7 research outputs found

    Adaptive search center non-linear three step search

    Get PDF
    This paper presents a new motion estimation algorithm using an adaptive search center predicted from its adjacent blocks, and a non-linear center biased search point pattern. It does not have the problem of being trapped by local minimum, and is characterized by finding the majority motion vector in one step. When compared with six other block-based search algorithms including the full-search and three-step-search, the new algorithm has an average PSNR very close to that of full-search, yet an average search time faster than the three-step-search.published_or_final_versio

    A feature-assisted search strategy for block motion estimation

    Get PDF
    Centre for Multimedia Signal Processing, Department of Electronic and Information EngineeringVersion of RecordPublishe

    New Motion Estimation Algorithm and Its Block-Matching Criteria Using Low-Resolution Quantization

    Get PDF
    We propose a new motion estimation algorithm and its block-matching criteria using low-resolution quantization. The proposed algorithm reduces both the huge computational cost of the full search algorithm and the performance degradation of the fast algorithms by matching the low-resolution images. Two search steps called the lowresolution search and the full-resolution search are employed. Simulation results show that the PSNR of the proposed algorithm is superior to those of the 4:1 alternate subsampling algorithm with less computational cost. Its computational cost is 1/38.1 of the full search algorithm

    A Motion Estimation based Algorithm for Encoding Time Reduction in HEVC

    Get PDF
    High Efficiency Video Coding (HEVC) is a video compression standard that offers 50% more efficiency at the expense of high encoding time contrasted with the H.264 Advanced Video Coding (AVC) standard. The encoding time must be reduced to satisfy the needs of real-time applications. This paper has proposed the Multi- Level Resolution Vertical Subsampling (MLRVS) algorithm to reduce the encoding time. The vertical subsampling minimizes the number of Sum of Absolute Difference (SAD) computations during the motion estimation process. The complexity reduction algorithm is also used for fast coding the coefficients of the quantised block using a flag decision. Two distinct search patterns are suggested: New Cross Diamond Diamond (NCDD) and New Cross Diamond Hexagonal (NCDH) search patterns, which reduce the time needed to locate the motion vectors. In this paper, the MLRVS algorithm with NCDD and MLRVS algorithm with NCDH search patterns are simulated separately and analyzed. The results show that the encoding time of the encoder is decreased by 55% with MLRVS algorithm using NCDD search pattern and 56% with MLRVS using NCDH search pattern compared to HM16.5 with Test Zone (TZ) search algorithm. These results are achieved with a slight increase in bit rate and negligible deterioration in output video quality

    Implementation of a motion estimation algorithm for Intel FPGAs using OpenCL

    Get PDF
    Producción CientíficaMotion Estimation is one of the main tasks behind any video encoder. It is a compu- tationally costly task; therefore, it is usually delegated to specific or reconfigurable hardware, such as FPGAs. Over the years, multiple FPGA implementations have been developed, mainly using hardware description languages such as Verilog or VHDL. Since programming using hardware description languages is a complex task, it is desirable to use higher-level languages to develop FPGA applications.The aim of this work is to evaluate OpenCL, in terms of expressiveness, as a tool for devel- oping this kind of FPGA applications. To do so, we present and evaluate a parallel implementation of the Block Matching Motion Estimation process using OpenCL for Intel FPGAs, usable and tested on an Intel Stratix 10 FPGA. The implementa- tion efficiently processes Full HD frames completely inside the FPGA. In this work, we show the resource utilization when synthesizing the code on an Intel Stratix 10 FPGA, as well as a performance comparison with multiple CPU implementations with varying levels of optimization and vectorization capabilities. We also compare the proposed OpenCL implementation, in terms of resource utilization and perfor- mance, with estimations obtained from an equivalent VHDL implementation.Junta de Castilla y León - Consejería de Educación de la Proyecto PROPHET-2 (VA226P20)Ministerio de Economía, Industria y Competitividad: (PID2019- 104834 GB-I00) and European Regional Development Fund (ERDF) program: Project PCAS (TIN2017-88614-R)Ministerio de Ciencia e Innovación (PID2019-104184RB-I00 / AEI / 10.13039/501100011033)Xunta de Galicia y fondos FEDER de la UE (Centro de Investigación de Galicia acreditación 2019-2022, ref. ED431G 2019/01; Consolidation Program of Competitive Reference Groups, ref. ED431C 2021/30Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación y “European Union NextGenerationEU/PRTR” : (MCIN/ AEI/10.13039/501100011033) - grant TED2021-130367B-I00Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Fast motion estimation algorithm in H.264 standard

    Get PDF
    In H.264/AVC standard, the block motion estimation pattern is used to estimate the motion which is a very time consuming part. Although many fast algorithms have been proposed to reduce the huge calculation, the motion estimation time still cannot achieve the critical real time application. So to develop an algorithm which will be fast and having low complexity became a challenge in this standard.For this reasons, a lot of block motion estimation algorithms have been proposed. Typically the block motion estimation part is categorized into two parts. (1) Single pixel motion estimation (2) Fractional pixel motion estimation. In single pixel motion estimation one kind of fast motion algorithm uses fixed pattern like Three Step search, 2-D Logarithmic Search. Four Step search,Diamond Search, Hexagon Based Search. These algorithms are able to reduce the search point and get good coding quality. But the coding quality decreases when the fixed pattern does not fit the real life video sequence. In this thesis we tried to reduce the time complexity and number of search point by using an early termination method which is called adaptive threshold selection. We have used this method in three step search (TSS) and four step search and compared the performance with already existing block matching algorithm.This thesis work proposes fast sub-pixel motion estimation techniques having lower computational complexity. The proposed methods are based on mathematical models of the motion compensated prediction errors in compressing moving pictures. Unlike conventional hierarchical motion estimation techniques, the proposed methods avoid sub-pixel interpolation and subsequent secondary search after the integer-precision motion estimation, resulting in reduced computational time. In order to decide the coefficients of the models, the motion-compensated prediction errors of the neighboring pixels around the integer-pixel motion vector are utilized

    Implementing video compression algorithms on reconfigurable devices

    Get PDF
    The increasing density offered by Field Programmable Gate Arrays(FPGA), coupled with their short design cycle, has made them a popular choice for implementing a wide range of algorithms and complete systems. In this thesis the implementation of video compression algorithms on FPGAs is studied. Two areas are specifically focused on; the integration of a video encoder into a complete system and the power consumption of FPGA based video encoders. Two FPGA based video compression systems are described, one which targets surveillance applications and one which targets video conferencing applications. The FPGA video surveillance system makes use of a novel memory format to improve the efficiency with which input video sequences can be loaded over the system bus. The power consumption of a FPGA video encoder is analyzed. The results indicating that the motion estimation encoder stage requires the most power consumption. An algorithm, which reuses the intra prediction results generated during the encoding process, is then proposed to reduce the power consumed on an FPGA video encoder’s external memory bus. Finally, the power reduction algorithm is implemented within an FPGA video encoder. Results are given showing that, in addition to reducing power on the external memory bus, the algorithm also reduces power in the motion estimation stage of a FPGA based video encoder
    corecore