41 research outputs found

    Logical calculi for reasoning with binding

    Get PDF
    In informal mathematical usage we often reason about languages involving binding of object-variables. We find ourselves writing assertions involving meta-variables and capture-avoidance constraints on where object-variables can and cannot occur free. Formalising such assertions is problematic because the standard logical frameworks cannot express capture-avoidance constraints directly. In this thesis we make the case for extending logical frameworks with metavariables and capture-avoidance constraints. We use nominal techniques that allow for a direct formalisation of meta-level assertions, while remaining close to informal practice. Our focus is on derivability and we show that our derivation rules support the following key features of meta-level reasoning: • instantiation of meta-variables, by means of capturing substitution of terms for meta-variables; • ??-renaming of object-variables and capture-avoiding substitution of terms for object-variables in the presence of meta-variables; • generation of fresh object-variables inside a derivation. We apply our nominal techniques to the following two logical frameworks: • Equational logic. We investigate proof-theoretical properties, give a semantics in nominal sets and compare the notion of ??-renaming to existing notions of ??-equivalence with meta-variables. We also provide an axiomatisation of capture-avoiding substitution, and show that it is sound and complete with respect to the usual notion of capture-avoiding substitution. • First-order logic with equality. We provide a sequent calculus with metavariables and capture-avoidance constraints, and show that it represents schemas of derivations in first-order logic. We also show how we can axiomatise this notion of derivability in the calculus for equational logic

    Placeholder calculus for first-order logic

    Get PDF
    In this paper we present an extension of first-order predicate logic with placeholders. These placeholders allow the construction of proofs for incomplete theorems. These theorems can be completed during the proof construction process. By using special definitions of substitutions and replacements, we obtain an unexpectedly simple cal- culus. Furthermore, we avoid the need of additional rules for explicit substitutions to deal with postponed substitutions in placeholders, since the definitions of substitution and replacement deal with them directly

    Closed nominal rewriting and efficiently computable nominal algebra equality

    Full text link
    We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    Nominal Henkin Semantics: simply-typed lambda-calculus models in nominal sets

    Full text link
    We investigate a class of nominal algebraic Henkin-style models for the simply typed lambda-calculus in which variables map to names in the denotation and lambda-abstraction maps to a (non-functional) name-abstraction operation. The resulting denotations are smaller and better-behaved, in ways we make precise, than functional valuation-based models. Using these new models, we then develop a generalisation of \lambda-term syntax enriching them with existential meta-variables, thus yielding a theory of incomplete functions. This incompleteness is orthogonal to the usual notion of incompleteness given by function abstraction and application, and corresponds to holes and incomplete objects.Comment: In Proceedings LFMTP 2011, arXiv:1110.668

    From nominal sets binding to functions and lambda-abstraction: connecting the logic of permutation models with the logic of functions

    Get PDF
    Permissive-Nominal Logic (PNL) extends first-order predicate logic with term-formers that can bind names in their arguments. It takes a semantics in (permissive-)nominal sets. In PNL, the forall-quantifier or lambda-binder are just term-formers satisfying axioms, and their denotation is functions on nominal atoms-abstraction. Then we have higher-order logic (HOL) and its models in ordinary (i.e. Zermelo-Fraenkel) sets; the denotation of forall or lambda is functions on full or partial function spaces. This raises the following question: how are these two models of binding connected? What translation is possible between PNL and HOL, and between nominal sets and functions? We exhibit a translation of PNL into HOL, and from models of PNL to certain models of HOL. It is natural, but also partial: we translate a restricted subsystem of full PNL to HOL. The extra part which does not translate is the symmetry properties of nominal sets with respect to permutations. To use a little nominal jargon: we can translate names and binding, but not their nominal equivariance properties. This seems reasonable since HOL---and ordinary sets---are not equivariant. Thus viewed through this translation, PNL and HOL and their models do different things, but they enjoy non-trivial and rich subsystems which are isomorphic

    Nominal Logic with Equations Only

    Full text link
    Many formal systems, particularly in computer science, may be captured by equations modulated by side conditions asserting the "freshness of names"; these can be reasoned about with Nominal Equational Logic (NEL). Like most logics of this sort NEL employs this notion of freshness as a first class logical connective. However, this can become inconvenient when attempting to translate results from standard equational logic to the nominal setting. This paper presents proof rules for a logic whose only connectives are equations, which we call Nominal Equation-only Logic (NEoL). We prove that NEoL is just as expressive as NEL. We then give a simple description of equality in the empty NEoL-theory, then extend that result to describe freshness in the empty NEL-theory.Comment: In Proceedings LFMTP 2011, arXiv:1110.668

    A nominal axiomatisation of the lambda-calculus

    Get PDF

    Semantics out of context: nominal absolute denotations for first-order logic and computation

    Full text link
    Call a semantics for a language with variables absolute when variables map to fixed entities in the denotation. That is, a semantics is absolute when the denotation of a variable a is a copy of itself in the denotation. We give a trio of lattice-based, sets-based, and algebraic absolute semantics to first-order logic. Possibly open predicates are directly interpreted as lattice elements / sets / algebra elements, subject to suitable interpretations of the connectives and quantifiers. In particular, universal quantification "forall a.phi" is interpreted using a new notion of "fresh-finite" limit and using a novel dual to substitution. The interest of this semantics is partly in the non-trivial and beautiful technical details, which also offer certain advantages over existing semantics---but also the fact that such semantics exist at all suggests a new way of looking at variables and the foundations of logic and computation, which may be well-suited to the demands of modern computer science

    Permissive nominal terms

    Get PDF
    We present a simplified version of nominal terms with improved properties. Nominal terms are themselves a version of first-order terms, adapted to provide primitive support for names, binding, capturing substitution, and alpha-conversion. Nominal terms lack certain properties of first-order terms; it is always possible to 'choose a fresh variable symbol' for a first-order term and it is always possible to 'alpha-convert a bound variable symbol to a fresh symbol'. This is not the case for nominal terms. Permissive nominal terms preserve the flavour and the basic theory of nominal terms, including two levels of variable symbol, freshness, and permutation - but they recover the 'always fresh' and 'always alpha-rename' properties of first- and higher-order syntax, and they simplify the theory by eliding freshness contexts and by supporting a notion of term-unifier based on substitution alone, rather than the nominal terms' substitution and freshness conditions. No expressivity is lost moving to the permissive case
    corecore