start with constructing certain biorthogonal projectors acting on the
spatial domain.

7.5.1 Construction of auxiliary biorthogonal projectors

Let (T δ)δ∈∆, (T δ
S )δ∈∆ be a families of conforming, uniformly shape regular

partitions of Ω ⊂ Rd into, say, closed d-simplices, where T δ
S is a refinement

of T δ (denoted by T δ ≺ T δ
S ) of some fixed maximal depth in the sense that
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nite element spaces w.r.t. a partition of the time-space cylinder into ‘time slabs’
with each time-slab being partitioned into prismatic elements. As a prepara-
tion for the derivation of a suitable Fortin interpolator for both the standard
second order formulation from §7.3 and the first order order formulation from
§7.4, we start with constructing certain biorthogonal projectors acting on the
spatial domain.

7.5.1 Construction of auxiliary biorthogonal projectors

Let (T δ)δ∈∆, (T δ
S )δ∈∆ be a families of conforming, uniformly shape regular

partitions of Ω ⊂ Rd into, say, closed d-simplices, where T δ
S is a refinement

of T δ (denoted by T δ ≺ T δ
S ) of some fixed maximal depth in the sense that
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|T| � |T′| for T δ
S � T ⊂ T′ ∈ T δ. Thus, one still has dim T δ

S � dim T δ. On
the other hand, setting

σ := sup
δ∈∆

sup
T′∈T δ

sup
{T∈T δ

S : T⊂T′}

|T|
|T′ | ,

we assume that σ is sufficiently small, so that refinement is sufficiently fine.
Thanks to the conformity and the uniform shape regularity, for d > 1 we

know that adjacent T, T′ ∈ T δ (or T δ
S ) with T ∩ T′ �= ∅ have uniformly com-

parable sizes. For d = 1, we impose this uniform ‘K-mesh property’ explicitly.
Given a conforming partition T of Ω into closed d-simplices, we define

S−1,q
T as the space of all piecewise polynomials of degree q w.r.t. T , and for

q ≥ 1, set S0,q
T ,0 := S−1,q

T ∩ H1
0(Ω). With ∂T we denote the mesh skeleton

∪{T∈T }∂T. Next we construct projectors whose range is included in a con-
forming finite element space of prescribed degree on the refined partition and
which vanish on the skeleton of the coarse partition. Moreover, the range of
their adjoints contains all piecewise polynomials of the same degree on the
coarse partition, as specified next.

Lemma 7.5.1. Let q ≥ 1. Then, for a sufficiently small, but fixed σ there exists a
family of projectors (Pδ

q )δ∈∆ with

ran Pδ
q
′ ⊇ S−1,q

T δ , ran Pδ
q ⊆ {w ∈ S0,q

T δ
S ,0

: w|∂T δ = 0}, (7.5.1)

‖Pδ
q w‖L2(T′) � ‖w‖L2(T′) (T′ ∈ T δ, w ∈ L2(Ω)). (7.5.2)

Proof. Let T′ ∈ T δ. Given p ∈ Pq(T′), let pS ∈ H1
0(T

′) denote its continuous
piecewise polynomial interpolant of degree q w.r.t. to the partition T δ

S |T′ using
the canonical selection of the interpolation points, where on ∂T′ the interpola-
tion values are replaced by zeros.

Obviously, p and pS coincide on each T ∈ T δ
S |T′ for which T ∩ ∂T′ = ∅.

Now consider T ∈ T δ
S |T′ with T ∩ ∂T′ �= ∅. Equivalence of norms on finite

dimensional spaces, and standard homogeneity arguments show that

‖p − pS‖L2(T) � |T|
1
2 ‖p − pS‖L∞(T) � |T|

1
2 ‖p‖L∞(T′) � |T|

1
2 |T′|−

1
2 ‖p‖L2(T′).

Using the uniform shape regularity of T δ
S and the definition of σ, we arrive at

‖p − pS‖2
L2(T′) = ∑

{T∈T δ
S |T′ : T∩∂T′ �=∅}

‖p − pS‖2
L2(T)

� σ1/d‖p‖2
L2(T′).

From this closeness of p and pS, one infers that for σ sufficiently small,

inf
0 �=p∈Pq(T′)

sup
0 �= p̃∈S0,q

T δ
S ,0

∩H1
0 (T

′)

〈p, p̃〉L2(T′)

‖p‖L2(T′)‖ p̃‖L2(T′)
� 1, (7.5.3)
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which implies there is a (uniform) L2(T′)-Riesz collection of functions in S0,q
T δ

S ,0
∩

H1
0(T

′) that is biorthogonal to the L2(T)-normalized nodal basis for Pq(T′).
Taking Pδ

q
′ restricted to T′ to be the corresponding biorthogonal projector

onto Pq(T′), it has all three stated properties.

As shown in the above lemma, the projectors Pδ
q exist when T δ

S is a refine-
ment of T δ of sufficient fixed depth. Hence, the size of the resulting linear sys-
tems remains uniformly proportional to dim Xδ, with a proportionality factor
depending on σ. In applications, one needs to know which depth suffices. The
usual procedure to construct a partition T δ of the closure of a (polytopal) do-
main Ω is to recursively apply some fixed ‘affine equivalent’ refinement rule
to each simplex in an initial (conforming) partition of Ω. With this approach,
the partition of each T′ ∈ T δ formed by its ‘descendants’ of some fixed gener-
ation � ≥ 1 falls into a fixed finite number of classes T�,1(T′), . . . , T�,N(�)(T′).
By using that the left-hand side of (7.5.3) is invariant under affine transforma-
tions, fixing a reference d-simplex T′ and a refinement procedure of the above
type, given a degree q and a generation �, it suffices to check whether

α(q, �) := inf
1≤j≤N(�)

inf
0 �=p∈Pq(T′)

sup
0 �= p̃∈H1

0 (T
′)∩∏T∈T�,j(T

′) Pq(T)

〈p, p̃〉L2(T′)

‖p‖L2(T′)‖ p̃‖L2(T′)
> 0,

Remark 7.5.2. For d ∈ {1, 2, 3}, q ∈ {1, 2, 3, 4}, and both newest-vertex bisec-
tion and red-refinement, we have calculated the minimal � such that α(q, �) >
0. In all cases but one, this minimal � equals the minimal generation for which
dim H1

0(T
′) ∩ ∏T∈T�,j(T′) Pq(T) ≥ dimPq(T′). Only for d = 3, q = 4, and

newest vertex bisection, for one of the three classes it was necessary to in-
crease this generation by one in order to ensure uniform inf-sup stability. ♦

Remark 7.5.3. For the construction of the Fortin interpolator in the FOSLS
case, it will be sufficient to replace the conditions (7.5.1)–(7.5.2) on the projec-
tors from Lemma 7.5.1 by the somewhat weaker ones

ran Pδ
q
′ ⊇ S0,q

T δ ,0 + S−1,q−1
T δ , ran Pδ

q ⊆ S0,q
T δ

S ,0
, (7.5.4)

‖h̄−1
δ Pδ

q h̄δ‖L(L2(Ω),L2(Ω)) � 1, (7.5.5)

where h̄δ is the piecewise constant function defined by h̄δ|T′ = diam T′ (T′ ∈
T δ). Note that because of the uniform ‘K-mesh property’, (7.5.5) is implied by
local L2-stability of the form

‖Pδ
q w‖L2(T′) � ‖w‖L2({x∈Ω : d(x,T′)�diam T′}) (T′ ∈ T δ, w ∈ L2(Ω)), (7.5.6)

which, in particular, is implied by (7.5.2).
For d = 1, the codimension of S0,q

T δ ,0 + S−1,q−1
T δ in S−1,q

T δ is 1 when q = 1,
or 0 when q > 1. Since we do not expect to benefit from the relaxation of the
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which implies there is a (uniform) L2(T′)-Riesz collection of functions in S0,q
T δ

S ,0
∩

H1
0(T

′) that is biorthogonal to the L2(T)-normalized nodal basis for Pq(T′).
Taking Pδ

q
′ restricted to T′ to be the corresponding biorthogonal projector
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q exist when T δ

S is a refine-
ment of T δ of sufficient fixed depth. Hence, the size of the resulting linear sys-
tems remains uniformly proportional to dim Xδ, with a proportionality factor
depending on σ. In applications, one needs to know which depth suffices. The
usual procedure to construct a partition T δ of the closure of a (polytopal) do-
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By using that the left-hand side of (7.5.3) is invariant under affine transforma-
tions, fixing a reference d-simplex T′ and a refinement procedure of the above
type, given a degree q and a generation �, it suffices to check whether
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inf
0 �=p∈Pq(T′)

sup
0 �= p̃∈H1

0 (T
′)∩∏T∈T�,j(T

′) Pq(T)

〈p, p̃〉L2(T′)

‖p‖L2(T′)‖ p̃‖L2(T′)
> 0,

Remark 7.5.2. For d ∈ {1, 2, 3}, q ∈ {1, 2, 3, 4}, and both newest-vertex bisec-
tion and red-refinement, we have calculated the minimal � such that α(q, �) >
0. In all cases but one, this minimal � equals the minimal generation for which
dim H1

0(T
′) ∩ ∏T∈T�,j(T′) Pq(T) ≥ dimPq(T′). Only for d = 3, q = 4, and

newest vertex bisection, for one of the three classes it was necessary to in-
crease this generation by one in order to ensure uniform inf-sup stability. ♦

Remark 7.5.3. For the construction of the Fortin interpolator in the FOSLS
case, it will be sufficient to replace the conditions (7.5.1)–(7.5.2) on the projec-
tors from Lemma 7.5.1 by the somewhat weaker ones
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T δ

S ,0
, (7.5.4)

‖h̄−1
δ Pδ

q h̄δ‖L(L2(Ω),L2(Ω)) � 1, (7.5.5)

where h̄δ is the piecewise constant function defined by h̄δ|T′ = diam T′ (T′ ∈
T δ). Note that because of the uniform ‘K-mesh property’, (7.5.5) is implied by
local L2-stability of the form

‖Pδ
q w‖L2(T′) � ‖w‖L2({x∈Ω : d(x,T′)�diam T′}) (T′ ∈ T δ, w ∈ L2(Ω)), (7.5.6)

which, in particular, is implied by (7.5.2).
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T δ is 1 when q = 1,
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condition ran Pδ
q ⊆ {w ∈ S0,q

T δ
S ,0

: w|∂T δ = 0} to ran Pδ
q ⊆ S0,q

T δ
S ,0

, for d = 1, we

doubt that the relaxed conditions hold for any less deep refinement T δ
S of T δ.

For d > 1 and any fixed degree q, however, the aforementioned codimen-
sion is � dimS−1,q

T δ , and we may hope that a less deep refinement T δ
S of T δ

suffices to satisfy the relaxed conditions.
So far we have studied this issue in one particular example of d = 2, q = 2,

and the red-refinement rule. For this case, we could show the existence of the
projectors from Lemma 7.5.1 when T δ

S is created by applying two recursive
red-refinements to each triangle from T δ. In the appendix, we show that one
red-refinement already satisfies the relaxed conditions (7.5.4) and (7.5.6). ♦

Remark. When Pδ
q is an L2-orthogonal projector onto a finite element space,

(7.5.5) is known to ensure its H1-stability (see e.g. [BY14]). ♦

Remark. Spaces of type S0,q
T δ ,0 +S−1,q−1

T δ , or more precisely S0,q
T δ ,0 +S−1,0

T δ , have
been used as approximation spaces for the pressure in Stokes solvers to ensure
local mass conservation (see e.g. [Che14]). ♦

Remark. Also for the construction of the Fortin interpolator for the standard
second order formulation, it suffices when ran Pδ

q
′ ⊇ S0,q

T δ ,0 + S−1,q−1
T δ instead

of ran Pδ
q
′ ⊇ S−1,q

T δ ,0 . The second condition in (7.5.1) turns out to be essential. ♦

7.5.2 Standard, second order formulation

For this formulation our construction of a suitable Fortin interpolator will be
restricted to second order elliptic spatial differential operators with constant
coefficients on convex domains, and lowest order finite elements w.r.t. parti-
tions of the time-space cylinder that are Cartesian products of a quasi-uniform
temporal mesh and a quasi-uniform conforming, uniformly shape regular spa-
tial mesh into d-simplices.

Consider the families of partitions (T δ)δ∈∆ and (T δ
S )δ∈∆ of Ω ⊂ Rd of

§7.5.1. Assuming them to be quasi-uniform, we set hδ := maxT′∈T δ diam T′

(not to be confused with the piecewise constant function h̄δ).
Let (Iδ)δ∈∆ be a family of quasi-uniform partitions of I into subintervals,

where the lengths of the subintervals in Iδ are � hδ. We denote by S−1,q
Iδ and

S0,q
Iδ the space of all piecewise polynomials or continuous piecewise polyno-

mials of degree q w.r.t. Iδ, respectively.

Theorem 7.5.4. Let Ω ⊂ Rd be a convex polytope, a(t; θ, ζ) be of the form (7.4.1)
for constant K, b and c, and let Xδ := S0,1

Iδ ⊗ S0,1
T δ ,0 ⊂ X and Yδ := S−1,1

Iδ ⊗
S0,1
T δ

S ,0
⊂ Y, where T δ

S is a sufficiently deep refinement of T δ such that a projector Pδ
1

as in Lemma 7.5.1 exists. Then, a Fortin interpolator Qδ as in (7.3.8) exists, and for
g ∈ F := L2(I)⊗ H1(Ω) ∩ H2(I)⊗ H−1(Ω), it holds that eδ

osc(g) � h2
δ.

7.5 Construction of a suitable Fortin interpolator 153



Remark. For this (Xδ)δ∈∆, and a sufficiently smooth u we have eδ
approx(u) �

hδ where in general an approximation error of higher cannot be expected. So
indeed, eδ

osc(g) is of higher order as desired, cf. (7.3.10). ♦

Proof. We will construct uniformly bounded Qδ
t ∈ L(L2(I), L2(I)) and Qδ

x ∈
L(H1

0(Ω), H1
0(Ω)) with ran Qδ

t ⊂ S−1,1
Iδ , ran Qδ

x ⊂ S0,1
T δ

S ,0
and

〈
S0,1
Iδ , ran(Id − Qδ

t )
〉

L2(I)
= 0 =

〈
d
dtS

0,1
Iδ , ran(Id − Qδ

t )
〉

L2(I)
,

〈
S−1,0
T δ ,0 +S0,1

T δ ,0, ran(Id−Qδ
x)
〉

L2(Ω)
= 0 =

〈
K∇xS0,1

T δ ,0,∇x ran(Id−Qδ
x)
〉

L2(Ω)d
.

(7.5.7)

Then one verifies that Qδ := Qδ
t ⊗ Qδ

x satisfies the conditions in (7.3.8).
A valid choice for Qδ

t is given by the L2(I)-orthogonal projector onto S−1,1
Iδ .

It satisfies in addition

‖(Id − Qδ
t )

′‖L(H2(I),L2(I)) � h2
δ. (7.5.8)

We seek Qδ
x as QA,δ

x + QB,δ
x + QB,δ

x QA,δ
x with ran QA,δ

x , ran QB,δ
x ⊂ S0,1

T δ
S ,0

s.t.

‖QA,δ
x ‖L(H1

0 (Ω),H1
0 (Ω)) � 1, ‖Id − QA,δ

x ‖L(H1
0 (Ω),L2(Ω)) � hδ, (7.5.9)

〈
K∇xS0,1

T δ ,0,∇x ran(Id − QA,δ
x )

〉
L2(Ω)d

= 0, (7.5.10)

‖QB,δ
x ‖L(L2(Ω),L2(Ω)) � 1, ‖(Id − QB,δ

x )′‖L(H1(Ω),L2(Ω)) � hδ, (7.5.11)
〈
S−1,0
T δ ,0 +S0,1

T δ ,0, ran(Id−QB,δ
x )

〉
L2(Ω)

= 0 =
〈

K∇xS0,1
T δ ,0,∇x ran QB,δ

x

〉
L2(Ω)d

.

(7.5.12)

One easily verifies that

Id − Qδ
x = (Id − QB,δ

x )(Id − QA,δ
x ),

which, together with the first relation in (7.5.12), yields the first relation in
(7.5.7). Moreover, from (7.5.10) and the second relation in (7.5.12) one deduces
the second relation (7.5.7).

Similarly, observing that Qδ
x = QA,δ

x + QB,δ
x (Id − QA,δ

x ) in combination
with (7.5.9), ‖QB,δ

x ‖L(L2(Ω),L2(Ω)) � 1, and the inverse inequality ‖ ‖H1(Ω) �

h−1
δ ‖ ‖L2(Ω) on S0,1

T δ
S ,0

⊃ ran QB,δ
x , one infers that ‖Qδ

x‖L(H1
0 (Ω),H1

0 (Ω)) � 1. Thus,

all claimed properties of Qδ
x have been verified.

Before turning to QA,δ
x and QB,δ

x , we estimate eδ
osc(g). For g ∈ F, we have

‖(Id − Qδ)′g‖Y′ ≤ ‖(Id − Qδ)′‖L(F,Y′)‖g‖F = ‖Id − Qδ‖L(Y,F′)‖g‖F.

Writing

Id − Qδ = (Id ⊗ (Id − Qδ
x))(Q

δ
t ⊗ Id) + (Id − Qδ

t )⊗ Id,
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Remark. For this (Xδ)δ∈∆, and a sufficiently smooth u we have eδ
approx(u) �

hδ where in general an approximation error of higher cannot be expected. So
indeed, eδ

osc(g) is of higher order as desired, cf. (7.3.10). ♦

Proof. We will construct uniformly bounded Qδ
t ∈ L(L2(I), L2(I)) and Qδ

x ∈
L(H1
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Then one verifies that Qδ := Qδ
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x satisfies the conditions in (7.3.8).
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t is given by the L2(I)-orthogonal projector onto S−1,1
Iδ .

It satisfies in addition

‖(Id − Qδ
t )

′‖L(H2(I),L2(I)) � h2
δ. (7.5.8)

We seek Qδ
x as QA,δ

x + QB,δ
x + QB,δ

x QA,δ
x with ran QA,δ

x , ran QB,δ
x ⊂ S0,1

T δ
S ,0

s.t.

‖QA,δ
x ‖L(H1

0 (Ω),H1
0 (Ω)) � 1, ‖Id − QA,δ

x ‖L(H1
0 (Ω),L2(Ω)) � hδ, (7.5.9)

〈
K∇xS0,1

T δ ,0,∇x ran(Id − QA,δ
x )

〉
L2(Ω)d

= 0, (7.5.10)
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〈
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T δ ,0, ran(Id−QB,δ
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〉
L2(Ω)

= 0 =
〈

K∇xS0,1
T δ ,0,∇x ran QB,δ

x

〉
L2(Ω)d

.

(7.5.12)

One easily verifies that

Id − Qδ
x = (Id − QB,δ

x )(Id − QA,δ
x ),

which, together with the first relation in (7.5.12), yields the first relation in
(7.5.7). Moreover, from (7.5.10) and the second relation in (7.5.12) one deduces
the second relation (7.5.7).

Similarly, observing that Qδ
x = QA,δ

x + QB,δ
x (Id − QA,δ

x ) in combination
with (7.5.9), ‖QB,δ

x ‖L(L2(Ω),L2(Ω)) � 1, and the inverse inequality ‖ ‖H1(Ω) �

h−1
δ ‖ ‖L2(Ω) on S0,1

T δ
S ,0

⊃ ran QB,δ
x , one infers that ‖Qδ

x‖L(H1
0 (Ω),H1

0 (Ω)) � 1. Thus,

all claimed properties of Qδ
x have been verified.

Before turning to QA,δ
x and QB,δ

x , we estimate eδ
osc(g). For g ∈ F, we have

‖(Id − Qδ)′g‖Y′ ≤ ‖(Id − Qδ)′‖L(F,Y′)‖g‖F = ‖Id − Qδ‖L(Y,F′)‖g‖F.

Writing

Id − Qδ = (Id ⊗ (Id − Qδ
x))(Q

δ
t ⊗ Id) + (Id − Qδ

t )⊗ Id,
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from L2(I)⊗ H1(Ω)′ ↪→ F′, H2(I)′ ⊗ H1
0(Ω) ↪→ F′, and ‖Qδ

t ‖L(L2(I),L2(I)) � 1
we infer

‖Id−Qδ‖L(Y,F′)�‖Id⊗(Id−Qδ
x)‖L(Y,L2(I)⊗H1(Ω)′)

+‖(Id−Qδ
t )⊗Id‖L(Y,H2(I)′⊗H1

0 (Ω))

= ‖Id−Qδ
x‖L(H1

0 (Ω),H1(Ω)′)+‖Id−Qδ
t ‖L(L2(I),H2(I)′)

≤ ‖Id−QB,δ
x ‖L(L2(Ω),H1(Ω)′)‖Id−QA,δ

x ‖L(H1
0 (Ω),L2(Ω))

+‖(Id−Qδ
t )

′‖L(H2(I),L2(I))

� hδhδ+h2
δ,

where we have used (7.5.8), (7.5.9), and (7.5.11).
We now identify the operators QA,δ

x , QB,δ
x . For QA,δ

x , we take the ‘Galerkin’
projector onto S0,1

T δ ,0, i.e. the orthogonal projector w.r.t. 〈K∇x·,∇x·〉L2(Ω)d . It

satisfies (7.5.10), and ‖QA,δ
x ‖L(H1

0 (Ω),H1
0 (Ω)) = 1.

Thanks to Ω being a convex polytope, the homogeneous Dirichlet prob-
lem with operator −div K∇ is H2-regular. Indeed, by making a linear coordi-
nate transformation that transforms the convex polytope into another convex
polytope ([Ash15]), the operator reads as −∆ for which the regularity result is
well-known. Consequently the usual Aubin–Nitsche duality argument shows

‖(Id − QA,δ
x )v‖L2(Ω) � hδ‖∇(Id − QA,δ

x )v‖L2(Ω)d ≤ hδ‖∇v‖L2(Ω)d

for v ∈ H1
0(Ω). This verifies the validity of (7.5.9).

Next, we take QB,δ
x = Pδ

1 as constructed in Lemma 7.5.1. It satisfies ran Pδ
1 ⊂

S0,1
T δ

S ,0
, ‖Pδ

1‖L(L2(Ω),L2(Ω)) � 1, and ran Pδ
1
′ ⊇ S−1,1

T δ . The last property shows

the first condition in (7.5.12). Using the uniform boundedness, one concludes

‖(Id − Pδ
1 )

′w‖L2(Ω) � inf
v∈S−1,1

T δ

‖w − v‖L2(Ω) � hδ|w|H1(Ω),

which is the second condition in (7.5.11). The second condition in (7.5.12)
follows by an element-wise integration-by-parts from w|∂T δ = 0 for any w ∈
ran Pδ

1 , and the fact that S0,1
T δ ,0 is a space of continuous piecewise linears.6

7.5.3 FOSLS formulation

We construct a suitable Fortin interpolator for the FOSLS formulation of our
data assimilation problem. In contrast to the standard second order formula-
tion, we allow now non-convex domains Ω, higher order finite element spaces
w.r.t. possibly non-quasi-uniform partitions into prismatic elements. How-
ever, the time-space cylinder must be partitioned into time slabs.

6This argument is the sole reason the theorem is restricted to lowest order trial spaces Xδ.
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Theorem 7.5.5. As in Theorem 7.5.4, let a(t; θ, ζ) be of the form (7.4.1) for constant
K, b and c. For (Iδ = (([tδ

i , tδ
i+1])i)δ∈∆ being a family of partitions of I, we consider

(Xδ)δ∈∆, (Zδ)δ∈∆, and (Yδ)δ∈∆ that satisfy

Xδ ⊆ {w ∈ C(I; H1
0(Ω)) : w|(tδ

i ,tδ
i+1)

∈ Pq(tδ
i , tδ

i+1)⊗ S0,q
T δi ,0

}, (7.5.13)

Y ⊇ Ȳδ ⊇ {v ∈ Y : v|(tδ
i ,tδ

i+1)
∈ Pq(tδ

i , tδ
i+1)⊗ S0,q

T δi
S ,0

}, 7

Zδ ⊆ {q ∈ L2(I; H(div; Ω)) : q|(tδ
i ,tδ

i+1)
∈ Pq−1(tδ

i , tδ
i+1)⊗Zq

T δi
}, (7.5.14)

where divZq
T δi

⊂ S−1,q−1
T δi

, and where for each i, T δi is some partition from (T δ)δ∈∆

with corresponding refinement T δi
S ∈ (T δ

S )δ∈∆.
Then for T δ

S being a sufficiently deep refinement of T δ such that a projector Pδ
q as

in Remark 7.5.3 exists, a Fortin interpolator Q̄δ as in (7.4.7) exists, and

(ēδ
osc(g))2 � ∑

i
∑

T′∈T δi

{
inf

p∈Pq(tδ
i ,tδ

i+1)⊗L2(T′)
‖g − p‖2

L2((tδ
i ,tδ

i+1)×T′)

+ (diam T′)2 inf
p∈L2(tδ

i ,tδ
i+1)⊗Pq−1(T′)

‖g − p‖2
L2((tδ

i ,tδ
i+1)×T′)

}
.

Remark 7.5.6. In view of balancing the approximation rates for smooth func-
tions by Xδ in X and Zδ in Z, for Xδ and Zδ being the spaces on the right-hand
side of (7.5.13) or (7.5.14) (in the latter case, possibly with q ∈ L2(I; H(div; Ω))

reading as q ∈ C(I; H(div; Ω))), a natural choice for Zq
T δ is the Raviart–

Thomas space of index q or the Brezzi–Douglas–Marini finite element space
of index min(1, q − 1) w.r.t. T δ.

Notice that with these definitions of Xδ and Zδ, for sufficiently smooth g
the local oscillation error is of higher order than the expected local approxi-
mation error by Xδ in X and Zδ in Z. ♦

Proof. For (w, q) ∈ Xδ × Zδ, v ∈ Y, taking Zq
T δi

⊂ H(div; Ω) into account,
integration-by-parts shows

C(w, q)(v) =
∫

I

∫

Ω

(
∂w
∂t − divx q + b · ∇xw + cw

)
v dx dt.

Now let (Q̄δ
x)δ∈∆ denote a family of operators Q̄δ

x ∈ L(H1
0(Ω), H1

0(Ω)) with
uniformly bounded norm, with the properties

ran Q̄δ
x ⊂ S0,q

T δ
S ,0

, 〈S0,q
T δ ,0 + S−1,q−1

T δ , ran(Id − Q̄δ
x)〉L2(Ω) = 0. (7.5.15)

Moreover, let Qi
q be the L2(I)-orthogonal projector onto Pq(tδ

i , tδ
i+1). Then, the

operator Q̄δ defined by

(Q̄δv)|(tδ
i ,tδ

i+1)×Ω = (Qi
q ⊗ Q̄δi

x )v|(tδ
i ,tδ

i+1)×Ω,

7If it were not for guaranteeing an oscillation error of higher order, then the polynomial de-
gree in the time direction could be reduced to q − 1.
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i ,tδ

i+1)
∈ Pq−1(tδ

i , tδ
i+1)⊗Zq

T δi
}, (7.5.14)

where divZq
T δi

⊂ S−1,q−1
T δi

, and where for each i, T δi is some partition from (T δ)δ∈∆

with corresponding refinement T δi
S ∈ (T δ

S )δ∈∆.
Then for T δ

S being a sufficiently deep refinement of T δ such that a projector Pδ
q as

in Remark 7.5.3 exists, a Fortin interpolator Q̄δ as in (7.4.7) exists, and

(ēδ
osc(g))2 � ∑

i
∑

T′∈T δi

{
inf

p∈Pq(tδ
i ,tδ

i+1)⊗L2(T′)
‖g − p‖2

L2((tδ
i ,tδ

i+1)×T′)

+ (diam T′)2 inf
p∈L2(tδ

i ,tδ
i+1)⊗Pq−1(T′)

‖g − p‖2
L2((tδ

i ,tδ
i+1)×T′)

}
.

Remark 7.5.6. In view of balancing the approximation rates for smooth func-
tions by Xδ in X and Zδ in Z, for Xδ and Zδ being the spaces on the right-hand
side of (7.5.13) or (7.5.14) (in the latter case, possibly with q ∈ L2(I; H(div; Ω))

reading as q ∈ C(I; H(div; Ω))), a natural choice for Zq
T δ is the Raviart–

Thomas space of index q or the Brezzi–Douglas–Marini finite element space
of index min(1, q − 1) w.r.t. T δ.

Notice that with these definitions of Xδ and Zδ, for sufficiently smooth g
the local oscillation error is of higher order than the expected local approxi-
mation error by Xδ in X and Zδ in Z. ♦

Proof. For (w, q) ∈ Xδ × Zδ, v ∈ Y, taking Zq
T δi

⊂ H(div; Ω) into account,
integration-by-parts shows

C(w, q)(v) =
∫

I

∫

Ω

(
∂w
∂t − divx q + b · ∇xw + cw

)
v dx dt.

Now let (Q̄δ
x)δ∈∆ denote a family of operators Q̄δ

x ∈ L(H1
0(Ω), H1

0(Ω)) with
uniformly bounded norm, with the properties

ran Q̄δ
x ⊂ S0,q

T δ
S ,0

, 〈S0,q
T δ ,0 + S−1,q−1

T δ , ran(Id − Q̄δ
x)〉L2(Ω) = 0. (7.5.15)

Moreover, let Qi
q be the L2(I)-orthogonal projector onto Pq(tδ

i , tδ
i+1). Then, the

operator Q̄δ defined by

(Q̄δv)|(tδ
i ,tδ

i+1)×Ω = (Qi
q ⊗ Q̄δi

x )v|(tδ
i ,tδ

i+1)×Ω,

7If it were not for guaranteeing an oscillation error of higher order, then the polynomial de-
gree in the time direction could be reduced to q − 1.
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satisfies the conditions of (7.4.7).
We again seek Q̄δ

x of the form Q̄δ
x = Q̄A,δ

x + Q̄B,δ
x + Q̄B,δ

x Q̄A,δ
x where

ran Q̄A,δ
x , ran Q̄B,δ

x ⊂ S0,q
T δ

S ,0
,

〈
S0,q
T δ ,0 + S−1,q−1

T δ , ran(Id − Q̄B,δ
x )

〉
L2(Ω)

= 0.

Then from Id− Q̄δ
x = (Id− Q̄B,δ

x )(Id− Q̄A,δ
x ), we infer that (7.5.15) is satisfied.

We take Q̄A,δ
x to be the Scott–Zhang quasi-interpolator onto S0,q

T δ
S ,0

, and

Q̄B,δ
x = Pδ

q from Remark 7.5.3. Writing Q̄δ
x = Q̄A,δ

x + Pδ
q (Id − Q̄A,δ

x ), uniform

boundedness of Q̄A,δ
x ∈ L(H1

0(Ω), H1
0(Ω)), h̄−1

δ (Id− Q̄A,δ
x ) ∈ L(H1

0(Ω), L2(Ω)),
as well as h̄−1

δ Pδ
q h̄δ ∈ L(L2(Ω), L2(Ω)), and ‖ · ‖H1(Ω) � ‖h−1

δ · ‖L2(Ω) on S0,q
T δ

S ,0
,

imply the uniform boundedness of Q̄δ
x ∈ L(H1

0(Ω), H1
0(Ω)).

For pi ∈Pq(tδ
i , tδ

i+1)⊗ L2(Ω), p̃i ∈L2(tδ
i , tδ

i+1)⊗S−1,q−1
T δi

, and y∈Y, we have

〈
g, (Id − Q̄δ)y

〉
L2(I×Ω)

= ∑
i

∑
T′∈T δi

〈
((Id − Qi

q)⊗ Id)(g − pi), y
〉

L2((tδ
i ,tδ

i+1)×T′)

+∑
i

∑
T′∈T δi

〈
(Id ⊗ (Id − Pδ

q )
′)(g − p̃i), Qi

q ⊗ (Id − Q̄A,δi
x )y

〉
L2((tδ

i ,tδ
i+1)×T′)

,

since Pq(tδ
i , tδ

i+1) is reproduced by Qi
q, and S−1,q−1

T δi
S

by Pδ
q
′. The first double

sum is bounded by a constant multiple of

√
∑i ∑T′∈T δi ‖g − pi‖2

L2((tδ
i ,tδ

i+1)×T′)
‖y‖L2(I×Ω).

On account of ‖h̄δPδ
q
′ h̄−1

δ ‖L(L2(Ω),L2(Ω)) � 1 and

‖(Id − Q̄A,δi
x )v‖L2(T′) ≤ (diam T′)|v|H1(∪

{T′′∈T δi : T′′∩T′ �=∅}
T′′),

one sees that the second double sum is bounded by a constant multiple of√
∑i ∑T′∈T δi (diam T′)2‖g − p̃i‖2

L2((tδ
i ,tδ

i+1)×T′)
‖y‖Y, showing the result.

7.6 Numerical experiments

We investigate our formulations for solving the data assimilation problem nu-
merically. As underlying parabolic equation we select a simple heat equation
posed on a spatial domain Ω ⊂ Rd, and we take T = 1, i.e. I = [0, 1].

We use NGSolve, [Sch97, Sch14], to assemble the system matrices and for
spatial multigrid. We employ a preconditioned conjugate gradient scheme for
solving the corresponding Schur complement systems (7.3.13) from §7.3.4 and
(7.4.9) from §7.4.2.
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7.6.1 Unit interval

We start with the simplest possible situation where d = 1, and Ω := [0, 1].
We subdivide I and Ω into 1/hδ ∈ N equal subintervals yielding Iδ and T δ

respectively. We then select our discrete spaces as tensor-product spaces

Xδ := S0,1
Iδ ⊗ S0,1

T δ ,0, Yδ
� := Ȳδ

� := S−1,1
Iδ ⊗ S0,1

T δ
� ,0

, Zδ := S−1,0
Iδ ⊗ S0,1

T δ (7.6.1)

with T δ
� found from T δ by recursively bisecting every subinterval � times.

As follows from Sect. 7.5, in our current setting, for both second order
and FOSLS formulation, for � ≥ 2 uniformly bounded Fortin interpolators
exist, i.e., (7.3.8) or (7.4.7) are satisfied, so that the minimizers uδ,δ

ε ∈ Xδ

and (ūδ,δ
ε , pδ,δ

ε ) ∈ Xδ × Zδ of Gδ
ε or Hδ

ε exist uniquely, and satisfy the a pri-
ori bounds from Theorem 7.3.9 or Theorem 7.4.6, as well as the a posteriori
bounds from Corollary 7.3.13 and Proposition 7.4.7. Moreover, these Fortin
interpolators can be selected such that for sufficiently smooth datum g the
order of the data-oscillation term eδ

osc(g) or ēδ
osc(g), that are present in the a

posteriori bounds, exceeds the generally best possible approximation order

that can be expected. Consequently, for � = 2 the expressions
√

Gδ
0(u

δ,δ
ε ) or√

Hδ
0(ū

δ,δ
ε , pδ,δ

ε ) are, modulo a constant factor and oscillation terms of higher

order, upper bounds for the Xη-norm of eδ
ε := u0 − uδ,δ

ε or ēδ
ε := u0 − ūδ,δ

ε .
We will use this fact to explore in subsequent experiments also whether it

would actually be harmful in practice to take �<2 (resulting in lower compu-
tational cost). Note that the choice of the refinement level � in Yδ

� or Ȳδ
� affects,

on the one hand, the quality of the numerical solution uδ,δ
ε and, on the other

hand, the reliability of the a posteriori error bound. We will denote below by
� the refinement level used to compute uδ,δ

ε , and by L the refinement level in
Yδ

L or Ȳδ
L used to compute the a posteriori error bounds. Since these ‘reliable’ a

posteriori error bounds with L = 2 apply to any function from Xδ (taking for
the second argument of Hδ

ε any argument from Zδ), we have also used them,
in particular, to assess the quality of the numerical approximations based on
taking Yδ

0 or Ȳδ
0 instead of Yδ

2 or Ȳδ
2 .

Equipping S−1,1
Iδ with basis Φδ

t , and S0,1
T δ
� ,0

with Φδ
x, the representation of

the Riesz isometry Yδ → Yδ ′ reads as Rδ = 〈Φδ
t , Φδ

t 〉L2(I) ⊗ 〈∇Φδ
x,∇Φδ

x〉L2(Ω)d .
Taking Φδ

t to be L2(I)-orthogonal, the first factor is diagonal and can be in-
verted directly. With MGδ

x � 〈∇Φδ
x,∇Φδ

x〉−1
L2(Ω)d a symmetric spatial multi-

grid solver, we define Kδ
Y := 〈Φδ

t , Φδ
t 〉−1

L2(I) ⊗ MGδ
x � (Rδ)−1, which can be

applied at linear cost. As explained in §7.3.4 and §7.4.2, all considerations
concerning the discrete approximations uδ,δ

ε or (ūδ,δ
ε , pδ,δ

ε ) remain valid when
Rδ in the matrix vector systems (7.3.12) or (7.4.8), that define these approxi-
mations, is replaced by (Kδ

Y)
−1, and despite this replacement we continue to

denote them by uδ,δ
ε and (ūδ,δ

ε , pδ,δ
ε ).
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Figure 7.1 Estimated errors for the unit interval problem with consistent data.

Equipping Xδ and Zδ with similar tensor product bases, for the efficient
iterative solution of the Schur complements (7.3.13) or (7.4.9) that define uδ,δ

ε

or (ūδ,δ
ε , pδ,δ

ε ), for W ∈ {X, Z} we use a preconditioner Kδ
W that can be applied

at linear cost and that is uniformly spectrally equivalent to the inverse of the
representation of the Riesz isometry Wδ → Wδ ′. The construction of Kδ

Z does
not pose any difficulties, and for the construction of Kδ

X , that builds on a sym-
metric spatial multigrid solver that is robust for diffusion-reaction problems
and the use of a wavelet basis in time that is stable in L2(I) and H1(I), we
refer to [SvVW21].

Consistent data As a first test we prescribe the solution

u(t, x) = (t3 + 1) sin(πx), (7.6.2)

take ω = [ 1
4 , 3

4 ] and use data (g, f ) that are consistent with u. We computed uδ,δ
ε

and (ūδ,δ
ε , pδ,δ

ε ) for ε = hδ, being the largest value of ε (up to a constant factor)
for which we expect that the regularization doesn’t spoil the order of conver-
gence. Indeed, we expect that eδ

approx(u) � ēδ
approx(u) � hδ. For both the sec-

ond order and the FOSLS formulation, Figure 7.1 depicts the a posteriori error

estimators
√

Gδ
0(u

δ,δ
ε ) and

√
Hδ

0(ū
δ,δ
ε , pδ,δ

ε ) for (�, L) ∈ {(2, 2), (0, 2), (0, 0)} as

a function of dim Xδ ≈ h−2
δ . The two formulations show very similar per-

formance. Moreover, the observed convergence rate 1/2 is the best possible
given our discretization of piecewise linears on uniform meshes. Concerning
the choices for � and L, the results for L = 2, that give reliable a posteriori
error bounds, indicate that there is hardly any difference in the numerical ap-
proximations for test spaces Yδ

2 or Yδ
0 , respectively, Ȳδ

2 or Ȳδ
0 , i.e., for � = 2 or

� = 0, so that we will take � = 0 in the sequel. For the second order formula-
tion, the value of the a posteriori estimator evaluated for L = 0 is significantly
smaller than that for L = 2, but it shows qualitatively the same behaviour. In
view of this observation, we will also use L = 0 in what follows.

7.6 Numerical experiments 159



Figure 7.2 Condition numbers of the preconditioned system for a number of reg-
ularization parameters.

System conditioning To see how the choice of ε affects the condition number of
the preconditioned systems (7.3.13) and (7.4.9), we computed these condition
numbers for various ε and decreasing mesh sizes. The results depicted in
Figure 7.2 illustrate that for fixed ε > 0, the condition numbers are uniformly
bounded. We show the values for � = 2; for � = 0, they are very similar. It
also reveals that the growth in terms of ε is far more modest than the upper
bound � ε−2 on the condition numbers we found in Sect. 7.3.4 and 7.4.2.

Inconsistent data In case of inconsistent data, there exists no state that exactly
explains the data, and econs(u0) > 0. In this case, it does not make sense to
approximate u0 within a tolerance that is significantly smaller than econs(u0).
Considering for the second order formulation the a priori estimate

‖u0 − uδ,δ
ε ‖Xη � econs(u0) + eδ

approx(u0) + ε‖γ0u0‖L2(Ω)

from Theorem 7.3.9 and taking the fact into account that choosing ε small has
an only moderate effect on the conditioning of the preconditioned linear sys-
tem, in the following we take ε of the order of the best possible approximation
error that can be expected, so that ε‖γ0u0‖L2(Ω) � eδ

approx(u0). Then ideally
we would like to stop refining our mesh as soon as eδ

approx(u0) ≈ econs(u0).
In order to achieve this we use the a posteriori error estimator. From Corol-
lary 7.3.14 we know that

econs(u0) �
√

Gδ
0(u

δ,δ
ε ) + eδ

osc(g),

where, following the reasoning from the proof of Proposition 7.3.4,

√
Gδ

0(u
δ,δ
ε ) ≤

√
Gδ

ε (u
δ,δ
ε ) ≤

√
Gδ

ε (PXδ u0) ≤
√

Gε(PXδ u0)

� eδ
approx(u0) + econs(u0) + ε‖γ0u‖L2(Ω).
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Figure 7.3 Estimated errors for the interval problem for varying inconsistent data.

We selected (Yδ)δ∈∆ such that, in any case for sufficiently smooth g, the or-
der of eδ

osc(g) is equal or higher than the generally best possible order of the
approximation error, so that eδ

osc(g) � eδ
approx(u0). In view of our earlier as-

sumption on ε, we conclude that

econs(u0) �
√

Gδ
0(u

δ,δ
ε ) � econs(u0) + eδ

approx(u0).

Exploiting a common uniform or adaptive refinement strategy, it can be
expected that eδ

approx(u0) decays with a certain algebraic rate ρ < 1. Unless
econs(u0) is very large, it can therefore be expected that in the early stage of

the iteration the a posteriori error estimator
√

Gδ
0(u

δ,δ
ε ) decays with this rate,

whose value therefore can be monitored. By contrast, as soon as eδ
approx(u0)

has been reduced to Cecons(u0) for some constant C > 0, the reduction of√
Gδ

0(u
δ,δ
ε ) in the next step cannot be expected to be better than 1+Cρ

1+C . Taking
C = 1/3, our strategy will therefore be to stop the iteration as soon as the

observed reduction of
√

Gδ
0(u

δ,δ
ε ) is worse than 1+Cρ

1+C .
We have implemented this strategy, and a similar one for the FOSLS for-

mulation, where we apply the discrete spaces as in (7.6.1), take ε = hδ, and
again consider the unit interval problem (7.6.2) but now perturb the measured
state f = u|I×ω by adding λ1 to it for various values of λ.

From the results in Figure 7.3 we see that the error estimators decrease at
first, but then stagnate in the aforementioned sense, at which point we exit
the refinement loop (indicated by a ×-sign). Further refinement (indicated
by the thin dashed lines) is not very useful, and the error estimators stabilize
to a value just below λ|ω|1/2, being the L2(I × Ω)-norm of the perturbation
we added to the consistent f . Knowing that the error estimator converges to
econs(u0) (see Remark 7.3.10), we conclude that (0, 1) ∈ Y′ × L2(I × ω) is close
to orthogonal to ran Bω. We note that � = L = 2 produces very similar results.
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Figure 7.4 Estimated errors for the consistent unit square problem with ω :=
[ 1

4 , 3
4 ]

2 using piecewise linears and quadratics.

7.6.2 Unit square

We choose Ω := (0, 1)2. We again subdivide I into 1/hδ ∈ N equal subinter-
vals yielding Iδ, and Ω first into 1/hδ × 1/hδ squares and then into 2/h2

δ tri-
angles by connecting the lower left and the upper right corner in each square
yielding T δ. For a polynomial degree q, we take ε = hq

δ. Following the discus-
sion in Sect. 7.6.1, we select � = L = 0 and take our discrete spaces as

Xδ
q := S0,q

Iδ ⊗ S0,q
T δ ,0, Yδ

q := S−1,q
Iδ ⊗ S0,q

T δ ,0, Ȳδ
q := S−1,q−1

Iδ ⊗ S0,q
T δ ,0,

and Zδ
q := S−1,q−1

Iδ ⊗ Zq
T δ , with Zq

T δ the BDM space of index min(1, q − 1).
Note that the degree q − 1 in the temporal direction of Ȳδ

q guarantees an oscil-
lation error of the same order as the approximation error, cf. Footnote 7.

We define the preconditioners Kδ
Y, Kδ

Z, and Kδ
X similar as in the 1D case.

Consistent data We select ω := [ 1
4 , 3

4 ]
2 with prescribed solution u(t, x, y) :=

(t3 + 1) sin(πx) sin(πy) and consistent data (g, f ). Figure 7.4 shows for both
formulations and q ∈ {1, 2} the error estimators as a function of dim Xδ �
h−3

δ . The choice of preconditioners allows us to reach the desired tolerance
〈r, Kδ

Xr〉 ≤ ε2Gδ
0(ũ

δ,δ
ε ) = 5.937 · 10−13 for a system with 268 434 945 unknowns

in only 96 iterations. The two formulations again exhibit similar performance,
and the observed rate q/3 is the best possible, in line with Theorem 7.5.5.
Moreover, we see that while theory is incomplete for the second order formu-
lation in practice it works well also for piecewise quadratics.

Thanks to Xη ↪→ C([η, 1], L2(Ω)), the time-slice errors ‖eδ
ε (t)‖L2(Ω) and

‖ēδ
ε (t)‖L2(Ω) are bounded by multiples of ‖eδ

ε‖Xη or ‖ēδ
ε‖Xη , respectively. Fig-

ure 7.5 shows these time-slice errors for both formulations using piecewise
linears, i.e., q = 1. We see that for both formulations, the time-slice errors
converge with the better rate 2/3, and that these errors deteriorate for t ↘ 0.
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δ,δ
ε ) = 5.937 · 10−13 for a system with 268 434 945 unknowns

in only 96 iterations. The two formulations again exhibit similar performance,
and the observed rate q/3 is the best possible, in line with Theorem 7.5.5.
Moreover, we see that while theory is incomplete for the second order formu-
lation in practice it works well also for piecewise quadratics.

Thanks to Xη ↪→ C([η, 1], L2(Ω)), the time-slice errors ‖eδ
ε (t)‖L2(Ω) and

‖ēδ
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Figure 7.5 Time-slice errors for the consistent unit square problem with ω :=
[ 1

4 , 3
4 ]

2 using piecewise linears.

Figure 7.6 Second order formulation for the consistent unit square problem with
ω := [ 7

16 , 9
16 ]

2. Left: error estimators; right: time-slice errors.

This deterioration becomes much stronger when diam ω → 0: taking for
example ω := [ 7

16 , 9
16 ]

2, Figure 7.6 shows that while the error estimators re-
main nearly unchanged, the time-slice errors fan-out an order of magnitude
more than in the case of ω := [ 1

4 , 3
4 ]

2.

Inconsistent data Finally, we return to the case of inconsistent observational
data. Again taking u(t, x, y) := (t3 + 1) sin(πx) sin(πy) and ω := [ 1

4 , 3
4 ]

2,
we select consistent forcing data g := Bu but perturbed observational data
f := u|I×ω + λ1. Running the strategy outlined in Sect. 7.6.1 with C = 1/3,
with uniform refinements and choosing ε = hδ, yields the results of Figure 7.7.
We see a situation very similar to the unit interval case: the error estimators
decrease at first and then stagnate, at which point we exit the refinement loop.
Error estimators again stabilize at around λ|ω|1/2.
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Figure 7.7 Estimated errors for the square problem for varying inconsistent data.

7.7 Concluding remarks

We saw that basing data assimilation for parabolic problems on time-space
formulations that are stable at a continuous level, and related regularized
least squares functionals, has a number of conceptual advantages: one ob-
tains improved a priori error estimates as well as a posteriori error bounds.
Among other things the latter ones are important for determining suitable
stopping criteria for iterative solvers. Moreover, the design of corresponding
preconditioners is based on the infinite-dimensional variational formulation.
We showed that for each fixed regularization parameter ε the preconditioner is
optimal relative to the condition of the regularized problem so that the numer-
ical complexity remains under control. Moreover, the regularization parame-
ter is disentangled from the discretizations, so one can optimize its choice.

Furthermore, it will be interesting to relate the present results to the re-
cent state estimation concepts in [BCD+11, CDD+19, MPPY15] providing er-
ror bounds in the full energy norm ‖ · ‖X at the expense of certain stability
factors reflecting a geometric relation between X and a certain space of func-
tionals providing the data which, in turn, quantifies the “visibility” of the true
states by the sensors. A further important issue is to explore the use of the ob-
tained “static” methods for “dynamic data assimilation”. In this context the
underlying stable variational formulations are expected to be crucial for the
use of certified reduced models.

A price for building on the above “natural” variational formulations—in
the sense that no excess regularity is implied—is to properly discretize dual
norms. As pointed out earlier in Remark 7.4.5, this is avoided in [FK21] by
replacing the term ‖C(w, q)− g̃‖2

Y′ in Hε(w; q) (for K = Id) by the L2-residual
‖C(w, q)− g̃‖2

L2(I;L2(Ω)). Being reduced to using then a somewhat weaker ver-
sion of the Carleman estimate, we would obtain a statement similar to that
in Corollary 7.4.4, but with an approximation error ēδ

approx(u) measured in a
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approx(u) measured in a

164 Chapter 7 Accuracy controlled data assimilation for parabolic PDEs

somewhat stronger norm

min
{(w,q)∈Xδ×Zδ :

∂tw−divx q∈L2(I;L2(Ω))}

‖u−w‖X+‖∇xu−q‖Z+‖∂tu−�u−(∂tw−divx q)‖L2(I;L2(Ω)).

Finally, optimal preconditioning in the space {(w, q) ∈ Xδ × Zδ : ∂tw −
divx q ∈ L2(I; L2(Ω))}, equipped with the graph norm, is a challenge.

On the other hand, we also have the standard, second order formulation
whose implementation is cheaper, and at least in the above experiments per-
forms well also in cases beyond the regime so far covered by theory.

7.A Construction of the biorthogonal projector as in Remark 7.5.3 for
d = q = 2 and one red-refinement

A basis for S0,2
T δ ,0 + S−1,1

T δ is given by the sum of the union over T′ ∈ T δ of

the usual nodal basis for P1(T′), and the union over the internal edges of T δ

of the continuous piecewise quadratic bubble associated to that edge, whose
support extends to the two neighbouring triangles in T δ. Indeed, one easily
verifies that this set of functions is linearly independent, and that each func-
tion from either S0,2

T δ ,0 or S−1,1
T δ is in its span.

We consider the restriction of this basis to one T′ ∈ T δ, and subsequently
transfer it into a collection of functions on a ‘reference triangle’ T̂ with |T̂| = 1
by an affine transformation. We denote the resulting functions as indicated in
the left of Figure 7.8.

e 1
2 , 1

2 ,0v1,0,0

ṽ1,0,0

ẽ 1
2 , 1

2 ,0ẽ 3
4 , 1

4 ,0

Figure 7.8 Left: Basis functions at the ‘primal side’ with the indices of the missing
basis functions obtained by permuting the barycentric coordinates. Right: Notation
at the ‘dual side’.

At the ‘dual side’, we consider the nodal basis of the continuous piecewise
quadratics w.r.t. the red-refinement of T̂, where we omit the basis functions
associated to the vertices of T̂. We denote these basis functions as indicated in
the right of Figure 7.8.

We now apply the following transformations:

1. On the primal side, we redefine

e 1
2 , 1

2 ,0 ← e 1
2 , 1

2 ,0 −
7

10 (v1,0,0 + v0,1,0) +
7
30 v0,0,1,

7.A Construction of a biorthogonal projector 165



and update e 1
2 ,0 1

2
and e0, 1

2 , 1
2

analogously. As a consequence, we obtain
span{e 1

2 , 1
2 ,0, e 1

2 ,0, 1
2
, e0, 1

2 , 1
2
} ⊥ span{ṽ1,0,0, ṽ0,1,0, ṽ0,0,1}.

2. On the dual side, we redefine

ẽ 1
2 , 1

2 ,0 ← 1
102 ẽ 1

2 , 1
2 ,0 −

7
2312 (ẽ 3

4 , 1
4 ,0 + ẽ 1

4 , 3
4 ,0),

and update ẽ 1
2 ,0 1

2
and ẽ0, 1

2 , 1
2

analogously. Then {e 1
2 , 1

2 ,0, e 1
2 ,0, 1

2
, e0, 1

2 , 1
2
} and

{ẽ 1
2 , 1

2 ,0, ẽ 1
2 ,0, 1

2
, ẽ0, 1

2 , 1
2
} became biorthogonal. The functions eπ( 3

4 , 1
4 ,0) for

any permutation π, will not play any role anymore, and will be ignored.

3. On the dual side, we redefine



ṽ1,0,0
ṽ0,1,0
ṽ0,0,1


 ← 12




3 −1 −1
−1 3 −1
−1 −1 3







ṽ1,0,0
ṽ0,1,0
ṽ0,0,1


 .

Now, {v1,0,0, v0,1,0, v0,0,1} and {ṽ1,0,0, ṽ0,1,0, ṽ0,0,1} are biorthogonal.

After these 3 steps, the 6 × 6 ‘local generalized mass matrix’ that contains
the L2(T̂)-inner products between all primal functions, grouped into v- and e-
functions, and all (remaining) dual functions, grouped into ṽ- and ẽ-functions,

has the 2 × 2 block structure

[
Id 9

32 Id − 31
321

0 Id

]
, with 1 the 3 × 3 all-ones ma-

trix (and with the ẽ-functions ordered as the ‘opposite’ v-functions). The in-
vertibility of this matrix confirms that both collections of 6 primal and 6 dual
functions are linearly independent.

We use these primal and dual functions on the reference triangle T̂ to con-
struct collections of primal and dual functions on Ω by the usual lifting by
means of an affine bijection between T̂ and any T′ ∈ T δ. When doing so, we
connect the functions of e or ẽ-type continuously over ‘their’ edges, and omit
them on edges on ∂Ω.

Each function of v or ṽ-type is supported on one T′ ∈ T δ, and we multiply
them by the factor |T′|− 1

2 . The functions of e or ẽ-type are supported on two
adjacent T′, T′′ ∈ T δ, and we multiply them by the factor (|T′|+ |T′′|)− 1

2 .
By construction, the resulting primal and dual collections, denoted by Φδ

and Φ̃δ, are uniformly L2(Ω)-Riesz systems, with mass matrices whose ex-
tremal eigenvalues are inside the interval spanned by the extremal eigenval-
ues of the corresponding primal or dual mass matrices on the reference trian-
gle.

Furthermore, span Φδ = S0,2
T δ ,0 + S−1,1

T δ , and span Φ̃δ ⊂ S0,2
T δ

S ,0
, with T δ

S

being constructed from T δ by one uniform red-refinement.
The generalized mass matrix, i.e., the matrix with the L2(Ω)-inner prod-

ucts between all primal functions, grouped into v- and e-functions, and all

166 Chapter 7 Accuracy controlled data assimilation for parabolic PDEs



and update e 1
2 ,0 1

2
and e0, 1

2 , 1
2

analogously. As a consequence, we obtain
span{e 1

2 , 1
2 ,0, e 1

2 ,0, 1
2
, e0, 1

2 , 1
2
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After these 3 steps, the 6 × 6 ‘local generalized mass matrix’ that contains
the L2(T̂)-inner products between all primal functions, grouped into v- and e-
functions, and all (remaining) dual functions, grouped into ṽ- and ẽ-functions,
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dual functions, grouped into ṽ- and ẽ-functions, has the 2 × 2 block struc-

ture

[
Id ∗
0 Id

]
. The uniform L2(Ω)-Riesz basis property of both Φδ and Φ̃δ

shows that the spectral norm of the non-zero off-diagonal block is uniformly

bounded. By now redefining Φδ ←
[

Id −∗
0 Id

]
Φδ, we obtain primal and

dual uniformly L2(Ω)-Riesz systems that are biorthogonal, where span Φδ =

S0,2
T δ ,0 + S−1,1

T δ and span Φ̃δ ⊂ S0,2
T δ

S ,0
.

In view of the supports of the dual functions, and those of the primal
functions before the last transformation, we infer that the support of a func-
tion in Φ̃δ is contained in either one T′ ∈ T δ (ṽ-type), or in the union of
two triangles from T δ that share an edge (ẽ-type), and that the support of
a function in Φδ is contained in either the union of two triangles from T δ that
share an edge (e-type), or in the union of T′ ∈ T δ and those at most three
T′′ ∈ T δ that share an edge with T′. We conclude that the biorthogonal pro-
jector Pδ

2 : u �→ 〈u, Φδ〉L2(Ω)Φ̃δ satisfies both conditions (7.5.4) and (7.5.6).
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8 On p-robust saturation on
quadrangulations for elliptic PDEs

Abstract For the Poisson problem in two dimensions, posed on a do-
main partitioned into axis-aligned rectangles with up to one hanging node
per edge, we envision an efficient error reduction step in an instance-
optimal hp-adaptive finite element method. Central to this is the problem:
Which increase in local polynomial degree ensures p-robust contraction of
the error in energy norm? We reduce this problem to a small number of
saturation problems on the reference square, and provide strong numeri-
cal evidence for their solution.

8.1 Introduction

We consider the Poisson model problem of finding u : Ω → R that satisfies

−∆u = f in Ω, u = 0 on ∂Ω, (8.1.1)

where Ω ⊂ R2 is a connected union of a finite number of essentially disjoint
axis-aligned rectangles, and f ∈ L2(Ω). Given a 1-irregular quadrangulation
T of the domain into essentially disjoint axis-aligned rectangles, let UT be
the space of continuous piecewise polynomials of variable degree w.r.t. T that
vanish on the domain boundary, and let uT ∈ UT be its best approximation
of u in energy norm. We are interested in the following contraction problem:

Problem Which (hp-)refinement T of T ensures contraction of the energy er-
ror, in that

‖∇u −∇uT ‖L2(Ω) ≤ α‖∇u −∇uT ‖L2(Ω)

for some fixed α < 1 independent of T and its local polynomial degrees?
It is well known that this problem is equivalent to the saturation problem of

finding T for which

‖∇uT −∇uT ‖L2(Ω) ≤ ρ‖∇u −∇uT ‖L2(Ω) for some ρ > 1;

in this work, we will study the saturation problem, posed locally on a patch
of rectangles around a given vertex.

This chapter is a minor modification of On p-Robust Saturation on Quadrangulations,
J. Westerdiep, Computational Methods in Applied Mathematics, 20(1):169–186, 2020.
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The idea of hp-adaptive finite element methods started gaining momen-
tum in the eighties with the seminal works of Babuška and colleagues [GB86a,
GB86b]. They showed that for certain elliptic boundary value problems, care-
ful a priori decisions between h-refinement and p-enrichment can yield a se-
quence of finite element solutions that exhibit an exponential convergence rate
with respect to the number of degrees of freedom (DoFs).

Since then, a lot of research has been done on hp-adaptive refinement
driven by a posteriori error estimates, but despite the interest, it was not
until 2015 that Canuto, Nochetto, Stevenson and Verani [CNSV17a] proved
the instance optimality—and with it, exponential convergence—of one such
method. The method alternates between (i) a module that refines the trian-
gulation to reduce the energy error with a sufficiently large fixed factor, and
(ii) an hp-coarsening strategy developed by Binev [Bin18] that essentially re-
moves near-redundant degrees of freedom to yield an instance optimal trian-
gulation. The sequence of triangulations found after each hp-coarsening step
then exhibits the desired exponential decay.

In [CNSV17a], the error reducer of step (i) was a typical h-adaptive loop
driven by an element-based Dörfler marking, using the a posteriori error esti-
mator of Melenk and Wohlmuth [MW01]. The efficiency of this error estimator
is known to be sensitive to polynomial degrees, which can lead to a runtime
that grows exponentially in the number of DoFs.

In [CNSV17b], Canuto et al. explore a different error reduction strategy.
It is an adaptive p-enrichment loop driven by a vertex-based Dörfler mark-
ing using the equilibrated flux estimator, which was shown to be p-robust in
[BPS09]. They show that solving a number of local saturation problems, posed
on patches around a vertex in terms of dual norms of residuals, leads to an
efficient error reducer. They were able to reduce the problem, stated on tri-
angulations without hanging nodes, to three problems on a reference trian-
gle, and provided numerical results indicating that uniform saturation holds
when increasing the local degree p to p + �λp� for any constant λ > 0, but
that an additive quantity of the form p + n is insufficient.

Finally, in [CNSV19], Canuto et al. present a theoretical result solving slightly
ill-fitted variant on one of the reference problems. Whereas the former two
works discuss partitions of the domain into triangles, the latter proves a result
on the reference square instead. As a first step towards repairing this incon-
sistency, the present work considers quadrangulations. Our goal of adaptive
approximation requires us to consider partitions with hanging nodes, which
introduce complications. A key contribution in this regard has been made by
Dolejší, Ern and Vohralík in [DEV16].

Contributions

This work has two related goals. In a larger context, we take a step in the di-
rection of a polynomial-time hp-adaptive FEM with exponential convergence
rates. In particular, we are interested in finding an efficient error reducer.
To this end, we reduce the saturation problem to a small number of problems
on the reference square, and provide numerical results suggesting these prob-
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lems may be solvable theoretically. We detail the computational aspect as well,
so that the numerical results are easily reproducible.

On a lower level, this work aims extends the reduction to reference prob-
lems of [CNSV17b] from regular triangulations equipped with polynomials of
certain total degree to the situation of 1-irregular quadrangulations with poly-
nomials of certain degree in each variable separately. Allowing 1-irregularity
makes for a rather involved adaptation of the original result, as the refined
regular patches are not necessarily composed of elements containing the orig-
inal vertex.

Organisation

In §2, we will establish our notation. In §3, we show a contractive property
within (hp-)adaptive finite element context, under a local patch-based satura-
tion assumption. In §4, we reduce the local saturation assumption to bound-
edness of a small number of reference saturation coefficients. In §5, we discuss
the computation of these coefficients, and in §6 we show numerical results
suggesting that these quantities are in fact bounded.

8.2 Notation and setup

In this work, A � B means that A is bounded by at most a multiple of B,
independently of parameters of A and B, and A � B means A � B and B � A.

8.2.1 Quadrangulations

We consider partitions T of the domain into closed axis-aligned rectangles.
We impose that T◦

1 ∩ T◦
2 = ∅ for T1, T2 ∈ T distinct, and allow irregularity

along shared edges, meaning that T1 ∩ T2 may be empty, a shared vertex, or
part of a shared edge. Irregularity allows for highly adaptive quadrangula-
tions, but to ensure p-robustness of our main result, we restrict ourselves to
1-irregularity: every element edge may contain up to one hanging node—a ver-
tex in the interior of a neighbor’s edge.

To avoid pathological situations, we lastly assume that every T is found
from a regular initial quadrangulation (i.e., without hanging nodes) by means
of repeated red-refinement (subdivision into four similar rectangles), thus au-
tomatically ensuring uniform shape regularity. We collect the family of such
quadrangulations in the set T. See Figure 8.1 for a few examples.

The set of nonhanging vertices of a quadrangulation T ∈ T form the set
VT , and Vext

T (resp. V int
T ) is its subset of boundary (resp. interior) vertices. The

edges of T form the set ET .

8.2.2 Polynomials on quadrangulations

For T ∈ T ∈ T, write Qp,p′(T) for the space of polynomials on T of degree
at most p and p′ in the two canonical coordinates. Define Qp(T) := Qp,p(T).
Equip each T with a local polynomial degree pT = pT,T for which pT ≥ 1,
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(a) (b) (c) (d)

Figure 8.1 (a) Regular initial quadrangulation Ta ∈ T of a square domain; (b)
1-irregular quadrangulation found from Ta through red-refinement; (c) quadrangu-
lation found from Ta that is not 1-irregular; (d) typical “pathological” quadrangu-
lation excluded from this chapter.

and write pT := (pT)T∈T for the collection of these local degrees. Then with
Q−1

pT
(T ) := ∏T∈T QpT (T) the space of broken piecewise polynomials over T

of degree at most pT on every element, we introduce the finite-dimensional
subspace UT of H1

0(Ω) as

UT := H1
0(Ω) ∩ Q−1

pT
(T ) (T ∈ T).

Denote with u ∈ H1
0(Ω) the weak solution to (8.1.1), and its Galerkin approx-

imation as uT ∈ UT .

8.2.3 Patches

Let ψa be the hat function characterized by ψa ∈ C(Ω) ∩ Q−1
1 (T ) and ψa(b) =

δab for all b ∈ VT . Let ωa = ωT ,a be its support, and denote with Ta ⊂ T the
quadrangulation restricted to ωa; we call this set a patch. For each nonhanging
vertex a ∈ VT , write

pa := pTa
= (pT)T∈Ta , pa := max pa.

We decompose the patch edges ETa:= {e ∈ ET : e ⊂ ωa} as

Eext
a :=

{
e ∈ ETa : e ⊂ ∂ωa

}
, E int

a := ETa \ E
ext
a .

We decompose exterior edges into Dirichlet and Neumann edges, through

Eext,D
a :=

{
e ∈ Eext

a : a ∈ e
}

, Eext,N
a := Eext

a \ Eext,D
a ,

giving rise to the local spaces

H1
∗(ωa) :=





{
v ∈ H1(ωa) : 〈v, 1〉ωa = 0

}
a ∈ V int

T ,{
v ∈ H1(ωa) : v|e = 0 on e ∈ Eext,D

a

}
a ∈ Vext

T .
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•
a2

•
a1

•
a3

(a) T

•
a1

(b) Ta1 = Ťa1

•
a2

(c) Ta2 and Ťa2

•
a3

(d) Ta3 and Ťa3

Figure 8.2 Example refined patches. (a) Example quadrangulation with three
vertices. (b) Regular patch Ta1 of interior vertex a1 ∈ V int

T that equals its smallest
regular refinement Ťa1 . (c) 1-irregular patch Ta2 of a2 ∈ V int

T ; Ťa2 is a refinement
of Ta2 denoted by dashed lines. (d) Patch of boundary vertex a3 ∈ Vext

T . The thick
black line indicates edges in Ěext,D

a ; the double line edges in Ěext,N
a .

Remark 8.2.1. Our definition of H1
∗(ωa) differs from its definition in, e.g.,

[CNSV17b, DEV16] when a ∈ Vext
T . In previous works, functions in H1

∗(ωa)
vanish on the entire part ∂ωa ∩ ∂Ω; in our case, they vanish only on those
edges e ⊂ ∂ωa ∩ ∂Ω for which a ∈ e. Nonetheless, relevant dual norm prop-
erties of the residual in §8.3 carry over to our case. ♦

8.2.4 Refined patches

Given Ta, define the refined patch Ťa as the smallest regular red-refinement of
Ta, and let each Ť ∈ Ťa inherit its local degree pŤ from its parent in Ta. The key
insight of considering the regular refinement Ťa instead of Ta was proposed
in [DEV16] and allows us to write the discrete residual below as a sum of inner
products with local polynomials.

For the edge sets E int
a , Eext

a , Eext,N
a , Eext,D

a , define their -̌variants as the set of
children edges; e.g., Ě int

a := {ě ∈ EŤa
: ∃e ∈ E int

a s.t. ě ⊂ e}. See Figure 8.2 for
a few examples.

8.3 Reduction to local saturation problems

This section follows the same general structure of [CNSV17b, §3–4]; proofs are
omitted for brevity but follow analogously to their counterpart in [CNSV17b].

For ω a proper subset of Ω, let 〈·, ·〉ω denote the L2(ω)- or [L2(ω)]2-inner
product, and ‖·‖ω its norm. Unless mentioned otherwise, closed subspaces
of H1(ω) on which ‖∇·‖ω is equivalent to ‖·‖H1(ω) are equipped with the
H1(ω)-seminorm ~ · ~ω := ‖∇·‖ω.
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8.3.1 Residual

For ě ∈ Ě int
a , we denote with �·� the jump operator and with ně a unit normal

vector of ě. We then define the global and localized residuals as

rT (v) := 〈 f , v〉Ω − 〈∇uT ,∇v〉Ω, ra(v) := rT (ψav) (v ∈ H1(Ω)),

and observe that after integration by parts, the localized residual satisfies

ra(v) = ∑
Ť∈Ťa

〈ψa( f + ∆uT ), v〉Ť + ∑
ě∈Ě int

a

〈ψa �∇uT · ně� , v〉ě.

The following result, first discovered in [CF99] in a slightly different formula-
tion, shows that the residual dual norms ‖ra‖H1∗(ωa)′

may be used as a posteri-
ori error indicators.

Proposition (Reliability & Efficiency [CNSV17b, Prop. 3.1]). There is some con-
stant Ceff > 0 with

~u − uT ~2
Ω ≤ 3 ∑

a∈VT

‖ra‖2
H1∗(ωa)′

, ‖ra‖H1∗(ωa)′
≤ Ceff~u − uT ~ωa (a ∈ VT ).

8.3.2 Data oscillation and discrete residual

For a rectangle T, define ΠT
p as the L2(T)-orthogonal projection onto Qp(T).

The approximation ΠŤa
f to f is then piecewise defined through (ΠŤa

f )|Ť :=

ΠŤ
pŤ

f |Ť . The difference between f and its approximation is quantified by the
data oscillation, defined as

osc( f , T )2 := ∑
Ť∈Ťa

h2
Ť‖ f − ΠŤ

pŤ
‖2

Ť .

We study the discrete residual, computed on discrete data ΠŤa
f instead of f :

r̃a(v) := ∑
Ť∈Ťa

〈φŤ , v〉Ť + ∑
ě∈Ě int

a

〈φě, v〉ě (v ∈ H1(ωa)) (8.3.1)

where

φŤ := ψa(ΠŤ
pŤ

f + ∆uT ) ∈ QpŤ+1(Ť), and φě := ψa �∇uT · ně� ∈ Ppa+1(ě).

Proposition (Residual Discrepancy [CNSV17b, Corol. 3.4]). There exists a con-
stant Cosc > 0 with

∣∣∣∣∣∣∣

√
∑

a∈VT

‖r̃a‖2
H1∗(ωa)′

−
√

∑
a∈VT

‖ra‖2
H1∗(ωa)′

∣∣∣∣∣∣∣
≤ Cosc osc( f , T ).
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Ť∈Ťa

h2
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pŤ
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8.3.3 A theoretical AFEM

We envision an abstract adaptive FEM that loops

SOLVE – ESTIMATE – MARK – REFINE,

driven by the vertex-based a posteriori error indicators ‖r̃a‖H1∗(ωa)′
. The fol-

lowing result provides sufficient conditions for p-robust contraction of the er-
ror in energy norm. This AFEM can serve as an efficient error reducer in an
instance-optimal hp-AFEM through a coarsening step; cf [Bin18].

Proposition 8.3.1 (Contraction of AFEM [CNSV17b, Prop. 4.1]). Take constants
θ ∈ (0, 1] and ρ ∈ [1, ∞). Suppose for some λ ∈ (0, θ

Coscρ ), we have

(a) small data oscillation:

osc( f , T ) ≤ λ

√
∑

a∈VT

‖r̃a‖2
H1∗(ωa)′

,

(b) Dörfler marking: a set M ⊂ VT of marked vertices satisfying
√

∑
a∈M

‖r̃a‖2
H1∗(ωa)′

≥ θ

√
∑

a∈VT

‖r̃a‖2
H1∗(ωa)′

,

(c) local saturation: a closed subspace U ⊃ UT of H1
0(Ω) that saturates each resid-

ual dual norm:

‖r̃a‖H1∗(ωa)′
≤ ρ‖r̃a‖[H1∗(ωa)∩U|ωa ]

′ (a ∈ M).

Then, with u ∈ U the Galerkin approximation of the solution u of (8.1.1), we have
contraction,

~u − u~Ω ≤ α~u − uT ~Ω, α = α(θ, ρ, λ) :=

√√√√1 −
(

θ − Coscλρ

3Ceff(1 + Coscλ)ρ

)2

,

meaning the error is reduced by a factor α, uniformly bounded away from 1.

Remark. Assumption (a) is usually satisfied [CNSV17b, Rem. 4.2], and the
Dörfler marking for (b) can be constructed by ordering vertices by ‖r̃a‖H1∗(ωa)′

,
so we focus on (c). Given a function q : N → N such that

‖r̃a‖H1∗(ωa)′
≤ ρ‖r̃a‖[H1∗(ωa)∩Q−1

q(pa+1)+1(Ťa)]′
(a ∈ M),

then, (c) is satisfied for any UT ⊂ U ⊂ H1
0(Ω) with

H1
∗(ωa) ∩ Q−1

q(pa+1)+1(Ťa) ⊂ H1
∗(ωa) ∩ U|ωa (a ∈ M).

In Theorem 8.4.2 below, we reduce existence of q to a small number of
saturation problems on the reference square. Under this assumption, U can
be constructed as UŤ , where Ť is found through the following REFINE step:
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(i) for each a ∈ M, replace Ta by its smallest regular red-refinement Ťa;

(ii) for each a ∈ M, for each Ť ∈ Ťa, increase pŤ to q(pa + 1) + 1;

(iii) Take Ť the smallest 1-irregular red-refinement of the resulting mesh.

The numerical results of §8.6 suggest that the aforementioned reference
problems are solved for q(p) := p + �λp� for any λ > 0. Each REFINE step
multiplies the number of elements by not more than a factor 4, and the local
degrees by (up to) a constant factor 1 + �λ�. Therefore, the dimension of the
local finite element space is multiplied by not more than a factor 4(1 + �λ�)2;
since the number of REFINE steps necessary for a fixed error reduction factor
δ ∈ (0, 1) is bounded by M ≤ � log δ

log α �, leading to an efficient error reducer. ♦

8.3.4 Equivalent computable error quantities

The localized discrete residuals r̃a provide, by their dual norms ‖r̃a‖H1∗(ωa)′
,

reliable and efficient error indicators which can drive an AFEM. These dual
norms are, however, not computable.

For p ≥ 0 and a rectangle T, the Raviart-Thomas space of degree p is

RTp(T) := Qp+1,p(T)× Qp,p+1(T) ⊂ H(div; T).

The following results underline the importance of this space for p-robustness.

Lemma 8.3.2 (p-Robust Inverse of Divergence [BPS09, Thm. 5]). Let T be a
rectangle. For ϕ ∈ Qp(T), there is a σ ∈ RTp(T) with

div σ = ϕ, ‖σ‖T � ‖〈ϕ, ·〉T‖H1
0 (T)

′ .

Lemma 8.3.3 (p-Robust Raviart–Thomas Extension [CM10, Corol. 3.4]).
Take T a rectangle with edges {e1, e2, e3, e4}, and take γ the union of one or more
edges. Suppose we have a ϕ ∈ L2(γ) such that ϕ|e ∈ Pp(e) for all edges e ⊂ γ, and
when γ = ∂T, also 〈ϕ, 1〉γ = 0. Then there is a σ ∈ RTp(T) with

div σ = 0, (σ · nT)|γ = ϕ, ‖σ‖T � inf
{τ∈H(div;T):div τ=0,(τ·nT)|γ=ϕ}

‖τ‖T .

Remark. Lemma 8.3.3 follows from a careful reading of [CDD08, §3.3–3.4],
where we sum over only those polynomial lifts Uj that correspond with an
edge in γ. Their result is on tangential derivatives and H(curl; T), but rotating
over 90◦ recovers our result for the normal derivatives and H(div; T). ♦

In [DEV16], Dolejší et al. use these two lemmas (stated on triangles) to find
a Raviart–Thomas flux σa ∈ ∏Ť∈Ťa

RTpa(Ť) with p-robust norm equivalence
‖σa‖ωa � ‖r̃a‖H1∗(ωa)′

, and present an efficient algorithm for its construction.
The error indicators ‖σa‖ωa can be computed, and so can drive an AFEM.
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8.4 Reduction to reference problems

In this section, we prove the main theorem of this work, reducing the local
p-robust saturation problem to a small number of saturation problems on the
reference square.

8.4.1 Saturation coefficients

Let T̂ := [−1, 1]2 be the reference square. For a closed subspace Ĥ ⊂ H1(T̂)
on which the H1(T̂)-seminorm is a norm, a finite-dimensional subspace V̂ ⊂
Ĥ , and a set of functionals F̂ ⊂ Ĥ ′, define the saturation coefficient

S(Ĥ , V̂ , F̂ ) := sup
F̂∈F̂

‖F̂‖Ĥ ′

‖F̂‖V̂ ′

which, if bounded, shows that V̂ is large enough to saturate Ĥ over F̂ .

Lemma 8.4.1 (Saturation extends to rectangles). For any T ∈ T ∈ T,

sup
F∈F

‖F‖H ′

‖F‖V ′
� κ2(B)S(Ĥ , V̂ , F̂ )

where FT(x) := Bx + b is an affine mapping from T to T̂, and H , V , F are deter-
mined by the pull-back, pull-back, resp. push-forward; cf. [BS08, p. 82]. In words,
saturation on the reference square extends to uniformly shape regular rectangles.

8.4.2 Enumerating the interior edges of a refined patch

Refined patches will play an integral role in the proof of the forthcoming The-
orem. Take a ∈ VT , and let Ťa be its refined patch. We will construct an
enumeration of the interior edges Ě int

a of Ťa as (ěi)
na
i=1, where na := #Ě int

a , and
for each interior edge, choose a specific square Ťi ∈ Ťa adjacent to ěi.

Because every patch Ta is a 1-irregular collection of axis-aligned rectangles,
there is only a finite number of different refined patch types. In fact, it can be
shown that up to rotation/flipping of Ťa, all patches fall in one of the thirteen
types on the right of Figure 8.3.

Overlay the vertex a with the â in the 4 × 4 grid to the left of Figure 8.3.
Then every ě ∈ Ě int

a inherits a number 1 ≤ k(i) ≤ 24 from the grid. We then
enumerate (ěi)

na
i=1 in increasing order of the values k(i), and we choose Ťi as

the square above or to the left of ěi (whichever is applicable).

8.4.3 Main theorem

Let T be a rectangle. When γ ⊂ ∂T with meas(γ) > 0, the space H1
0,γ(T)

denotes the closure in H1(T) of the smooth functions on T that vanish on
γ. By abuse of notation, when E = {γ} is a collection of such parts of the
boundary, H1

0,E (T) will denote the closure of smooth functions that vanish on
every γ separately.
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Figure 8.3 Left: a 4× 4 grid with vertex â, and enumeration of its interior edges.
Right: the thirteen fundamentally different refined patch types, with the double
line indicating Neumann edges Ěext,N

a of the patch boundary, and the thick black
line Dirichlet edges Ěext,D

a . We enumerate interior edges of a patch by overlaying
its vertex a with â in the left grid, and numbering them in increasing order.

For brevity, write the restriction of H1
∗(ωa) to piecewise polynomials as

H1
∗,p(Ťa) := H1

∗(ωa) ∩ Q−1
p (Ťa) (p ∈ N, a ∈ VT ).

We enumerate the edges of the reference square T̂ as ET̂ = (ê1, ê2, ê3, ê4), in
counterclockwise fashion, starting from the rightmost edge.

Theorem 8.4.2 (Reduction of p-robust saturation). Given the sets

E(A) :=
{
E ⊂ ET̂ : E �= ∅

}
, E(B) :=

{
{ê2} , {ê3} , {ê2, ê3} , {ê2, ê3, ê4}

}
,

(8.4.1)
of subsets of ET̂ , define the reference saturation coefficients

S(A)
E ,p,q := S

(
H1

0,E (T̂), H1
0,E (T̂)∩Qq(T̂), {h �→〈φ, h〉T̂ : φ ∈ Qp(T̂)}

)
(E ∈ E(A)),

S(B)
E ,p,q := S

(
H1

0,E (T̂), H1
0,E (T̂)∩Qq(T̂), {h �→〈φ, h〉ê1 : φ ∈ Pp(ê1)}

)
(E ∈ E(B)),

S(C)
p,q := S

(
H1(T̂)/R, Qq(T̂)/R, {h �→〈φ, h〉ê1 : φ ∈ Pp(ê1)/R}

)
.

If for some function q : N → N, it holds that

Ŝ := sup
p

max
{

S(A)
E ,p,q(p) : E ∈ E(A)

}
∪
{

S(B)
E ,p,q(p) : E ∈ E(B)

}
∪
{

S(C)
p,q(p)

}
< ∞,

then we have p-robust saturation, in that

‖r̃a‖H1∗(ωa)′
� ‖r̃a‖H1

∗,q(pa+1)+1(Ťa)′
(8.4.2)

dependent on Ŝ, but independent of the quadrangulation T and its local degrees.
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Figure 8.3 Left: a 4× 4 grid with vertex â, and enumeration of its interior edges.
Right: the thirteen fundamentally different refined patch types, with the double
line indicating Neumann edges Ěext,N
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}
,

(8.4.1)
of subsets of ET̂ , define the reference saturation coefficients

S(A)
E ,p,q := S

(
H1

0,E (T̂), H1
0,E (T̂)∩Qq(T̂), {h �→〈φ, h〉T̂ : φ ∈ Qp(T̂)}

)
(E ∈ E(A)),

S(B)
E ,p,q := S

(
H1

0,E (T̂), H1
0,E (T̂)∩Qq(T̂), {h �→〈φ, h〉ê1 : φ ∈ Pp(ê1)}
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Outline of proof

Our proof is similar in taste to [BPS09, Thm. 7] and [CNSV17b, Thm. 7.1],
with some details requiring a more involved approach. We will perform three
steps. Write, as in (8.3.1),

r̃a(v) = ∑
Ť∈Ťa

〈φŤ , v〉Ť + ∑
ě∈Ě int

a

〈φě, v〉ě (v ∈ H1(ωa))

for some φŤ ∈ QpŤ+1(Ť) and φě ∈ Ppa+1(ě). In Step (A) below, we bound the
dual norm of the set of element terms; in Steps (B) and (C), we do the same
for the set of edge terms. Throughout the proof, we will use the assumption
pŤ ≥ 1 to find that, for interior vertices a ∈ V int

T , the residual vanishes on
constants (ψa ∈ UT so r̃a(1) = r̃(ψa1) = r̃(ψa) = 0).

In Step (A), we employ supp maxE∈E(A) S(A)
E ,p,q(p) < ∞ to find, on every

rectangle Ť ∈ Ťa, a functional r̃Ť ∈ H1
∗(ωa)′ with

‖r̃Ť‖H1∗(ωa)′
� ‖r̃a‖H1

∗,q(pa+1)(Ťa)′
and r̃Ť(1) = 0, (8.4.3)

that removes the Ť-contribution from r̃a, in the sense that the residual r̃(0)a :=
∑Ť∈Ťa

r̃Ť satisfies, for v ∈ H1
∗(ωa),

r̃a(v)− r̃(0)a (v) = ∑
ě∈Ě int

a

〈φ(0)
ě , v〉ě for some φ

(0)
ě ∈ Ppa+1(ě). (8.4.4)

In Step (B), we use the enumeration (ěj)
na
j=1 of the interior edges Ě int

a where

na := #Ě int
a . At step i ∈ {1, . . . , na − 1}, we use supp maxE∈E(B) S(B)

E ,p,q(p) < ∞

and Lemma 8.4.3 below to find a functional r̃ěi = r̃Ťi ,ěi
∈ H1

∗(ωa)′ with

‖r̃ěi‖H1∗(ωa)′
� ‖r̃a‖H1

∗,q(pa+1)+1(Ťa)′
and r̃ěi (1) = 0, (8.4.5)

that removes the ěi-contribution from r̃(i−1)
a while not re-introducing contri-

butions on edges ěj for j < i, in the sense that the residual r̃(i)a := r̃(i−1)
a + r̃ěi

satisfies, for v ∈ H1
∗(ωa),

r̃a(v)− r̃(i)a (v) = ∑
j≥i+1

〈φ(i)
ěj

, v〉ěj for some φ
(i)
ěj

∈ Ppa+1(ěj). (8.4.6)

Lastly, in Step (C), the final iteration i = na, we make a distinction. When
a ∈ Vext

T is a boundary vertex, we construct a r̃ěna
∈ H1

∗(ωa)′ for which (8.4.5)
and (8.4.6) hold once more. Then through the triangle inequality, #Ťa ≤ 16,
and #Ě int

a ≤ 24 we find

‖r̃a‖H1∗(ωa)′
≤ ∑

Ť∈Ťa

‖r̃Ť‖H1∗(ωa)′
+

na

∑
j=1

‖r̃ěj‖H1∗(ωa)′
� ‖r̃a‖H1

∗,q(pa+1)+1(Ťa)′
.
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When a ∈ V int
T is an interior vertex, we use supp S(C)

p,q(p) < ∞ to bound

‖r̃a − r̃(na−1)
a ‖H1∗(ωa)′

� ‖r̃a‖H1
∗,q(pa+1)(Ťa)′

(8.4.7)

which implies that

‖r̃a‖H1∗(ωa)′
≤ ‖r̃a − r̃(na−1)

a ‖H1∗(ωa)′
+ ∑

Ť∈Ťa

‖r̃Ť‖H1∗(ωa)′
+

na−1

∑
j=1

‖r̃ěj‖H1∗(ωa)′

� ‖r̃a‖H1
∗,q(pa+1)+1(Ťa)′

.

In either case, we conclude that (8.4.2) must hold.

Extension lemma

Proving, in particular, inequality (8.4.5) requires some creativity. Assume
for now that a is a boundary vertex (the other case is handled in the main
proof). We will require the intermediate result that for some specific finite-
dimensional subspace of polynomials Vi ⊂ H1(Ťi), there is, for each v ∈ Vi, a
piecewise polynomial Ev ∈ H1

∗(ωa) with

~Ev~ωa � ~v~Ťi
, and 〈φ(i−1)

ěi
, v〉ěi = r̃a(Ev)− r̃(i−1)

a (Ev).

Our approach is the following. Note that 〈φ(i−1)
ěi

, v〉ěi is an inner product

over a single edge, whereas r̃a(Ev) − r̃(i−1)
a (Ev) is a sum of inner products

〈φ(i−1)
ěj

, Ev〉ěj on interior edges ěj with j ≥ i (see (8.4.6)). The desired equality

holds for all v ∈ Vi surely when Ev extends v (in that Ev|Ťi
= v), and Ev|ěj = 0

for every j ≥ i + 1. Moreover, a ∈ Vext
T , so Ev ∈ H1

∗(ωa) should vanish on all
edges in Ěext,D

a . This gives rise to the set of patch (resp. local) Dirichlet edges,

ĚD
a,i := Ěext,D

a ∪
{

ěj ∈ Ě int
a : j ≥ i + 1

}
, Ě loc,D

a,i := ĚD
a,i ∩ ĚŤi

(i = 1, . . . , na),

and for v that vanishes on all local Dirichlet edges, Ev then vanishes on all
patch Dirichlet edges ě ∈ ĚD

a,i. Existence of this Ev depends on the enumeration
(ěi)

na
i=1 of interior edges. The following lemma shows that with our particular

construction, we can build a suitable E.

Lemma 8.4.3 (Bounded polynomial extension). Let Ťa be one of the thirteen re-
fined patch types of Figure 8.3. Let na, (ěi)

na
i=1, and (Ťi)

na
i=1 be as defined in §8.4.2.

For each square Ťi, we enumerate its edges as (e1, e2, e3, e4), in counterclockwise fash-
ion, starting from the rightmost edge.

For 1 ≤ i ≤ na − 1, and i = na when a is an external vertex, we have:

1. The set Ě loc,D
a,i is nonempty. In fact, one of five situations occurs:

(a) Ě loc,D
a,i = {e1, e2, e3} , (b) Ě loc,D

a,i = {e2, e3, e4} , (c) Ě loc,D
a,i = {e2, e3} ,

(d) Ě loc,D
a,i = {e2} and e3 ∈ Ěext,N

a , (e) Ě loc,D
a,i = {e3} and e2 ∈ Ěext,N

a .
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a,i = {e3} and e2 ∈ Ěext,N
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2. There is a bounded linear map

E : H1
0,Ě loc,D

a,i
(Ťi) ∩ Qq(pa+1)(Ťi) → H1(ωa) ∩ Q−1

q(pa+1)+1(Ťa)

so that for all v, its extension Ev vanishes on patch Dirichlet edges; specifically,

Ev|Ťi
= v, ~Ev~ωa � ~v~Ťi

, Ev|ě = 0 (ě ∈ ĚD
a,i).

Proof. A careful visual inspection of the enumeration for each of the thirteen
patch types of Figure 8.3 shows that condition (1) holds: by enumerating the
edges right-to-left, bottom-to-top, we ensure e2 and e3 are (situations (a–c))
both in Ěext,D

a or equal to some ěj for j > i, or (situations (d–e)) when Ťi is in
the topmost row or leftmost column, either e2 or e3 is in Ěext,N

a , but never both.

Ťi e1

e2

e3

e4

T

(a)

Ťi e1

e2

e3

e4
T

(b)

Ťi e1

e2

e3

e4 e4

(c)

Ťi e1

e2

e3

e4
T
e2

e3
e4

(d)

Ťi e1

e2

e3

e4

(e)

Figure 8.4 The different extensions of Lemma 8.4.3: (a) Ě loc,D
a,i = {e1, e2, e3},

(b) Ě loc,D
a,i = {e2, e3, e4}, (c) Ě loc,D

a,i = {e2, e3}, (d) Ě loc,D
a,i = {e2} , e3 ∈ Ěext,N

a , (e)

Ě loc,D
a,i = {e3} , e2 ∈ Ěext,N

a . The full thick line on ∂Ťi denotes its local Dirichlet

boundary Ě loc,D
a,i , and the dashed thick line shows the Dirichlet boundary of the

extension; double lines indicate edges in Ěext,N
a .

By the first result of this Lemma, there are essentially five cases to look
at. See Figure 8.4. Denote with T the union of squares in the appropriate
case. Let v ∈ H1

0,Ě loc,D
a,i

(Ťi) ∩ Qq(pa+1)(Ťi). We will use multiple reflections of

v to find a piecewise polynomial v ∈ H1(T ) (of degree q(pa + 1) + 1) that
vanishes on the part of ∂T denoted by the thick line. Restricting v to T ∩ ωa
(because T may contain squares outside Ťa) yields a function that vanishes
on the edges ě ∈ Ě int

a with ě ⊂ ∂T , so that we can easily zero-extend v|T ∩ωa

to Ev ∈ H1(ωa) ∩ Q−1
q(pa+1)+1(Ťa).

The choice of Ťi ensures that ěi is its right or bottom edge. Moreover, the
enumeration is bottom-right to top-left, so that every patch Dirichlet edge is
positioned either above or to the left of Ťi. On the other hand, the support
of our extension Ev is—as we will shortly see—to the right or bottom of Ťi.
Therefore, Ev necessarily vanishes on all of ĚD

a,i.
It remains to construct v with the properties above, for each situation.

(a) Denote with v, T the reflections of v and Ťi across e4. Then v|e4 = v|e4
and ~v~T = ~v~Ť , so the extension v defined by v|Ť := v and v|T := v
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vanishes on all of ∂(Ťi ∪ T), is continuous globally, and polynomial on
both squares separately.

(b) The proof of this case is analogous to that of (a).

(c) Denote with e4 the reflection of e4 across e1. Denote with v the extension
of v on Ťi ∪ T. The extension v of v across e4 ∪ e4 is the desired function.

(d) Denote with v, T, e2, e3, e4 the reflections of v, T, e2, e3, e4 across e1, respec-
tively. Let φ ∈ Q1(T) be a decay function defined by φ|e1 = 1 and φ|e3 = 0.
Then

(vφ)|e1 = v|e1 , vφ ∈ H1
0,e2∪e3

(T) ∩ Qq(pa+1)+1(T),

and we thus see that the function v defined by v|Ťi
:= v, v|T := vφ is a

continuous polynomial extension of v that moreover vanishes on e3. Its
norm satisfies ~v~Ťi∪T � ~v~Ťi

(proof is analogous to [EV15, (3.29)]). The
desired function v is found as the extension of v across e4 ∪ e4.

(e) The proof of this case is analogous to that of (d).

Proof of Theorem 8.4.2

We proceed in several steps.

Step (A0) For every Ť ∈ Ťa, we will find our functional r̃Ť ∈ H1
∗(ωa)′

by constructing a Raviart–Thomas flux σ Ť ∈ RTpa+1(Ť), and write r̃Ť(v) =

〈σ Ť ,∇v〉Ť . Let Ť ∈ Ťa.

Step (A1) We construct r̃Ť . By Lemma 8.3.2, there is a σ
(1)
Ť

∈ RTpa+1(Ť) with

div σ
(1)
Ť

= φŤ and ‖σ
(1)
Ť

‖Ť � ‖〈φŤ , ·〉Ť‖H1
0 (Ť)

′ . (8.4.8)

By definition, r̃a has no contributions on the exterior edges of Ťa. However,
σ
(1)
Ť

can have a nonzero normal component on edges in Ěext
Ť

. Let’s resolve this.
Without loss of generality we assume Ě int

Ť
�= ∅,1 so the Galerkin problem

〈∇wŤ ,∇v〉Ť = FŤ(v) := ∑
ě∈Ěext

Ť

〈σ(1)
Ť

· nŤ , v〉ě (v ∈ HŤ) where HŤ := H1
0,Ě int

Ť
(Ť),

has a unique solution wŤ ∈ HŤ for which it follows directly that

div∇wŤ = 0, ~wŤ~Ť ≤ ‖FŤ‖H ′
Ť

, ∇wŤ · nŤ = −σ
(1)
Ť

· nŤ for ě ∈ Ěext
Ť .

1When Ě int
Ť

= ∅, then Ťa consists of a single element Ť, in which case H1
∗(ωa) = H1

0,Ěext
a
(Ť)

so that we may invoke the assumption supp S(A)

Ěext
a ,p,q(p)

< ∞ directly to find the saturation re-

sult (8.4.2).
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· nŤ , v〉ě (v ∈ HŤ) where HŤ := H1
0,Ě int

Ť
(Ť),

has a unique solution wŤ ∈ HŤ for which it follows directly that

div∇wŤ = 0, ~wŤ~Ť ≤ ‖FŤ‖H ′
Ť

, ∇wŤ · nŤ = −σ
(1)
Ť

· nŤ for ě ∈ Ěext
Ť .

1When Ě int
Ť

= ∅, then Ťa consists of a single element Ť, in which case H1
∗(ωa) = H1

0,Ěext
a
(Ť)

so that we may invoke the assumption supp S(A)

Ěext
a ,p,q(p)

< ∞ directly to find the saturation re-

sult (8.4.2).
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Now, integration by parts tells us that

FŤ(v) = 〈div σ
(1)
Ť

, v〉Ť + 〈σ(1)
Ť

,∇v〉Ť
(
v ∈ HŤ

)
.

Then, through (8.4.8) and (for the final inequality) H1
0(Ť) ⊂ HŤ , we have

‖FŤ‖H ′
Ť
≤ ‖〈div σ

(1)
Ť

, ·〉Ť‖H ′
Ť
+ ‖σ

(1)
Ť

‖Ť � ‖〈φŤ , ·〉Ť‖H ′
Ť
+ ‖〈φŤ , ·〉Ť‖H1

0 (Ť)
′

≤ 2‖〈φŤ , ·〉Ť‖H ′
Ť

,

so that ~wŤ~Ť � ‖〈φŤ , ·〉Ť‖H ′
Ť

. We invoke Lemma 8.3.3 with γ := ∪ě∈Ěext
Ť

ě,

ϕ ∈ L2(γ) piecewise defined as ϕ|ě := −σ
(1)
Ť

· nŤ , and take τ := ∇wŤ , yield-

ing a σ
(2)
Ť

∈ RTpa+1(Ť) for which

div σ
(2)
Ť

= 0, σ
(2)
Ť

· nŤ = −σ
(1)
Ť

· nŤ for ě ∈ Ěext
Ť , ‖σ

(2)
Ť

‖Ť � ‖〈φŤ , ·〉Ť‖H ′
Ť

,
(8.4.9)

so that σ Ť := σ
(1)
Ť

+ σ
(2)
Ť

has bounded norm, with normal components van-

ishing on Ěext
Ť

. We then define r̃Ť ∈ H1
∗(ωa)′ and r̃(0)a ∈ H1

∗(ωa)′ as

r̃Ť(v) := 〈σ Ť ,∇v〉Ť and r̃(0)a := ∑
Ť∈Ťa

r̃Ť .

Step (A2) We verify (8.4.4). Partial integration yields that for v ∈ H1
∗(ωa),

r̃Ť(v) = −〈φŤ , v〉Ť + ∑
ě∈Ě int

Ť

〈φ(0)
Ť,ě

, v〉ě, where φ
(0)
Ť,ě

:= σ Ť · nŤ ∈ Ppa+1(ě).

Therefore, r̃(0)a removes all element contributions from r̃a; it follows that in-
deed, r̃a − r̃(0)a is a sum of contributions over (interior) edges:

r̃a(v)− r̃(0)a (v) = ∑
ě∈Ě int

a

〈φě, v〉ě − ∑
(Ť,ě)∈Ťa×Ě int

Ť

〈φ(0)
Ť,ě

, v〉ě =: ∑
ě∈Ě int

a

〈φ(0)
ě , v〉ě (v ∈ H1

∗(ωa)).

Now, every φ
(0)
ě is a sum of polynomials φ

(0)
Ť,ě

, so indeed φ
(0)
ě ∈ Ppa+1(ě).

Step (A3) We verify (8.4.3). By definition, r̃Ť(1) = 0. Cauchy–Schwarz,
(8.4.8), and (8.4.9) imply

‖r̃Ť‖H1∗(ωa)′
≤ ‖σ Ť‖Ť = ‖σ

(1)
Ť

+ σ
(2)
Ť

‖Ť � ‖〈φŤ , ·〉Ť‖H ′
Ť

.

Moreover, Ě int
Ť

�= ∅, hence it can be identified with a set E ∈ E(A) from (8.4.1).

By assumption, supp S(A)
E ,p+1,q(p+1) ≤ Ŝ, so that through Lemma 8.4.1, we find

‖〈φŤ , ·〉Ť‖H ′
Ť
� ‖〈φŤ , ·〉Ť‖V ′

Ť
, where VŤ := HŤ ∩ Qq(pa+1)(Ť).
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Every v ∈ VŤ vanishes on interior edges; write its zero-extension to ωa as
v ∈ H1(ωa). Then

H1
∗,q(pa+1)(Ťa) � v :=

{
v − 〈v, 1〉ωa a ∈ V int

T ,
v, a ∈ Vext

T .

By r̃a(1) = 0 for a ∈ V int
T , we have 〈φŤ , v〉Ť = r̃a(v) = r̃a(v); moreover,

~v~Ť = ~v~ωa , so

‖〈φŤ , ·〉Ť‖V ′
Ť

:= sup
0 �=v∈VŤ

∣∣〈φŤ , v〉Ť

∣∣
~v~Ť

= sup
0 �=v∈VŤ

∣∣∣r̃a(v)
∣∣∣

~v~ωa

≤ sup
0 �=w∈H1

∗,q(pa+1)(Ťa)

∣∣r̃a(w)
∣∣

~w~ωa

=: ‖r̃a‖H1
∗,q(pa+1)(Ťa)′

.

Chaining the dual norm inequalities in this step yields (8.4.3).

Step (B0) We traverse the interior edges Ě int
a in the order (ěj)

na
j=1 constructed

in §8.4.2. Let (Ťj)
na
j=1 be the sequence of squares for each ěj.

At each iteration of the traversal, we use result (1) of Lemma 8.4.3 to re-
move the ěi-contribution from the previous residual by—in a fashion similar
to Step (A1)—solving a local Galerkin problem and constructing a Raviart–
Thomas flux σi with specific properties. The resulting functional r̃ěi ∈ H1

∗(ωa)′

will be found as 〈σi,∇v〉Ťi
. We then use result (2) of the Lemma to establish

the dual norm bound of (8.4.5), similar to Step (A3).
We continue by induction. Let i = 1.

Step (B1) We construct r̃ěi . By result (1) of Lemma 8.4.3, we have Ě loc,D
a,i �= ∅,

so the problem

〈∇w(i),∇v〉Ťi
= 〈φ(i−1)

ěi
, v〉ěi (v ∈ Hi) where Hi := H1

0,E loc,D
a,i

(Ťi)

(8.4.10)
has a unique solution w(i) ∈ Hi for which it holds that div∇w(i) = 0, and

~w(i)~Ťi
≤ ‖〈φ(i−1)

ěi
, ·〉ěi‖H ′

i
,




∇w(i) · nŤi
= −φ

(i−1)
ěi

on ěi,

∇w(i) · nŤi
= 0 on

{
ěj ∈ Ě int

Ťi
: j < i

}
,

∇w(i) · nŤi
= 0 on Ěext,N

Ťi
.

By Lemma 8.3.3, there is a σi ∈ RTpa+1(Ťi) with the same normal components
on ĚŤi

\ Ě loc,D
a,i as ∇w(i), such that

div σi = 0, ‖σi‖Ťi
� ‖〈φ(i−1)

ěi
, ·〉ěi‖H ′

i
. (8.4.11)
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Every v ∈ VŤ vanishes on interior edges; write its zero-extension to ωa as
v ∈ H1(ωa). Then

H1
∗,q(pa+1)(Ťa) � v :=
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T , we have 〈φŤ , v〉Ť = r̃a(v) = r̃a(v); moreover,

~v~Ť = ~v~ωa , so
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ěi
, ·〉ěi‖H ′
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Ťi
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i
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We then define r̃ěi ∈ H1
∗(ωa)′ and r̃(i)a ∈ H1

∗(ωa)′ as

r̃ěi (v) := 〈σi,∇v〉Ťi
and r̃(i)a (v) := r̃(i−1)

a (v) + r̃ěi (v) (v ∈ H1
∗(ωa)).

Step (B2) Let us look at (8.4.6). In light of (8.4.4) when i = 1, or (8.4.6) for
i ≥ 2, suppose we have

r̃a(v)− r̃(i−1)
a (v) = ∑

j≥i
〈φ(i−1)

ěj
, v〉ěj for some φ

(i−1)
ěj

∈ Ppa+1(ěj) (v ∈ H1
∗(ωa)).

(8.4.12)
Using that v ∈ H1

∗(ωa) vanishes along edges in Ěext,D
Ťi

, and considering the
normal components of σi, integration by parts yields (8.4.6):

r̃a(v)− r̃(i)a (v) =
[
r̃a(v)− r̃(i−1)

a (v)
]
− r̃ěi (v) = ∑

j≥i
〈φ(i−1)

ěj
, v〉ěj − 〈σi · nŤi

, v〉∂Ťi

= ∑
j≥i

〈φ(i−1)
ěj

, v〉ěj − 〈σi · nŤi
, v〉ěi − ∑

ěj∈Ě int
Ťi

:j>i

〈σi · nŤi
, v〉ěj

= ∑
j≥i+1

〈φ(i)
ěj

, v〉ěj − ∑
ěj∈Ě int

Ťi
:j>i

〈σi · nŤi
, v〉ěj

=: ∑
j≥i+1

〈φ(i)
ěj

, v〉ěj for some φ
(i)
ěj

∈ Ppa+1(ěj).

Step (B3) We verify (8.4.5). By definition, r̃ěi (1) = 0. Moreover, by result
(1) of Lemma 8.4.3, Ě loc,D

a,i corresponds with an E ∈ E(B) from (8.4.1).2 By

assumption, S(B)
E ,pa+1,q(pa+1) ≤ Ŝ, so (8.4.11) and Lemma 8.4.1 yield

‖r̃ěi‖H1∗(ωa)′
≤ ‖σi‖Ťi

� ‖〈φ(i−1)
ěi

, ·〉ěi‖H ′
i
� ‖〈φ(i−1)

ěi
, ·〉ěi‖V ′

i
,

where Vi := Hi ∩ Qq(pa+1)(Ťi). To establish (8.4.5), it suffices to show

‖〈φ(i−1)
ěi

, ·〉ěi‖V ′
i
� ‖r̃a − r̃(i−1)

a ‖H1
∗,q(pa+1)+1(Ťa)′

, (8.4.13)

as by r̃a−r̃(i−1)
a = r̃a−r̃(0)a +∑i−1

j=1 r̃ěj , a triangle inequality, (8.4.5), and #Ťa ≤ 16,

‖r̃a − r̃(i−1)
a ‖H1

∗,q(pa+1)+1(Ťa)′
� ‖r̃a − r̃(0)a ‖H1

∗,q(pa+1)+1(Ťa)′
� ‖r̃a‖H1

∗,q(pa+1)+1(Ťa)′
.

We proceed as in Step (A3). Take v ∈ Vi. Result (2) of Lemma 8.4.3 guaran-
tees a bounded extension from v to a Ev ∈ H1(ωa) ∩ Q−1

q(pa+1)+1(Ťa) that van-

ishes on interior edges ěj with j > i. Moreover, Ev is zero on edges ě ∈ Ěext,D
a

2The set Ě loc,D
a,i is in one of five states, whereas E(B) has four; situation (a) and (b) of

Lemma 8.4.3 correspond with the same E ∈ E(B).
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whenever a ∈ Vext
T , so that in fact

H1
∗,q(pa+1)+1(Ťa) � v :=

{
Ev − 〈Ev, 1〉ωa a ∈ V int

T ,
Ev a ∈ Vext

T ,

with ~v~ωa = ~Ev~ωa � ~v~Ť .

Now, r̃a(1)− r̃(i−1)
a (1) = 0 when a ∈ V int

T , so r̃a(v)− r̃(i−1)
a (v) = r̃a(Ev)−

r̃(i−1)
a (Ev). Moreover, Ev|ěi = v|ěi and Ev|ěj = 0 for j > i, so almost all terms

of (8.4.12) vanish when we plug in Ev, which yields r̃a(Ev) − r̃(i−1)
a (Ev) =

〈φ(i−1)
ěi

, Ev〉ěi = 〈φ(i−1)
ěi

, v〉ěi . Then, (8.4.13) follows by

‖〈φ(i−1)
ěi

, ·〉ěi‖V ′
i
= sup

0 �=v∈Vi

∣∣∣〈φ(i−1)
ěi

, v〉ěi

∣∣∣
~v~Ťi

� sup
0 �=v∈Vi

∣∣∣r̃a(v)− r̃(i−1)
a (v)

∣∣∣
~v~ωa

≤ ‖r̃a − r̃(i−1)
a ‖H1

∗,q(pa+1)+1(Ťa)′
.

Step (B4) We repeat Steps (B1)–(B3) for i ∈ {2, . . . , na − 1}, at each step find-
ing functionals r̃ěi and r̃(i)a for which (8.4.5) and (8.4.6) hold.

Step (C) When a ∈ Vext
T , the results of Lemma 8.4.3 are satisfied once more

for i = na. This allows us to repeat Steps (B1)–(B3) for a r̃ěna
∈ H1

∗(ωa)′

satisfying (8.4.5) and (8.4.6).
When a ∈ V int

T , we cannot continue the iteration; the set E loc,D
na is empty so

we cannot solve (8.4.10). However, from (8.4.6), we find for v ∈ H1
∗(ωa),

r̃a(v)− r̃(na−1)
a (v) = 〈φ(na−1)

ěna
, v〉ěna

for some φ
(na−1)
ěna

∈ Ppa+1(ěj).

With ~v−〈v, 1〉Ťna
~Ťna

≤~v~ωa and 〈φ(na−1)
ěna

, 1〉ěna
=0 (by r̃a(1)=0= r̃(na−1)

a (1)),

‖〈φ(na−1)
ěna

, ·〉ěna
‖H1∗(ωa)′

≤ ‖〈φ(na−1)
ěna

, ·〉ěna
‖H ′

na
where Hna := H1(Ťna)/R.

The fact 〈φ(na−1)
ěna

, 1〉ěna
= 0 also allows us to use S(C)

pa ,q(pa+1) ≤ Ŝ and invoke

Lemma 8.4.1 yielding, with Vna := Hna ∩ Qq(pa+1)(Ťna),

‖〈φ(na−1)
ěna

, ·〉ěna
‖H ′

na
� ‖〈φ(na−1)

ěna
, ·〉ěna

‖V ′
na

.

Any v ∈ Vna has zero mean, so reflecting across every row and column of
Ťa yields a mean-zero extension v ∈ H1

∗,q(pa+1)(Ťa) with, by #Ťa ≤ 16, norm

~v~ωa =
√

#Ťa~v~Ťna
� ~v~Ťna

.
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ěna

, ·〉ěna
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Finally, by 〈φ(na−1)
ěna

, v〉ěna
= 〈φ(na−1)

ěna
, v〉ěna

, we have the dual norm bound

‖〈φ(na−1)
ěna

, ·〉ěna
‖V ′

na
= sup
0 �=v∈Vna

∣∣∣〈φ(na−1)
ěna

, v〉ěna

∣∣∣
~v~Ťna

� sup
0 �=v∈Vna

∣∣∣〈φ(na−1)
ěna

, v〉ěna

∣∣∣
~v~ωa

≤ ‖〈φ(na−1)
ěna

, ·〉ěna
‖H1

∗,q(pa+1)(Ťa)′
;

then, through the triangle inequality, we find

‖〈φ(na−1)
ěna

, ·〉ěna
‖H1

∗,q(pa+1)(Ťa)′
≤ ‖r̃a‖H1

∗,q(pa+1)(Ťa)′
+ ‖r̃(na−1)

a ‖H1
∗,q(pa+1)(Ťa)′

� ‖r̃a‖H1
∗,q(pa+1)(Ťa)′

.

Chaining the dual norm inequalities in Step (C) then yields (8.4.7). �

8.5 Computation of reference saturation coefficients

In this section, we detail on the numerical computation of the saturation co-
efficient S(Ĥ , V̂ , F̂ ). To allow computation of this coefficient, we first write
it as the solution to a generalized Eigenvalue problem. We then discuss the
construction of bases for the spaces Ĥ , V̂ , and F̂ involved in the specific sat-
uration coefficients of Theorem 8.4.2.

8.5.1 An equivalent problem

In our applications, F̂ is a finite-dimensional subspace of Ĥ ′ rather than just a
subset, allowing us to write S(Ĥ , V̂ , F̂ ) as sup{

F̂∈F̂ :‖F̂‖V̂ ′=1
}‖F̂‖Ĥ ′ . Since

F̂ is finite-dimensional, this supremum is attained, so we may equivalently
solve the problem of finding the largest 0 < µ = S(Ĥ , V̂ , F̂ ) such that

for some 0 �= F̂ ∈ F̂ , ‖F̂‖2
Ĥ ′ = µ2‖F̂‖2

V̂ ′ . (8.5.1)

Proposition 8.5.1 (Equivalent Eigenvalue problem). Let ΞĤ , ΞV̂ , and ΣF̂ be
bases for the three spaces. For Û ∈ {Ĥ , V̂ }, define stiffness- and load matrices

AÛ := 〈∇ΞÛ ,∇ΞÛ〉T̂ =
[
〈∇ξi,Û ,∇ξ j,Û〉T̂

]#ΞÛ

i,j=1
, LÛ := ΣF̂ (ΞÛ) :=

[
σi(ξ j,Û)

]
i,j

.

Then problem (8.5.1) is equivalent to finding the largest generalized Eigenvalue µ2 of

RĤ F = µ2RV̂ F, where RÛ := LÛ A−�
Û

L�
Û . (8.5.2)

Proof. For Û ∈ {Ĥ , V̂ } and F̂ ∈ F̂ , take uÛ = uÛ(F̂) the unique solution to

〈∇uÛ ,∇vÛ〉T̂ = F̂(vÛ) (vÛ ∈ Û).
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Recalling that we equip Û with ~ · ~T̂ := ‖∇·‖T̂ , and so Û′ with its dual
norm, ‖F̂‖Û′ = ~uÛ~T̂ . Write F̂ = F�ΣF̂ and uÛ = u�

Û
ΞÛ ; then u�

Û
AÛ =

〈∇uÛ ,∇ΞÛ〉T̂ = F̂(ΞÛ) = F�LÛ , or A�
ÛuÛ = L�

Û F. Now, AÛ is invertible,
so uÛ = A−�

Û
L�

Û F. We see ‖F̂‖2
Û′ = ~uÛ~2

T̂
= u�

Û
AÛuÛ = F�LÛ A−�

Û
L�

Û F =

F�RÛ F, reducing problem (8.5.1) to finding the largest µ > 0 s.t.

for some F �= 0, F�RĤ F = µ2F�RV̂ F ⇐⇒ µ2 =
F�RĤ F

F�RV̂ F
,

which, as both RĤ and RV̂ are symmetric positive-definite, is a Rayleigh
quotient for the generalized Eigenvalue problem of (8.5.2) (cf. [Li15]).

8.5.2 Discrete saturation coefficients

In all of the cases of Theorem 8.4.2, the space Ĥ is an infinite-dimensional
closed subspace of H1(T̂), so computing S(Ĥ , V̂ , F̂ ) by means of (8.5.2) will
likely not be possible. However, the following result shows that we may re-
strict ourselves to a finite-dimensional subspace that is large enough.

Lemma 8.5.2. Since F̂ is a finite-dimensional subspace of Ĥ ′, a compactness argu-
ment shows that the discrete saturation coefficient S(Ĥ ∩ Qr(T̂), V̂ , F̂ ) tends to
S(Ĥ , V̂ , F̂ ) for r → ∞.

8.5.3 Bases for the subspaces

Solving (8.5.2) hinges on computing the stiffness matrix AĤ and load matrix
LĤ , which depend on the choice of basis. In practice, we are able to choose
these bases as tensor products. For instance, when ΞĤ =: Ξ1 ⊗ Ξ2, we see

AĤ = 〈 d
dx Ξ1, d

dx Ξ1〉 Î ⊗ 〈Ξ2, Ξ2〉 Î + 〈Ξ1, Ξ1〉 Î ⊗ 〈 d
dx Ξ2, d

dx Ξ2〉 Î ,

where Î := [−1, 1], so that T̂ = Î × Î, and with ⊗ denoting the Kronecker
product. Essentially, computation of the saturation coefficient boils down to
computing a number of inner products.

Define Lk as the kth Legendre polynomial, with deg Lk = k and Lk(1) = 1.
The functions

ϕk(x) :=
√

k + 1
2 Lk(x), (k ≥ 0)

then constitute an L2( Î)-orthonormal basis called the Legendre basis. More-
over, the functions

ξk(x) :=
√

k − 1
2

∫ 1

x
Lk−1(s)ds =

1√
4k − 2

(Lk−2(x)− Lk(x)), (k ≥ 2)

constitute an orthonormal basis with respect to the H1( Î)-seminorm which
we call the Babuška–Shen basis. With respect to the L2( Î)-inner product, this
basis is quasi-orthogonal in that

〈ξk, ξm〉 Î = 0 ⇐⇒ k−m �∈ {−2, 0, 2} , and 〈ϕk, ξm〉 Î = 0 ⇐⇒ k−m �∈ {0, 2} .
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Û
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which, as both RĤ and RV̂ are symmetric positive-definite, is a Rayleigh
quotient for the generalized Eigenvalue problem of (8.5.2) (cf. [Li15]).

8.5.2 Discrete saturation coefficients

In all of the cases of Theorem 8.4.2, the space Ĥ is an infinite-dimensional
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We can supplement the Babuška–Shen basis with ξ1(x) = 1
2

√
2(1 − x) to find

an orthonormal basis for H1
0,{1}( Î), and with ξ̃1(x) := ξ1(−x) for a basis for

H1
0,{−1}( Î). The supplemented functions are L2( Î)-orthogonal to ξm for m ≥ 4.

Recall the saturation coefficients from Theorem 8.4.2. The space V̂ is in
every case just Ĥ restricted to polynomials of lower degree, so we will focus
on building bases for Ĥ and F̂ .

First discrete coefficient S(A)
E ,p,q,r Denote

Ĥ := H1
0,E (T̂) ∩ Qr(T̂), F̂ := {h �→ 〈φ, h〉T̂ : φ ∈ Qp(T̂)} ⊂ Ĥ ′.

A tensorized basis ΞĤ = Ξ1 ⊗ Ξ2 for Ĥ is readily constructed through the
Babuška–Shen basis, supplemented to account for boundary conditions, up to
degree r in each coordinate.

Choosing Φ := Φ1 ⊗ Φ2 with Φ1 := Φ2 the Legendre basis up to degree
p, we set ΣF̂ := 〈Φ, ·〉T̂ . Then, the load matrix can be computed from LĤ =

〈Φ, ΞĤ 〉T̂ = 〈Φ1, Ξ1〉 Î ⊗ 〈Φ2, Ξ2〉 Î .

Second discrete coefficient S(B)
E ,p,q,r The space Ĥ is the same as in S(A)

E ,p,q,r so its

basis ΞĤ = Ξ1 ⊗Ξ2 is readily constructed. For F̂ :=
{

h �→ 〈φ, h〉ê1 : φ ∈ Pp(ê1)
}

,
we choose the basis ΣF̂ := 〈Φ, ·〉ê1 with Φ the Legendre basis for Pp(ê1). Then

LĤ = 〈Φ, ΞĤ 〉ê1 = Ξ1(1)⊗ 〈Φ, Ξ2〉 Î where Ξ1(x) :=
(
ξ(x)

)
ξ∈Ξ1 . (8.5.3)

The polynomials ξ ∈ Ξ1 with deg ξ ≥ 2 have ξ(1) = 0, so LH is sparse with
entire zero rows.

Third discrete coefficient S(C)
p,q,r To create a basis for Ĥ := Qr(T̂)/R, we build

X :=
{

χ0, ξ1 − 〈ξ1, 1〉 Î , ξ2 − 〈ξ2, 1〉 Î , . . . , ξr − 〈ξr, 1〉 Î
}

, where χ0 := 1/
√

2

which is a basis for Qr( Î), (almost) orthogonal w.r.t. the H1( Î)-seminorm, with
every element except χ0 having zero mean. The set ΞĤ := X × X \ {χ0 ⊗ χ0}
then consists of linearly independent polynomials with zero mean, and is of
correct cardinality, hence a basis for Ĥ . Legendre polynomials φk of degree
k ≥ 1 have mean zero, so Φ∗ :=

{
φk : 1 ≤ k ≤ p

}
is a basis for Pp(ê1)/R, and

ΣF̂ := 〈Φ∗, ·〉ê1 a basis for F̂ :=
{

h �→ 〈φ, h〉ê1 : φ ∈ Pp(ê1)/R
}

. Its load
matrix is formed analogously to (8.5.3).

8.6 Numerical verification

In Theorem 8.4.2, we showed that patch-based p-robust saturation holds, un-
der the assumption that a number of quantities on the reference square are
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finite. More specifically, we are interested in finding a function q : N → N

such that the saturation coefficients

S(A)
E ,p,q(p), S(B)

F ,p,q(p), S(C)
p,q(p) (E ∈ E(A), F ∈ E(B))

(cf. Thm. 8.4.2) are uniformly bounded in p. Unable to compute the limit p →
∞, we resort to computing them for a number of large but finite values of p,
and extrapolate from this progression. Moreover, with our current approach,
we are unable to compute the above quantities, so we instead compute the
discrete saturation coefficients

S(A)
E ,p,q,r, S(B)

F ,p,q,r, S(C)
p,q,r (E ∈ E(A), F ∈ E(B))

(cf. Lemma 8.5.2) for values of r that are large relative to p and q, and expect
to see r-stabilization of the discrete coefficient to its “continuous” counterpart.

In [CNSV17b], it was shown that (for a slightly different setting), a strategy
of the form q(p) = p + n with n ∈ N is insufficient, whereas for any λ > 0,
the choice q(p) = p + �λp� exhibits saturation. This motivates our choice to
run numerical computations for

q(p) = p + 4, q(p) = p + �p/7�, q(p) = 2p.

By symmetry, we have five different configurations of sets of edges in E(A):

E1 := {ê1} , E2 := {ê1, ê2} , E3 := {ê1, ê3} ,
E4 := {ê1, ê2, ê3} , E5 := {ê1, ê2, ê3, ê4} .

Moreover, enumerating the elements of E(B) as

F1 := {ê2} , F2 := {ê3} , F3 := {ê2, ê3} , F4 := {ê2, ê3, ê4} ,

we conclude that there are 5 + 4 + 1 = 10 reference problems to investigate.
Results were gathered using the sparse matrix library scipy.sparse with

float64 matrices, using linalg.spsolve and linalg.eigsh, with default set-
tings. Sparsity of the matrices ensures highly accurate results.

See Table 8.6 for the computed results. First we study the r-stabilization
by means of the three ‘hardest’ problems (ordered by saturation coefficient
for p = 4, q = 8, r = 16). There is little difference between r = 2q, r = 4q, and
r = 8q, indicating that r = 2q is sufficient.

Choosing q = p + 4 is insufficient for p-robust saturation: for every prob-
lem, the discrete saturation coefficients increase as a function of p. For the two
strategies q = p + � p

7 � and q = 2p, we see that these coefficients decrease as a
function of p, strongly suggesting p-robust saturation for p → ∞. For q = 2p,
these values even tend to 1, indicating full saturation.
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Summary

My partner and I live in an apartment in Amsterdam. See its floor plan below.
It’s a regular 1900s apartment: the walls are well-insulated (the windows not
so much), and there are heaters in the kitchen, living room, and bedroom.

Imagine we just came back from a winter holiday and turn on the heaters.
The apartment starts warming up—more so near heaters, less so near win-
dows. How does its temperature evolve as a result?

The temperature of the apartment is governed by a parabolic partial dif-
ferential equation. These equations model time-dependent phenomena like
heat conduction, chemical concentration, and fluid flow. Parabolic evolution
equations describe how a function evolves from a given initial state as gov-
erned by the PDE. It is generally impossible to solve such problems using pen
and paper, so to understand their solution, we turn to numerical approximation.

Initially, the apartment has the ambient temperature. We turn our heaters
to some constant setting, and model the temperature of the apartment using
a heat equation1; its space-time minimal residual approximation is shown in the
figure. The apartment is relatively well-heated, except for the bedroom.2

1This illustration is heavily inspired by [GW12, §8]. I apologize to my physicist friends, as
modeling the temperature of our apartment using the heat equation likely oversimplifies matters.

2We know this all too well, and in fact, are working on getting double glazing.
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Historically, parabolic evolution equations are solved numerically through
time-stepping. Here, one first discretizes the problem in space to obtain a cou-
pled system of ordinary differential equations in time, which is then solved
using an ODE-solver. A drawback of these methods is that they are unable to
efficiently resolve details of the solution localized in space and time, such as
the high temperature gradients near the heaters just after turning them on.

We take a different approach and consider the equation in space and time
simultaneously. Space-time methods can resolve these local details, and even
produce approximations that are, up to some constant, the best possible. In
this thesis, we focus on the minimal residual (MR) method introduced in [And12].

Chapter 2 We discuss the preliminaries from an abstract viewpoint. Starting
from some linear operator equation posed on Hilbert spaces, we introduce
equivalent conditions for well-posedness of the problem, discuss its MR approx-
imation and derive conditions for uniform quasi-optimality.

Chapter 3 Next, for parabolic equations with a symmetric spatial partial dif-
ferential operator (like our temperature model), we show that uniform quasi-
optimality reduces to uniform stability of trial- and test spaces. We verify this
condition for discretizations of the space-time cylinder into time slabs.

Chapter 4 We then take on evolution problems where the spatial partial dif-
ferential operator is not necessarily symmetric. We find that also for these
problems, MR solutions are quasi-optimal. As an application, we consider a
convection-diffusion-reaction equation.

Chapter 5 We now consider adaptive refinement locally in space and time,
and aim for optimal convergence at optimal linear cost. We use a matrix-free iter-
ative solver to produce approximate MR solutions that are still quasi-optimal,
and see that this translates to a highly efficient algorithm in practice.

Chapter 6 We then explore the MR method in parallel computation. We show
that our method has a polylogarithmic parallel complexity, which is on par
with the best-known algorithms for elliptic problems. The result is a highly
scalable algorithm producing a solution for the heat equation with over four
billion unknowns on over two thousand parallel cores in under two minutes.

Chapter 7 We turn to the ill-posed data assimilation problem of recovering
some unknown state from (noisy) observational data and a known underlying
parabolic evolution equation; somewhat like inferring the temperature in the
kitchen just from looking at the thermostat in the living room.

Chapter 8 We finish with a chapter on p-robust saturation for the Poisson equa-
tion, discussing which increase in local polynomial degrees ensures error re-
duction. We derive sufficient conditions, reduce them to conditions on a refer-
ence square, and provide numerical evidence that these hold.
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Samenvatting

Carmen en ik wonen in een appartement in Amsterdam. Zie de plattegrond
hieronder. Het is typisch jaren-1900: de muren zijn goed geïsoleerd (de ramen
helaas niet), en we hebben cv’s in de keuken, woonkamer, en slaapkamer.

Stel je voor: we komen net terug van vakantie. We hebben het koud, en
doen de verwarming aan. Het huis warmt op—wat sneller in de buurt van de
cv, wat minder snel bij ramen. Maar hoe verspreidt de warmte zich precies?

De temperatuur van ons huis wordt bepaald door een parabolische partiële
differentiaalvergelijking. Deze vergelijkingen modelleren tijdsafhankelijke pro-
cessen zoals warmtegeleiding en vloeistofstroming. Hun evolutievergelijkingen
beschrijven hoe een functie zich ontwikkelt vanuit e.o.a. beginstaat. Het is
typisch onmogelijk om deze problemen met pen en papier op te lossen. Om
te snappen hoe zo’n oplossing werkt, maken we een numerieke benadering.

In eerste instantie is het huis zo warm als de buitenlucht. We zetten de
verwarming aan, en modelleren het temperatuurverloop van het huis met
de warmtevergelijking1; de figuur laat z’n ruimte-tijd kleinste residu-benadering
zien. Ons huis is relatief goed verwarmd, behalve de slaapkamer.2

1Deze illustratie is flink geïnspireerd door [GW12, §8]. Mijn excuses tegen m’n natuurkunde-
vrienden: de warmtevergelijking is hoogstwaarschijnlijk een veel te simplistisch model.

2Dit weten we maar al te goed. Sterker nog, we zijn bezig om dubbel glas te laten zetten.
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In eerste instantie is het huis zo warm als de buitenlucht. We zetten de
verwarming aan, en modelleren het temperatuurverloop van het huis met
de warmtevergelijking1; de figuur laat z’n ruimte-tijd kleinste residu-benadering
zien. Ons huis is relatief goed verwarmd, behalve de slaapkamer.2

1Deze illustratie is flink geïnspireerd door [GW12, §8]. Mijn excuses tegen m’n natuurkunde-
vrienden: de warmtevergelijking is hoogstwaarschijnlijk een veel te simplistisch model.

2Dit weten we maar al te goed. Sterker nog, we zijn bezig om dubbel glas te laten zetten.
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Historisch lost men parabolische evolutievergelijkingen op met tijdstap-
pers. Je discretiseert het probleem eerst in ruimte, en krijgt dan een gekoppeld
systeem van gewone differentiaalvergelijkingen in tijd. Dit systeem los je dan
op met een ODE-solver. Een belangrijk nadeel is dat het niet lukt om efficiënt
details in de oplossing weer te geven die lokaal in ruimte en tijd zitten, zoals
’t grote temperatuurverschil in de buurt van de cv wanneer die net aanslaat.

Wij nemen een andere route, en beschouwen de vergelijking tegelijk in
ruimte en tijd. Ruimte-tijdmethodes kunnen deze lokale details wel weergeven,
en vinden zelfs oplossingen die quasi-best (op een constante na, zo goed als
maar kan) zijn. In dit proefschrift bekijken we de methode van Andreev, en
noemen die de kleinste residu-methode (MR-methode, van minimal residual).

Hoofdstuk 2 We beginnen abstract, bij een lineaire operatorvergelijking tussen
Hilbertruimtes. We bepalen equivalente eisen voor goedgesteldheid van het
probleem, bespreken wat een MR-benadering precies is, en bepalen wanneer
deze uniform quasi-best is.

Hoofdstuk 3 Voor parabolische evolutievergelijkingen waarbij de ruimtelijke
differentiaaloperator symmetrisch is (zoals in ons warmtemodel) zien we dat
MR-benaderingen uniform quasi-best zijn voor uniform stabiele zoek- en testruimtes.
We bewijzen dit voor opdelingen van de ruimte-tijdcylinder in tijdsplakjes.

Hoofdstuk 4 Nu bekijken we evolutievergelijkingen waar de ruimtelijke op-
erator niet symmetrisch is. We vinden dat MR-benaderingen voor dit soort
vergelijkingen ook uniform quasi-best zijn. Als toepassing bekijken we een
convectie-diffusie-reactievergelijking.

Hoofdstuk 5 Dan bekijken we verfijning adaptief in ruimte-tijd, en mikken op
optimale convergentie in optimale lineaire tijd. We gebruiken een iteratief proces
zonder matrices om benaderingen van MR-benaderingen te vinden die ook
quasi-best zijn, en zien dat dit vertaalt naar een enorm efficiënt algoritme.

Hoofdstuk 6 We verkennen de MR-methode op een parallele computer. We
zien dat onze methode een polylogaritmische parallele complexiteit heeft,
even snel als de beste resultaten voor elliptische problemen. Het resultaat is een
algoritme dat meer dan 2000 processoren tegelijk gebruikt om een probleem
met meer dan 4 miljard onbekenden op te lossen in minder dan 2 minuten.

Hoofdstuk 7 We bekijken nu het slechtgestelde data assimilatie-probleem. We
willen een onbekende functie herleiden vanuit (ruizige) metingen en een bek-
ende parabolische evolutievergelijking. Een beetje zoals bepalen hoe warm
het is in de keuken door enkel te kijken naar een thermostaat in de woonkamer.

Hoofdstuk 8 We eindigen met een hoofdstuk over p-robuuste verzadiging voor
de Poissonvergelijking, dus hoe we lokale polynomiale graden moeten verhogen
om verzekerd te zijn van foutverlaging. We zien dat deze vraag reduceert tot
eisen op een referentievierkant, en geven numeriek bewijs dat deze kloppen.
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