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A nominal axiomatisation of the lambda-calculus
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Abstract

The lambda-calculus is a fundamental syntax in computer science. It resists an algebraic treatment because of capture-
avoidance side-conditions.
Nominal algebra is a logic of equality designed with formalisation of specifications involving binding in mind. In this paper
we axiomatise the lambda-calculus using nominal algebra, demonstrate how proofs with these axioms reflect the informal
arguments on syntax, and we prove the axioms sound and complete.
This makes a formal connection between a ‘nominal’ approach to variables, and the more traditional view of variables as a
syntactic convenience for describing functions.
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1 Introduction

Functions are widely-used in what we now call computer science; a development which
can be traced back to Church [Chu40]. They are the basis of functional programming lan-
guages [Pau96,Tho96]; they also find application in logic [Bar77,Lei94], theorem-provers
[ABI+96,Pau89], rewriting [BN98], and more. Functions are a basic mathematical entity
of computer science. Three techniques are widely used to study basic entities of this kind:

(1) Operational: define a syntax; study congruences or rewrite relations.

(2) Denotational: define an intended model or class of models; study that.

(3) Logical: write axioms; study derivability, soundness, and completeness.

1 We thank an anonymous referee of a previous paper for comments which set us on the path to writing this one.
2 Homepage: http://www.gabbay.org.uk
3 Email: a.h.j.mathijssen@tue.nl
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The syntax of the λ-calculus with αβ-equivalence, or more generally λ-theories [Bar84,
Chapter 4] (congruences that include αβ) are instances of approach (1). Scott domain
models and graph models [Bar84] are instances of approach (2).

Approach (3) has λ-algebras [Sel02], Salibra’s lambda-abstraction algebras [Sal00],
and (if one does not care about representing λ-abstraction, which we do) λ-lifting [Joh85].

A recent logic by the authors can be applied to Approach (3) above, i.e. to give a logical
axiomatisation of functions: nominal algebra. Nominal algebra is a form of universal
algebra [Mat07,GM07a] with built-in support for names, binding, and freshness conditions.
It has semantics in nominal sets [GP02], which in a suitable mathematical sense also have
built-in support for names, binding, and freshness conditions.

One benefit of nominal algebra is that it is easy to write down plausible axioms for the
λ-calculus — they look just like well-known informal αβ-equivalences, see the nominal
algebra theory ULAM in Figure 1. The signature has term-formers for application (binary,
taking two terms), λ (unary, but taking an abstraction) and constants (nullary). 4

A general nominal algebra semantics in nominal sets immediately gives a notion of
model: a model of ULAM is a nominal set with functions on it to interpret application, λ
and constants, such that the equalities in ULAM are valid for every valuation of unknowns
to denotational elements that satisfies the freshness side-conditions.

Plausible this might be ... but is it correct? Let us take λ-terms quotiented by αβ-
equivalence as our yardstick for correctness. Then we have three questions:

• If we quotient λ-terms by αβ-equivalence do we obtain, in some natural way, a model
of ULAM?

• Are the equalities which are valid in all models of ULAM, precisely the equalities de-
scribed by that one set or is there something missing? (Is ULAM complete for αβ?)

• Does reasoning in the logic capture a useful fragment of the kind of reasoning steps we
would like to represent?

A comparison with numbers (another basic mathematical entity) may be instructive:
Operational: A rewrite system for arithmetic terms. Denotational: Numbers, as in 0, 1, 2,
. . . This will be our yardstick. Logical: Peano arithmetic. And for our questions: Numbers
are a model of Peano arithmetic. Famously, Peano arithmetic is not complete for this
model. However, Peano arithmetic does capture a useful fragment of arithmetic reasoning,
and it is widely used.

In this paper we explore ULAM (Figure 1) and explore to what extent it and the nominal
algebra framework in which it is embedded, capture ‘the λ-calculus and its theory’. We will
demonstrate with examples how ULAM expresses informal reasoning as formal derivations.
We will demonstrate that ULAM is a theory for the untyped λ-calculus, in the sense that it
is sound and complete for λ-terms quotiented by αβ-equivalence.

This investigation brings several benefits. The axioms of ULAM are finite: there is no
need for infinitely many term-formers, variables, etc. This is itself a symptom of the fact
that issues of binding and α-conversion are systematically dissected and uniformly handled
by a nominal algebra framework which serves as a primitive level within which functions,
as well as other things which tend to exhibit binding at the syntactic level, can be studied.
This framework is compatible with a broader body of research, such as nominal unification

4 For full definitions, terminology, and more on the general theory of nominal algebra see [Mat07,GM07a].
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(βvar) ` (λa.a)X = X

(β#) a#Z ` (λa.Z)X = Z

(βapp) ` (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)

(βabs) b#X ` (λa.(λb.Z))X = λb.((λa.Z)X)

(βid) ` (λa.Z)a = Z

Figure 1. Axioms of ULAM

and nominal rewriting [UPG04,FG07], with good computational properties. Semantics are
based on a by now well-understood model in nominal sets [GP02,GM07a] — in this paper
we only study the one syntactic model we need for completeness, however general nominal
sets models exist and can be investigated in future work. For more comment see Future
Work.

Some perspective on the current literature may be helpful. Traditionally variables are
considered a syntactic adjunct to functions; variables are symbols intended to denote ele-
ments of the underlying domain, but they do not themselves inhabit the underlying domain.
On the other hand, nominal techniques (of which this paper is a part) subscribe to a math-
ematical view in which names are entities in the denotation. This is based on modelling
names as atoms (urelemente) in set theory [Bru96,Gab00], an idea originally raised in the
Gabbay-Pitts model of α-abstraction and syntax-with-binding and also used to develop the
Gabbay-Pitts Nquantifier useful for reasoning on this model of syntax [GP02]. These
ideas find uses beyond the initial applications to syntax: in game theory and reasoning
about pointers [AGM+04,Tze07,BL05], spatial logics [CC04], and more.

Thus, there is now a body of work based on atoms, some concerned with reasoning on
syntax-with-binding, some concerned with representing other things. Nevertheless, it al-
ways treats atoms as denotational entities in their own right rather than as a purely syntactic
adjunct to a notion of function. In this paper we state and prove a fundamental correctness
result: we write down ULAM and show that it soundly and completely expresses the prop-
erties which, when added to nominal-style atoms, convert them into λ-calculus style vari-
ables. Conveniently, nominal-style α-abstraction then becomes λ-calculus style functional
abstraction.

Nota bene: Nominal techniques were first applied to construct datatypes of syntax-
with-binding [GP02] with good inductive reasoning principles. One datatype often used is
λ-term (up to α-equivalence). This paper is not another such study, like those in nominal
sets [GP02], higher-order abstract syntax [PE88], de Bruijn terms [dB72], and so on —
which are about collections of syntax trees.

2 Nominal algebra

In this section, we present the proof theory of nominal algebra. It consists of an equational
logic on nominal terms, and has built-in support for binding, freshness and meta-variables.
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2.1 Nominal terms

We define a syntax of nominal terms tailored to our λ-calculus application; general treat-
ments are elsewhere [GM08,Mat07].

Definition 2.1 Fix the following disjoint sets:

• a countably infinite set of atoms a, b, c, . . . ∈ A representing object-level variables;
• a countably infinite collection of unknownsX,Y, Z, . . . representing unknown elements

in nominal algebra axioms;
• a possibly infinite collection of constant symbols c ∈ C.

We let a, b, c, . . . range permutatively over atoms unless stated otherwise. For example
in (#ab) and (#λb) from Figure 2, and in (perm) from Figure 3, a and b represent two
distinct atoms. Besides being useful in what follows, this models common practice: if we
ask the reader to ‘consider two variable symbols x and y’ then we have no control over,
for example, their handwriting, and thus the symbols they actually commit to the page. All
that matters is that the two variable symbols are different.

We set about constructing the machinery of nominal algebra.

Definition 2.2 A permutation π of atoms is a bijection on atoms with finite support,
which means that the set supp(π), defined by {a | π(a) 6= a}, is finite. In words: For
‘most’ atoms π is the identity.

Definition 2.3 Terms t, u, v are inductively defined by:

t ::= a | π ·X | λa.t | tt | c

We write syntactic identity of terms t, u as t ≡ u.

A typed syntax is possible; see [FG06]. Types would cause no essential difficulties for
the results to follow.

2.2 Permutation, substitution, freshness

Definition 2.4 Write id for the identity permutation on atoms. Write π-1 for the inverse
of π, and π ◦ π′ for the composition of π and π′, i.e. (π ◦ π′)(a) = π(π′(a)). id is also the
identity of composition, i.e. id ◦ π = π and π ◦ id = π.

Write (a b) for the permutation that swaps a and b, i.e. (a b)(a) = b, (a b)(b) = a, and
(a b)(c) = c. We may omit ◦ between swappings, writing (a b) ◦ (b c) as (a b)(b c), and
we may write X as shorthand for id ·X .

Definition 2.5 Define the set Atms(t) of atoms that occur anywhere in t inductively by:

Atms(a) = {a} Atms(π ·X) = supp(π) Atms(c) = ∅
Atms(λa.t) = Atms(t) ∪ {a} Atms(t′t) = Atms(t′) ∪ Atms(t)

We also write Atms(t1, . . . , tn) as a shorthand for Atms(t1) ∪ · · · ∪ Atms(tn).

4
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(#ab)
a#b

π-1(a)#X
(#X)

a#π ·X
(#c)

a#c

(#λa)
a#λa.t

a#t
(#λb)

a#λb.t

a#t′ a#t
(#app)

a#t′t

Figure 2. Freshness derivation rules for nominal terms

Definition 2.6 Define a permutation action π · t by:

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X π · c ≡ c

π · λa.t ≡ λ(π(a)).(π · t) π · (t′t) ≡ (π · t′)(π · t)

Note that in the clause for λ, π acts also on the ‘a’. For example (a b)·λa.X ≡ λb.(a b)·X .

Definition 2.7 Call a substitution σ a function from unknowns to terms. Write [t/X] for
the substitution mapping X to t, and mapping Y to Y for all other Y .

Definition 2.8 Define a substitution action tσ by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) cσ ≡ c (λa.t)σ ≡ λa.(tσ) (t′t)σ ≡ (t′σ)(tσ)

For example:

• (λa.X)[a/X] ≡ λa.(X[a/X]) ≡ λa.a.
• (λb.(a b) ·X)[a/X] ≡ λb.(((a b) ·X)[a/X]) ≡ λb.((a b) · (X[a/X])) ≡ λb.(a b) · a ≡ λb.b.

Substitution does not avoid capture but when σ encounters π ·X the permutation is
applied to σ(X).

Definition 2.9 A freshness is a pair a#t of an atom and a term. Call a freshness of the
form a#X (so t ≡ X) primitive. Write ∆ and ∇ for (finite, and possibly empty) sets of
primitive freshnesses and call them freshness contexts.

We may drop set brackets in freshness contexts, e.g. writing a#X, b#Y for {a#X, b#Y }.
Also, we may write a, b#X for a#X, b#X .

Definition 2.10 Define derivability on freshnesses by the rules in Figure 2. In this fig-
ure, a and b permutatively range over atoms, t and t′ range over nominal terms, π over
permutations of atoms, X over unknowns, and c over constants.

Write ∆ ` a#t when a derivation of a#t exists using these rules such that the assump-
tions are elements of ∆. We usually write ∅ ` a#t as ` a#t.

For example from the rules in Figure 2, ` a#λb.b, ` a#λa.a, and a#X ` a#X(λa.Y )
are all derivable.

2.3 Equality, axioms, theories

Definition 2.11 An equality is a pair t = u. An axiom is a pair ∇ ` t = u of a freshness
context ∇ and an equality t = u. We may write ∅ ` t = u as ` t = u.

Call a set of axioms T a theory. The theories needed in this paper are:
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(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

a#t b#t
(perm)

(a b) · t = t

t = u
(cngλ)

λa.t = λa.u

t′ = u′ t = u
(cngapp)

t′t = u′u

{a#σ(X) | a#X ∈ ∇}
(ax∇` t=u)

π · (tσ) = π · (uσ)

[a#X]
···

t = u
(fr) (a 6∈ Atms(t, u))

t = u

Figure 3. Derivation rules for nominal equality

• CORE: the empty set of axioms.
• ULAM: the axioms from Figure 1. In this figure the a and b are specific atoms and the
X , Z and Z ′ are specific unknowns.

Remark 2.12 We obtain an extensional version of ULAM if we add the axiom

(η) a#Z ` λa.(Za) = Z

to Figure 1. We see no difficulties in adapting the results and proofs in this paper to the
extensional case.

Definition 2.13 Define derivability on equalities by the rules in Figure 3. In this figure,
a and b permutatively range over atoms, t, t′, u and u′ range over nominal terms, X over
unknowns,∇ over freshness contexts, π over permutations, and σ over substitutions.

Write ∆ `
T
t = u when a derivation of t = u exists using these rules such that:

• for each instance of (ax∇`t=u), ∇ ` t = u is an axiom from T;
• in the derivations of freshnesses (introduced by instances of (ax∇`t=u) and (perm))

the freshness assumptions used are from ∆ only.

We write ∅ `
T
t = u as `

T
t = u.

We discuss the most interesting rules of Figure 3:

• (ax∇`t=u). This rule expresses how we obtain instances of axioms: instantiate un-
knowns by terms (using substitutions) and rename atoms (using permutations).

We might expect the premises of the axiom rule to be {π(a)#π · σ(X) | a#X ∈ ∇}.
Both versions are correct, because of equivariance:

∆ ` a#t if and only if ∆ ` π(a)#π · t

for any ∆, a, t and π. This is characteristic of nominal techniques (e.g. [UPG04, Lemma
2.7], [FG07, Lemma 20], [GM07c, Appendix A], [GP02, Lemma 4.7]).

• (fr). This introduces a fresh atom into the derivation. Square brackets denote discharge
of the assumption. We can always find a fresh atom no matter how unknowns are instan-

6
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tiated, since our syntax is finite and must mention finitely many atoms.
(fr) adds no deductive power to CORE but it does in the presence of axioms; a full

discussion with an example is in [Mat07, Lemma 2.3.18].
• (perm). This rule expresses α-equivalence (see Lemma 2.16 and Theorem 3.7). For

instance, (perm) allows us to show the following standard α-equivalence property:

(#ab)
a#b

(#λb)
a#λb.b

(#λa)
b#λb.b

(perm) (λa.a ≡ (a b) · λb.b)
λa.a = λb.b

(perm) captures several rules from [UPG04, Figure 2] (but not in a syntax-directed
manner).

• (refl). Choosing a, b 6∈ Atms(t) we can construct the derivation sketched below:

···
a#(a b) · t

···
b#(a b) · t

(perm)
t = (a b) · t

···
a#t

···
b#t

(perm)
(a b) · t = t

(tran)
t = t

(fr) (introducing a, b#X for all unknowns X in t)
t = t

So we can view (refl) as sugar, but (if only for cleaner example derivations) we retain
it. All our proofs treat (refl) as a ‘real’ rule.

Remark 2.14 Perhaps remarkably, nominal algebra is algebraic even though the judgement-
form ∆ ` t = u has ‘∆ `’, which looks like an implication. It is sound and complete for
a notion of model in nominal sets [Mat07]. In addition, models are closed under notions
of product, subalgebra, quotient (just like for traditional algebra) — and a nominal sets
notion we call atoms-abstraction. A version of the HSP theorem (Birkhoff’s theorem)
holds; any class of nominal algebra models closed under product, subalgebra, quotient,
and atoms-abstraction, is characterised by a nominal algebra theory [GM07b]. So, perhaps
unexpectedly, nominal algebra retains much of the flavour and mathematical properties of
universal algebra.

Example 2.15 In ULAM we can prove β-equivalences as illustrated in Figure 4 — we
choose one requiring an α-conversion.

We now consider some useful examples of derivations in the presence of unknowns:

Lemma 2.16 b#X `
CORE

(λa.X)Y = (λb.((b a) ·X))Y .

Proof We give the derivation in full:

b#X
(#X)

a#(b a) ·X
(#λb)

a#λb.(b a) ·X
(#λa)

b#λb.(b a) ·X
(perm)

λa.X = λb.(b a) ·X
(refl)

Y = Y
(cngapp)

(λa.X)Y = (λb.(b a) ·X)Y

7



Gabbay and Mathijssen

(#ab)
a#b

(#λb)
a#λc.b

(#λa)
c#λc.b

(perm)
λa.b = λc.b

(cngλ)
λb.λa.b = λb.λc.b

(refl)
a = a

(cngapp)
(λb.(λa.b))a = (λb.(λc.b))a

(#ab)
c#a

(axβabs)
(λb.(λc.b))a = λc.((λb.b)a)

(axβvar)
(λb.b)a = a

(cngλ)
λc.((λb.b)a) = λc.a

(tran)
(λb.(λc.b))a = λc.a

(tran)
(λb.(λa.b))a = λc.a

Figure 4. β-equality with an α-conversion

The instance of (perm) relies on the fact that (b a) · λa.X ≡ λb.(b a) ·X . 2

The following is a nominal version of the substitution lemma [Bar84, Lemma 2.1.16]
in terms of β-redexes:

Lemma 2.17 a#Y `
ULAM

(λb.((λa.Z)X))Y = (λa.((λb.Z)Y ))((λb.X)Y ).

A proof by induction on Z is impossible — Z need not range over syntax, only over
elements of nominal algebra models of ULAM (for the general theory of nominal algebra
denotations see elsewhere [Mat07]). But ULAM proves this, in logic:

Proof By (tran) the proof obligation follows from:

(λb.((λa.Z)X))Y = ((λb.(λa.Z))Y )((λb.X)Y ) (1)

((λb.(λa.Z))Y )((λb.X)Y ) = (λa.((λb.Z)Y ))((λb.X)Y ) (2)

Part (1) follows by axiom (βapp); for part (2) we give the full derivation:

a#Y
(axβabs)

(λb.(λa.Z))Y = λa.((λb.Z)Y )
(refl)

(λb.X)Y = (λb.X)Y
(cngapp)

((λb.(λa.Z))Y )((λb.X)Y ) = (λa.((λb.Z)Y ))((λb.X)Y )

2

The rules of CORE are not syntax-directed (consider (tran)), but we can derive syn-
tactic criteria for equality in CORE, which will also be useful later:

Definition 2.18 Write ds(π, π′) for the set {a | π(a) 6= π′(a)}, the difference set of per-
mutations π and π′. We write ∆ ` ds(π, π′)#X for a set of proof-obligations ∆ ` a#X ,
one for each a ∈ ds(π, π′).

Theorem 2.19 ∆ `
CORE

t = u precisely when:

• t ≡ a and u ≡ a.
• t ≡ π ·X , u ≡ π′ ·X and ∆ ` ds(π, π′)#X .
• t ≡ λa.t′, u ≡ λa.u′ and ∆ `

CORE
t′ = u′.

• t ≡ λa.t′,u ≡ λb.u′, ∆`b#t′ and ∆`
CORE

(b a) · t′=u′.
• t ≡ t′′t′, u ≡ u′′u′, ∆ `

CORE
t′′ = u′′ and ∆ `

CORE
t′ = u′.

• t ≡ c and u ≡ c.

8
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For proofs see elsewhere [Mat07, Cor. 2.5.4]; thus, CORE induces the same theory of
equality as the rules for equality from [UPG04].

3 The lambda-calculus

We give a short formal treatment of λ-terms and αβ-equivalence. For a detailed discussion,
see elsewhere [Bar84].

Definition 3.1 Call a term ground when it mentions no unknowns. 5

As discussed in Subsection 2.1 our nominal terms syntax is specialised to the λ-calculus;
ground terms g, h, k are characterised by:

g ::= a | λa.g | gg | c.

Definition 3.2 Define the free atoms fa(g) by:

fa(a) = {a} fa(λa.g) = fa(g) \ {a} fa(g′g) = fa(g′) ∪ fa(g) fa(c) = ∅

Lemma 3.3 a 6∈ fa(g) if and only if ` a#g.
Also, if a 6∈ Atms(g) then ` a#g.

Definition 3.4 Define the size |g| of a ground term g by:

|a| = 1 |λa.g| = |g|+ 1 |g′g| = |g′|+ |g|+ 1 |c| = 1

We define a capture-avoiding substitution action g[h/a] inductively on |g| by:

a[h/a] ≡ h b[h/a] ≡ b (λa.g)[h/a] ≡ λa.g

(λb.g)[h/a] ≡ λb.(g[h/a]) (b 6∈ fa(h))

(λb.g)[h/a] ≡ λc.(g[c/b][h/a]) (b ∈ fa(h), c fresh)

(g′g)[h/a] ≡ (g′[h/a])(g[h/a]) c[h/a] = c

In the clause for (λb.g)[h/a] we make some fixed and arbitrary choice of fresh c (the ‘c
fresh’), for each b, g, h, a.

Definition 3.5 Write =α for the α-equivalence relation which is obtained by extending
syntactic equivalence ≡ with the following rule to rename bound variables:

λa.g =α λb.h when g[c/a] =α h[c/b] (c fresh).

Lemma 3.6

(i) If a, b 6∈ fa(g) then (a b) · g =α g.

(ii) If b 6∈ fa(g) then g[b/a] =α (b a) · g.

5 Ground terms should not be confused with closed lambda terms, i.e. terms without free atoms; closed terms are not used
in this paper.
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Proof For the first part, we observe that all a and b in g must occur in the scope of λa
and λb. We traverse the structure of g bottom-up and rename these to fresh atoms (for
example λa′ and λb′ which do not occur anywhere in g). Call the resulting term g′. Now
(a b) · g′ ≡ g′ because a, b 6∈ Atms(g′). Equality is symmetric, so we reverse the process
to return to g.

The second part then follows by an induction on |g|. 2

Theorem 3.7 On ground terms, derivable equality in CORE coincides with =α.

Proof See Theorem 4.3.13 of [Mat07]. 2

Remark 3.8 We do not quotient terms by α-conversion and we do not use a nominal-
style datatype of syntax-with-binding [GP02]. Later on the proof-method for Theorem 4.4
involves delicate accounting of what atoms appear abstracted in terms. In particular, we
do not want to have to invent names (and keep track of our invented names) for abstracted
atoms in Definition 4.10.

Definition 3.9 Let (one step) β-reduction g →β h be defined by

• (λa.g)h→β g[h/a].
• If g →β g

′ then λa.g →β λa.g
′.

• If g →β g
′ then gh→β g

′h.
• If h→β h

′ then gh→β gh
′.

Let (one step) β-equality↔β be defined by g↔β h when g →β h or h→β g.

Definition 3.10 Let one step αβ-equality↔αβ be defined such that g↔αβ h when there
exist g′ and h′ satisfying

g =α g
′, g′↔β h

′, and h′ =α h.

Let (multi step) αβ-equality =αβ be the transitive reflexive closure of↔αβ .

4 Soundness, completeness and conservativity

In Section 2 we presented nominal algebra and the theory ULAM. We saw formal deriva-
tions reminiscent of the ‘informal meta-level’. What exactly is ULAM an axiomatisation
of? Theorems 4.3 and 4.4 are mathematical answers but perhaps a semi-formal intuition
is also interesting: ULAM is an axiomatisation of the informal meta-level of λ-terms up
to αβ-equivalence. Put another way, nominal term syntax has unknowns X which be-
have like meta-variables (the ‘t’ in ‘λa.t where t is a term’) and like the (unique) hole
in Felleisen-style evaluation contexts [PS98, Page 15]. ULAM axiomatises equality for
contexts, implemented and generalised using nominal term syntax.

Definition 4.1 Call σ a ground substitution for a set of unknowns X when σ(X) is
ground for every X ∈ X . Call σ ground for ∆, t, u when σ is ground for the set of un-
knowns appearing anywhere in ∆, t, or u.

So: ground substitutions eliminate all metavariables.

10
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Definition 4.2 Write ∆ |= t = u when tσ=αβ uσ for all ground substitutions σ for ∆, t, u
such that a 6∈ fa(σ(X)) for every a#X ∈ ∆.

Theorem 4.3 (Soundness) For any ∆, t, u, if ∆ `
ULAM

t = u then ∆ |= t = u.

Proof We proceed by induction on ULAM derivations. We sketch the proof (some reason-
ing on freshnesses is elided):

• The cases (refl), (symm), (tran), (cngλ) and (cngapp) follow by induction using
the fact that =αβ is an equivalence relation and a congruence.

• The case (perm). Suppose a, b 6∈ fa(g). By Lemma 3.6 we obtain (a b) · g =α g.
Since =α implies =αβ we conclude (a b) · g =αβ g.

• The case (fr). Unknowns are irrelevant because ground terms by definition do not
contain them. If σ(X) mentions an atom which (fr) generates fresh for some X in ∆, t,
or u, then we ‘freshen’ the atom further to avoid an ‘name clash’. 6

• The case (ax). The axioms of ULAM are all standard properties of the λ-calculus:
· (λa.a)h=αβ h.
· If a 6∈ fa(g) then (λa.g)h=αβ g.
· (λa.(g′g))h=αβ (λa.g′)h)((λa.g)h).
· If b 6∈ fa(h) then (λa.(λb.g))h=αβ λb.((λa.g)h).
· (λa.g)a=αβ g.

2

Theorem 4.4 (Completeness) For any ∆, t, u, if ∆ |= t = u then ∆ `
ULAM

t = u.

The proof of Theorem 4.4 occupies the rest of this section.

Definition 4.5 Fix a freshness context ∆ and two terms t and u. Let A be the atoms
mentioned anywhere in ∆, t, or u, i.e. A = {a | a#X ∈ ∆} ∪ Atms(t, u). Let X be the
unknowns mentioned anywhere in ∆, t, or u. For each X ∈ X fix the following data:

• an order aX1, . . . , aXkX on the atoms in A such that a#X 6∈ ∆;
• some entirely fresh atom cX .

Write C for the set {cX | X ∈ X}.

Definition 4.6 Specify ς a ground substitution for X by:

• ς(X) ≡ cXaX1 . . . aXkX when X ∈ X , and
• ς(X) ≡ X otherwise (the choice of X in the right-hand side is irrelevant).

Lemma 4.7 If a#X ∈ ∆ then a 6∈ fa(ς(X)).

By assumption ∆ |= t = u, so by Lemma 4.7, we know tς =αβ uς . By definition 3.10,
we also know that there exist chains of alternating α- and (one step) β-equalities.

Definition 4.8 Fix a chain

tς ≡ g1 =α g2↔β g3 =α . . .↔β gm−1 =α gm ≡ uς.

6 We retain the inductive hypothesis of the ‘freshened’ derivation using the mathematical principle of ZFA equivariance
[GM07c, Appendix A] — or by performing induction instead on the depth of derivations, and proving that freshening atoms
does not affect this measure.
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Without loss of generality assume the α- and β-equalities do not introduce abstractions by
atoms from C.

Furthermore, letA+ be the set of all atoms mentioned anywhere in the chain of Defini-
tion 4.8, and let ∆+ be ∆ enriched with freshness assumptions a#X for every a ∈ A+ \ A
and every X ∈ X .

Definition 4.9 Call a ground term g accurate when:

• it mentions only atoms in A+;
• if cX ∈ C appears it is always in head position applied to a list of terms, like this:

‘cXg1 . . . gkX ’.

The final condition implies that cX ∈ C never occurs abstracted: no term contains ‘λcX’.
Also note that g1, . . . , gm are accurate by construction.

Definition 4.10 Define an inverse translation from accurate ground terms to (possibly
non-ground) terms inductively by:

a-1 ≡ a (a 6∈ C) (cX)-1 ≡ λaX1. · · ·λaXkX .X (cX∈C)
(λa.g)-1 ≡ λa.(g-1) (gh)-1 ≡ (g-1)(h-1) c-1 ≡ c

Lemma 4.11 ∆+ `
ULAM

(tς)-1 = t, and ∆+ `
ULAM

(uς)-1 = u.

Proof We prove by induction that if v is a subterm of t or u then ∆+ `
ULAM

(vς)-1 = v.
The only interesting case is when v ≡ π ·X: we must show that

∆+ `
ULAM

(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX) = π ·X.

Take a set of fresh atoms B = {bXi | X, i such that aXi ∈ A} in bijection with A; so B is
disjoint from the aXi and π(aXi).

Then by (fr), it suffices to show

∆+ ∪∆B `ULAM
(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX) = π ·X,

where ∆B = {bXi#Y | bXi ∈ B and Y ∈ X}.
By transitivity, it suffices to show that the following are derivable from ∆+ ∪∆B in

ULAM, taking π1 = (bX1 aX1) · · · (bXkX aXkX) and π2 = (bXkX π(aXkX)) · · · (bX1 π(aX1)):

(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX ) = (λbX1. · · ·λbXkX .π1 ·X)π(aX1) · · ·π(aXkX ) (3)

(λbX1. · · ·λbXkX .π1 ·X)π(aX1) · · ·π(aXkX ) = (λπ(aX1). · · ·λπ(aXkX ).(π2 ◦ π1) ·X)π(aX1) · · ·π(aXkX ) (4)

(λπ(aX1). · · ·λπ(aXkX ).(π2 ◦ π1) ·X)π(aX1) · · ·π(aXkX ) = (π2 ◦ π1) ·X (5)

(π2 ◦ π1) ·X = π ·X (6)

We consider the proof obligations in turn:

• Proof obligation (3) follows by kX applications of Lemma 2.16 since for 1 ≤ i ≤ kX ,

∆+ ∪∆B ` bXi#λaXi+1. · · ·λaXkX .(bXi−1 aXi−1) · · · (bX1 aX1) ·X.

• Proof obligation (4) follows by kX applications of Lemma 2.16 when for 1 ≤ i ≤ kX ,

∆+ ∪∆B ` π(aXi)#λbXi+1. · · ·λbXkX .((π(aXi−1) bXi−1) · · · (π(aX1) bX1) ◦ π1) ·X.

12
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By the rules for freshness, this follows from π(aXi)#π1 ·X ∈ ∆+ ∪∆B since the π(aXj)
are all disjoint and the bXj are different from π(aXi). We reason by cases on π(aXi):
· π(aXi) 6= aXj for all j: then π(aXi)#X ∈ ∆ by Definition 4.5.
· π(aXi) = aXj for some j: then bXj#X ∈ ∆B.

• Proof obligation (5) follows by kX instances of axiom (βid).
• In order to prove (6), it is convenient to show the stronger property

∆+ ∪∆B `CORE
(π2 ◦ π1) ·X = π ·X.

By Theorem 2.19 we need only show that ∆+ ∪∆B ` ds(π2 ◦ π1, π)#X . That is, we
must show that a#X ∈ ∆+ ∪∆B for every a such that (π2 ◦ π1)(a) 6= π(a), which fol-
lows by a case distinction on a (considering every a ∈ supp(π2 ◦ π1) ∪ supp(π)) using
Definitions 4.5 and 4.8.

2

We need some technical lemmas:

Lemma 4.12 Suppose that g is accurate. For any a ∈ A+, if a 6∈ fa(g) then ∆+ ` a#g-1.

Proof By induction on g. The non-trivial case is when g ≡ cX . If a 6∈ fa(cX) then a 6= cX
and we must show

∆+ ` a#λaX1. · · ·λaXkX .X,
which follows using the rules for freshness and the fact that the atoms that might not be
fresh for X are precisely the aXi. 2

Lemma 4.13 Suppose that g is accurate. Suppose that π is a permutation such that
π(a) = a for all a 6∈ A+ \ C. Then ∆+ `

CORE
(π · g)-1 = π · (g-1).

Proof By a routine induction on g. In the case of g ≡ cX we use the fact that π(a) = a for
all a ∈ C. 2

Lemma 4.14 Suppose that g and h are accurate. Then if g =α h then ∆+ `
CORE

g-1 = h-1.

Proof By Theorem 3.7 g =α h coincides with `
CORE

g = h. The proof is then by a detailed
but routine induction on g using the syntactic criteria of Theorem 2.19.

The only non-trivial case is when

g ≡ λa.g′, h ≡ λb.h′, ` b#g′, and `
CORE

(b a) · g′ = h′.

By assumption a, b ∈ A+ \ C. Then by Lemma 4.12 we have ∆+ ` b#(g′)-1. By induc-
tive hypothesis we have ∆+ `

CORE
((b a) · g′)-1 = (h′)-1, and by Lemma 4.13 we obtain

∆+ `
CORE

((b a) · g′)-1 = (b a) · (g′)-1. Then from the rules for freshness and equality it
follows that ∆+ `

CORE
λa.(g′)-1 = λb.(h′)-1. 2

Lemma 4.15 Suppose that a ∈ A+ \ C. Suppose that g, h, and g[h/a] are accurate. Then
∆+ `

ULAM
(λa.(g-1))(h-1) = (g[h/a])-1.

Proof By induction on |g|, the size of g. We consider a selection of cases:

• a[h/a]. ∆+ `
ULAM

(λa.a)(h-1) = h-1 by (βvar).
• b[h/a]. ∆+ `

ULAM
(λa.b)(h-1) = b by (β#) since ∆+ ` a#b.
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• (λb.g)[h/a] where b 6∈ fa(h). By Lemma 4.12 ∆+ ` b#h-1. The result follows using
(βabs).

• (λb.g)[h/a] where b ∈ fa(h). By assumption λb.g is accurate, therefore b 6∈ C. By
Definition 3.4 (λb.g)[h/a] ≡ λc.(g[c/b][h/a]) for fresh c (so c 6∈ fa(g) and c 6∈ fa(h)).
By assumption λc.(g[c/b][h/a]) is accurate so c 6∈ C and g[c/b][h/a] is accurate. We
must show

∆+ `
ULAM

(λa.(λb.(g-1)))(h-1) = λc.((g[c/b][h/a])-1).

Note that by Lemma 4.12, ∆+ ` c#g-1 and ∆+ ` c#h-1, and therefore ∆+ ` c#λb.(g-1)
by (#λb). Also ∆+ ` b#λb.(g-1) is immediate by (#λa). We present the rest of the
proof in a calculational style:

λc.((g[c/b][h/a])-1)
= { g[c/b] =α (c b) · g by Lemma 3.6 since c 6∈ fa(g) }
λc.(((c b) · g)[h/a])-1

= { inductive hypothesis, since (c b) · g is accurate }
λc.((λa.((c b) · g)-1)(h-1))

= { Lemma 4.13 }
λc.(((λa.(c b) · (g-1)))(h-1))

= { (βabs), since ∆+ ` c#h-1 }
(λa.(λc.((c b) · (g-1))))(h-1)

= { (perm) since ∆+ ` b#λb.(g-1) and ∆+ ` c#λb.(g-1) }
(λa.(λb.(g-1)))(h-1)

The result follows by transitivity.
• cX [h/a] where cX ∈ C. By assumption a 6= cX , so we must show

∆+ `
ULAM

(λa.(λaX1. · · ·λaXkX .X))(h-1) = λaX1. · · ·λaXkX .X.

By axiom (β#) this is when ∆+ ` a#λaX1. · · ·λaXkX .X . Since a 6∈ fa(cX), this follows
from Lemma 4.12.

The result follows. 2

Corollary 4.16 Suppose that g and h are accurate. If g↔β h then ∆+ `
ULAM

g-1 = h-1.

Proof By induction on the rules for →β from Definition 3.9. It suffices to show the fol-
lowing (here g, g′, h, h′, and g[h/a] are accurate and a ∈ A+ \ C):

• ∆+ `
ULAM

(λa.(g-1))(h-1) = (g[h/a])-1.
• If ∆+ `

ULAM
g-1 = (g′)-1 then ∆+ `

ULAM
λa.(g-1) = λa.((g′)-1).

• If ∆+ `
ULAM

g-1 = (g′)-1 then ∆+ `
ULAM

(g-1)(h-1) = ((g′)-1)(h-1).
• If ∆+ `

ULAM
h-1 = (h′)-1 then ∆+ `

ULAM
(g-1)(h-1) = (g-1)((h′)-1).

The first part is Lemma 4.15. The other parts follow by (cngλ) and (cngapp). 2

We are now ready to prove Theorem 4.4:
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Proof (of Theorem 4.4) Recall from Definition 4.8 the chain

tς ≡ g1 =α g2↔β g3 =α . . .↔β gm−1 =α gm ≡ uς.

By Lemma 4.14 and Corollary 4.16

∆+ `
ULAM

(tς)-1 ≡ g-1
1 = g-1

2 = . . . = g-1
m ≡ (uς)-1,

so ∆+ `
ULAM

(tς)-1 = (uς)-1 by transitivity. By Lemma 4.11 then also ∆+ `
ULAM

t = u.
Since ∆+ extends ∆ with atoms that are not mentioned in t and u we extend the derivation
with (fr) to obtain ∆ `

ULAM
t = u as required. 2

Corollary 4.17 For any ground terms g, h, `
ULAM

g = h if and only if g =αβ h.

Proof By Theorems 4.3 and 4.4, using the fact that g and h are ground. 2

With the results we proved up to now, it is easy to prove conservativity of ULAM over
CORE; the proof exploits the substitution ς from Definition 4.6, and confluence of the
λ-calculus.

Definition 4.18 Call g a β-normal form when no g′ exists with g →β g
′.

Lemma 4.19 Fix ∆. Suppose that t and u contain no subterm of the form (λa.v)w. Then
for ς the ground substitution from Definition 4.6, tς and uς are β-normal forms.

Proof ς(X) ≡ cXaX1 . . . aXkX for every X appearing in ∆, t, u. Applying this substitution
to t and u cannot introduce subterms of the form (λa.v)w. 2

Theorem 4.20 (Conservativity) Suppose that t and u contain no subterm of the form
(λa.v)w. Then

∆ `
ULAM

t = u if and only if ∆ `
CORE

t = u.

Proof A derivation in CORE is also a derivation in ULAM so the right-to-left implication
is immediate.

Now suppose that ∆ `
ULAM

t = u. We construct ς as in Definition 4.6. By Theorem 4.3,
tς =αβ uς . By Lemma 4.19 we know that tς and uς are β-normal forms. By confluence of
the λ-calculus [Bar84, Theorem 3.2.8] tς =α uς .

We now prove ∆ `
CORE

t = u by induction on t. The calculations are detailed but en-
tirely routine. We consider the hardest case: t ≡ π ·X . Then tς ≡ cXπ(aX1) . . . π(aXkX).
By Theorem 2.19, if tς =α uς it must be that uς ≡ cXπ(aX1) . . . π(aXkX). By the construc-
tion of uς and the way we chose aX1, . . . , aXkX to be the atoms mentioned in ∆, t, or u
which are not provably fresh for X in ∆, it follows that u must have been equal to π′ ·X ,
for some π′, such that ∆ ` ds(π, π′)#X . It follows that ∆ `

CORE
t = u as required. 2

5 Conclusions

What are functions, from a logical point of view?
Curry discovered combinatory algebra [CF58]. The signature contains a binary term-

former application and two constants S and K. Axioms are Kxy = x and Sxyz = (xz)(yz).
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This syntax is parsimonious and the axioms are compact, but it is not natural or ergonomic
to program in. There is also a mathematical issue: the natural encoding of closed λ-terms
into combinatory algebra syntax ([Bar84, Section 7] or [Sel02, Subsection 1.4]) is unsound;
it does not map αβ-equivalent λ-terms to provably equal terms in combinatory algebra. We
can strengthen combinatory algebra to lambda algebra by adding five more axioms [Sel02,
Proposition 5] but the translation is still not sound; there exist λ-terms M and N such that
the translation of M is derivably equal to the translation of N , but the translation of λx.M
is not derivably equal to the translation of λx.N . For soundness we need the Meyer-Scott
axiom [Sel02, Proposition 20] (Selinger calls it ‘the notorious rule’). In short, combinators
do not capture the same functions as expressed by the λ-calculus.

‘Lambda-lifting’ introduces constant symbols to represent functions and adds axioms
for them [Joh85]. This expresses functions, but the axiomatisation is of atomic constant
symbols representing individual functions (as many as we would like to add) and not of the
λ-calculus. The issues of variables and binding surrounding the ‘λ’ in the ‘λ-calculus’ are
avoided, or at least, relegated to the meta-level (into the universal quantifiers used in the
formula expressing the properties of each atomic constant symbol). Implementationally
this can be extremely convenient but for logicians we should consider this deeply unsatis-
factory.

Salibra’s Lambda Abstraction Algebra [Sal00] uses a signature with a term-former ‘λa’
for every a. Freshness side-conditions appear ‘hard-wired’ in the structure of terms in
axioms. For example Salibra’s rule (β4) from [Sal00, page 6] (λx.(λx.ξ))µ = λx.ξ is a
version of (β#) where the freshness condition is built into the structure of the term by
writing λx.ξ. This is essentially a λ-calculus version of cylindric algebra [HMT85].

The definition of αβ-equivalence on syntax is occasionally called ‘axiomatising the λ-
calculus’, although it is just an equivalence relation on abstract syntax trees. However, if
the λ-calculus syntax serves as the language of a logic with an equality judgement then
αβ-equivalence may have the status of axioms. For example Andrews’s logic Q0 [And86,
§51] contains five axioms (41), (42), (43), (44), and (45) ([And86, page 164]). In fact
these are axiom schemes, containing meta-variables A and B in the informal meta-level
ranging over terms, and meta-variables x, y ranging permutatively over variable-symbols.
A kinship with Figure 1 is apparent, but here, axioms feature in the formal framework of
nominal algebra — a formal logic, not an informal meta-level.
Nominal techniques.

A rewrite system for the λ-calculus appeared already in [FG07] but without any state-
ment or proof of completeness (indeed, it was not complete). More recently the authors
have used nominal algebra to axiomatise first-order logic as a theory FOL [GM07c] and
substitution as a theory SUB [GM08].

One might suspect that the theory of substitution should be only a hair’s breadth away
from that of the untyped λ-calculus, and could be obtained by imposing a type system (just
as the simply-typed λ-calculus is related to the untyped λ-calculus). 7 Perhaps this will
indeed prove to be the case, but so far all attempts by the authors to derive the properties
of SUB from those of ULAM have tantalisingly failed. This may (or may not!) indicate the
existence of a subtle mathematical point lurking in these systems; if there is, it seems to
relate to the difference between λ-calculus variables and nominal algebra unknowns.

7 We briefly give some intuition for what SUB is: (λb.(ba))(λa.a) = a is derivable in ULAM, but only
app(b, a)[b 7→ lam([a]a)] = app(lam([a]a), a) is derivable in SUB (notation from [GM08]).
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Nominal algebra has a cousin, nominal equational logic (NEL) [CP07]. This was de-
rived from nominal algebra, making some slightly different design decisions. NEL satisfies
a completeness result for a class of models in nominal sets [CP07], as does nominal al-
gebra [GM07a,Mat07] (in other words — derivable equality coincides with validity in all
models). The completeness result in this paper is stronger: it is valid for a single elemen-
tary model — derivable equality coincides with validity in one particular model, which we
have built in this paper. Similarly for the authors’ treatments of substitution [GM08] and
first-order logic [GM07c]. We know of no like treatments of substitution, logic, and the
λ-calculus in NEL. If and when this is done it will be interesting to compare the results.
Future work and conclusions.

ULAM completes a trio of papers studying (untyped) nominal algebra considered as a
logical framework: first-order logic [GM07c], substitution [GM08], and with this paper, the
λ-calculus. Between them, these works cover a significant fraction of the typical syntaxes
of interest in theory and practice in computer science. It would of course be interesting to
seek common generalisations of the proof-techniques therein.

Our most immediate interest is in constructing a theorem-prover based on nominal al-
gebra instead of the λ-calculus. We expect this to formally represent at least some kinds
of reasoning better than the λ-calculus can, because the treatment of names and variables
in nominal algebra, and nominal techniques in general, is very close to some kinds of in-
formal practice (for example the pervasive use of meta-variables and freshness conditions,
as appear in specifications of ... the λ-calculus). From that perspective this paper proves a
vital correctness result.

It remains to understand the connections between standard models for the λ-calculus
and the class of models determined by models of ULAM in nominal sets. It might also
be interesting to construct versions of graph models or domain models of the λ-calculus
[Bar84,Sto77] that themselves are built in nominal sets; does the presence of nominal-
style atoms add any useful structure? Similarly, we can consider existing work using the
language of categories (for example [Sel02,AB07]) using categories based on nominal sets.

A representation theorem for ULAM, in nominal sets models, would also be interesting.
As a first step, in recent work we have proved an HSP theorem (also known as Birkhoff’s
theorem) for nominal algebra [GM07b].
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