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Chapter 1

Introduction

1.1 Background and Motivation

Logic is the study of deductive reasoning. In the field of formal logic we study
deductive reasoning using the notions of validity and derivability of formulae ex-
pressed in a formal language. Let us consider derivability.

To construct a notion of derivability we choose a collection of inference rules
that tells us how to conclude a formula from a number of premises. These premises
are also formulae. If an inference rule has no premises, we call it an axiom. A
theorem is a formula that can be derived from the axioms using the inference
rules, while a proof of a theorem shows how we can derive such a theorem using
the inference rules.

Probably the simplest formal logics are propositional logics, in which formulae
are made up from atomic propositions and logical connectives. Things get a bit
more complicated with formal logics known as predicate logics. Here formulae
are extended with terms representing a domain of discourse. These terms may
contain (object-)variables which can be quantified, i.e. variables can be bound by
quantifiers; we call a variable free it is not bound by any quantifier. The notion
of inference rules is non-trivial because we usually need to put freshness side-
conditions on some rules to ensure that free variables do not become bound. Also
we need to be able to rename variables in formulae, also known as α-conversion,
and we need to be able to substitute terms for variables in a capture-avoiding way.

Propositional and predicate logics are heavily used in mathematics and computer
science. When using these logics, we often write theorems and proofs involving
meta-variables that range over formulae or terms. But these schemas of theorems
and proofs are not part of the formal system themselves.

Logic teaches us that reasoning can and should be formalised, not only its con-
clusions. So if we use meta-variables in reasoning, we can and should ask ‘what is
the mathematics of this reasoning’?

1



2 Chapter 1. Introduction

A straightforward way to formalise these meta-level properties is to enrich formal
logics with meta-variables. For propositional logics this is not hard, but in the
setting of predicate logics we run into a number of problems:

• When is an object-variable fresh for a meta-variable? We only know this
when the meta-variable is instantiated to a concrete formula or term (not
mentioning meta-variables).

• What is suitable representation of α-conversion of object-variables in the
setting with meta-variables?

• In the presence of meta-variables, substitution of terms for object-variables
becomes non-trivial: what does it mean when we try to substitute a term
for a variable in a meta-variable?

A number of different solutions have been proposed for these problems. The
state of the art solution is the higher-order approach which uses a hierarchy of types
to model the difference between object- and meta-level variables [vB01, Mei92]. An
alternative solution is to reject object-variables altogether, as is done in approaches
using combinators [CF58, Bar84] and cylindric algebras [HMT85, LS04].

Unfortunately, none of these solutions allows for a natural formalisation. By this
we mean a formalisation of binding and meta-variables that is close to informal
practise. A consequence of this is that the formalisation of schemas of theorems
and proofs are not always simple refinements but sometimes requires a fair amount
of emulation. In De Bruijn’s words [dB91]:

“I think that in formalizing mathematics, and in particular in preparing
mathematics for justification, it is usually elegant as well as efficient
to do everything in the natural way.”

There have been solutions to the problem of binding and meta-variables that
embrace the difference between object- and meta-variables. One of these solutions
uses so-called nominal techniques [GP02], which has two levels of variables, and a
built-in notion of freshness of variables with respect to meta-variables.

Nominal techniques have been successfully applied to unification [UPG04], term
rewriting [FG07] and first-order logic [Pit03]. However, the original application of
these techniques was purely to represent formal syntax with meta-variables.

1.2 Contents of the Thesis

In this thesis we explore a novel but very natural application of nominal techniques
to represent formal logics with meta-variables. In this way, and consistent with de
Bruijn’s philosophy, we allow particularly natural and yet fully formal representa-
tions of the kind of reasoning which is pervasively used in informal mathematical
practice.



1.3. Suggested Method of Reading 3

The formal logics we explore are logics of equality and first-order predicate
logic [Gen35, Pra65]. We extend these logics with meta-variables and freshness
side-conditions such that object-variables, binders, meta-variables and freshness
have representations that are very close to informal practice.

Most of this thesis is devoted to the logic of equality with meta-variables. We
give an overview of the topics per chapter:

• Chapter 2 introduces the formal language of the logic of equality with meta-
variables, and provides a notion of derivation with the ability to impose
axioms.

• Chapter 3 provides a semantics for the logic of equality based on so-called
nominal sets, which is the natural model for names and binding in our setting.
We will show that our notion of derivation is complete with respect to this
semantics.

• Chapter 4 studies a set of axioms for capture-avoiding substitution with meta-
variables. We show that this axiomatisation is very powerful: as well as being
decidable, it is complete with respect to the usual notion of capture-avoiding
substitution (without meta-variables).

• Chapter 5 introduces a sequent calculus for first-order logic with equality
extended with meta-variables. We show that derivations in this so-called
one-and-a-halfth-order logic precisely correspond to schemas of derivations
in first-order logic, and we show that it satisfies proof-theoretical properties
such as cut-elimination and consistency.

• Chapter 6 studies a set of axioms for one-and-a-halfth-order logic. We show
that derivability in the logic of equality using this set of axioms is equivalent
to derivability in the sequent calculus of one-and-a-halfth-order logic.

• Chapter 7 draws conclusions.

1.3 Suggested Method of Reading

We have written this thesis with the intention to be read from cover to cover.
However, since one cannot expect every reader to be able to do this, we give some
hints on how to read the parts he or she might be interested in.

Chapter 2 defines the logic of equality with meta-variables. It is fundamental
to all remaining chapters of this thesis, even for Chapter 5 which introduces a
sequent calculus for first-order logic with meta-variables.

After reading Chapter 2, the dependencies of the remaining technical chapters
are as follows:

• Chapter 3 can be read independently from the other chapters.
• Each one of Chapters 4, 5 and 6 depends on the previous chapter.



4 Chapter 1. Introduction

For easy reference we provide the dependencies of the technical chapters in
Table 1.1.

Chapter Needs Needed by

2. Equational Logic with Binders and Meta-Variables - 3, 4, 5, 6
3. A Semantics 2 -
4. Capture-Avoiding Substitution 2 5
5. One-and-a-halfth-Order Logic 2, 4 6
6. An Axiomatisation of One-and-a-halfth-Order Logic 2, 5 -

Table 1.1 Dependencies of the chapters in this thesis

1.4 Origin of the Chapters

This thesis is based on the following publications:

[1] Murdoch J. Gabbay and Aad Mathijssen. A Formal Calculus for Infor-
mal Equality with Binding. In WoLLIC’07: 14th Workshop on Logic, Lan-
guage, Information and Computation, volume 4576 of LNCS, pages 162–176,
Springer, 2007.

[2] Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution
as a Nominal Algebra. In ICTAC’2006: 3rd International Colloquium on
Theoretical Aspects of Computing, volume 4281 of LNCS, pages 198–212,
Springer, 2006.

[3] Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as
a Nominal Algebra. To be published in Formal Aspects of Computing.

[4] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-Order Logic. In
PPDP’06: 8th ACM SIGPLAN symposium on Principles and Practice of
Declarative Programming, pages 189–200. ACM Press, 2006.

[5] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-Order Logic. To
be published in Journal of Logic and Computation.

Chapter 2 has its origin in all of these publications. Chapter 3 is based on the
material in [1], but has been significantly expanded. Chapter 4 is based on [3],
which is a completely reworked and improved versions of [2]. Chapters 5 and 6
are based on [5], which itself is a expanded version of [4].



Chapter 2

Equational Logic with
Binders and Meta-Variables

2.1 Introduction

Perhaps equality is the simplest possible judgement form. Informal specification
of logic and computation often involves equalities with binding and subject to
conditions about freshness. For example:

λ-calculus: λx.(tx) = t if x 6∈ fv(t)
First-order logic: ∀x.(φ ⊃ ψ) = φ ⊃ ∀x.ψ if x 6∈ fv(φ)
π-calculus: νx.(P | Q) = P | νx.Q if x 6∈ fv(P )
Process algebra with data:

∑
x.p = p if x 6∈ fv(p)

And for any binder ζ ∈ {λ,∀, ν,
∑
}:

Substitution: (ζy.u)[x 7→ t] = ζy.(u[x 7→ t]) if y 6∈ fv(t)

Here fv(t) denotes the free variables of t. It is not hard to extend this short list
with many more examples.

In the equalities above there are two levels of variable:

• x and y are variables of the system being axiomatised, we call these object-
level variables.

• t, u, φ, ψ, P , Q and p range over terms of that system’s syntax, we call them
meta-level variables.

Unfortunately these equalities are subject to freshness side-conditions x 6∈ fv(t)
which make them something other than ‘just equalities’.

Ways have been developed to attain the simplicity and power of the theory of
equality between terms. For example we can work with combinators [CF58], cylin-
dric algebra [HMT85], higher-order algebra [Mei92] or higher-order logic [vB01].

5



6 Chapter 2. Equational Logic with Binders and Meta-Variables

Roughly speaking: combinatory approaches reject object-level variables entirely;
cylindric approaches reject them as independent syntactic entities but enrich the
language of term-formers to regain some lost expressivity; higher-order approaches
model the difference between the two levels of variable using a hierarchy of types.
These approaches do not permit a direct representation of the two-level structure
which informal syntax displays in terms such as λx.t or ∀x.φ.

In this chapter we introduce Nominal Algebra. This is a logic based on
equality which embraces the two-level variable structure by representing it directly
in its syntax. Informal equivalences can be represented as axioms almost symbol-
for-symbol. For example the equalities from the beginning of this section are
represented by:

λ-calculus: a#X ` λ[a](Xa) = X
First-order logic: a#X ` ∀[a](X ⊃ Y ) = X ⊃ ∀[a]Y
π-calculus: a#X ` ν[a](X | Y ) = X | ν[a]Y
Proces algebra with data: a#X `

∑
[a]X = X

Substitution: b#X ` (ζ[b]Y )[a 7→ X] = ζ[b](Y [a 7→ X])

Here a and b are distinct atoms representing object-level variables; X and Y are
unknowns representing meta-level variables. Each equality is equipped with a
freshness condition of the form a#X that guarantees that X can only be instan-
tiated to a term for which a is fresh. The rest of this chapter makes this formal.

Overview We introduce the syntax of our calculus in Section 2.2. In Section 2.3
we define the calculus itself, and provide some examples. In Section 2.4 we show
a number of proof-theoretical results. In Section 2.5 we show that the calculus
without any axioms corresponds to an existing notion of α-equality with meta-
variables. We discuss related and future work in Section 2.6.

2.2 Syntax

We need a syntax in which expressions with meta-variables, such as λx.t and
x 6∈ fv(t), may be represented. We use nominal terms [UPG04] because they offer
built-in support for meta-variables, abstraction, and freshness in a way that is
close to informal practice.

2.2.1 Terms and Signatures

Definition 2.2.1. Fix a countably infinite collection of atoms a, b, c, . . . repre-
senting object-level variables. Fix a countably infinite collection of unknowns
X,Y, Z, . . . representing meta-level variables. Fix term-formers f to each of
which is associated some unique arity n which is a nonnegative number; write
f : n to indicate that f has arity n. Assume these collections are disjoint.
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Convention 2.2.2. We shall use a permutative convention that a, b, c, . . . range
permutatively over atoms, so that for example a and b are always distinct.

In the rare circumstances where we do not want this behaviour, we choose
another symbol such as a′.

For the purpose of α-conversion, we need to be able to rename atoms. We use
permutations of atoms instead of the more common substitutions of atoms for
atoms, because permutations have better mathematical properties; most notably,
permutations are capture-avoiding by definition (see the Introduction of [GP02]
and [Pit03] for a detailed exposition).

Definition 2.2.3. Let A = {a, b, c, . . .}. A permutation π of atoms is a total
bijection A → A with finite support, meaning that for some finite set of atoms
(which may be empty) π(a) 6= a, but for all atoms not in that set, π(a) = a.

Finite support is a mathematical notion of ‘most’: π is a bijection on atoms such
that π(a) = a for most a.

We introduce some notation for permutations that we will need later on.

Definition 2.2.4. Write ι for the identity permutation such that ι(a) = a
always. Write π ◦ π′ for functional composition and write π-1 for inverse.
This makes permutations into a group — write P for the set of all permutations.
Write (a b) for the permutation that swaps a and b, i.e. the permutation that maps
a to b, b to a and all other c to themselves. Finally, write a ∈ π when π(a) 6= a.

Using the above ingredients we can form terms.

Definition 2.2.5. Terms t, u, v are inductively defined by:

t ::= a | π ·X | [a]t | f(t1, . . . , tn)

We call [a]t an abstractor; it uniformly represents the ‘x.t’ or x.φ’ part of
expressions such as ‘λx.t’ or ‘∀x.φ’. We call π ·X a moderated unknown; it
represents an unknown term on which a permutation of atoms is performed when
it is instantiated. We write ι ·X just as X, for brevity.

In Section 2.3 we will see that in π ·X the unknown X will get substituted for
a term and then π will permute the atoms in that term. This notion is grounded
in semantics [GP02] and permits a succinct treatment of α-renaming atoms (see
Section 2.5 and [UPG04]).

Definition 2.2.6. A signature Σ is a set of term-formers with their arities.

Example 2.2.7. Here are some example signatures:

• {lam : 1, app : 2} is a signature for the λ-calculus.

We show how the terms in this signature relate to ‘ordinary’ syntax. For
convenience identify atoms with variable symbols, then the syntax of the
untyped λ-calculus is inductively defined by:

e ::= a | λa.e | ee
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The map -′ from untyped λ-term to nominal terms is inductively defined by:

a′ = a (λa.e)′ = lam([a](e′)) (e1e2)′ = app(e′1, e
′
2)

We generally sugar lam([a]t) to λ[a]t and app(t, u) to tu.

• {⊥ : 0,⊃: 2,∀ : 1,≈: 2} is a signature for first-order logic with equality (the
symbol for equality inside the logic is ≈).

We sugar ⊥() to ⊥, ⊃(φ, ψ) to φ ⊃ ψ, ∀([a]φ) to ∀[a]φ and ≈(t, u) to t ≈ u.

When we define axioms for the λ-calculus and first-order logic, we shall extend
these signatures with a term-former for representing capture-avoiding substitution.

Remark 2.2.8. Consistent with previous work on nominal rewriting [FG07] we
do not impose an a priori sort system on terms. We prefer to leave that to later
(e.g. Chapters 4 and 5) when we consider specific applications of nominal algebra.

Although this allows us to write ‘silly terms’ like λ(tu) and ∀(t ≈ u), it simplifies
the presentation, and our results trivially specialise to the more specific cases.

Definition 2.2.9. Write t ≡ u for syntactic identity of terms.

Note that if π = π′ then π ·X ≡ π′ ·X, since permutations are represented by
themselves. There is no quotient by abstraction so for example [a]a 6≡ [b]b.

Syntactic identity t ≡ u emphasises the difference from provable equality t = u,
which is a logical assertion defined in Subsection 2.2.2, and object-level equality
t ≈ u, which is a term.

Definition 2.2.10. Say that a term t is closed when it does not contain any
unknowns.

A closed term may still mention atoms, e.g. the terms a and [a]b are closed and
the terms X and [a]X are not.

Definition 2.2.11. Write a ∈ t for ‘a occurs in (the syntax of) t’, and X ∈ t
for ‘X occurs in (the syntax of) t’. Similarly write a 6∈ t and X 6∈ t for ‘does
not occur in the syntax of t’.

Occurrence a ∈ t is literal, e.g. a ∈ [a]a and a ∈ π ·X when a ∈ π.

2.2.2 Judgement Forms, Axioms and Theories

Definition 2.2.12. A freshness is a pair a#t of an atom a and a term t. Call a
freshness a#X (so t ≡ X) primitive. Write ∆ and ∇ for finite sets of primitive
freshnesses and call them freshness contexts.

Intuitively we should read a#t as meaning ‘a 6∈ fv(t)’ or in words ‘a is fresh for
t’. A reason this notion is quite subtle in nominal techniques is the unknowns
X; a#X is not necessarily true even though a 6∈ X is a fact of the syntax. An
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unknown X represents an unknown term in the syntax; a#X has the quality of
a promise or assertion about what term that can be, or put another way, about
what we can instantiate X to.

Definition 2.2.13. We may drop set brackets in sets of freshnesses, e.g. writing
a#t, b#u for {a#t, b#u}. Also, we may write a#t, u for a#t, a#u. Furthermore,
for any set of freshnesses S write a ∈ S when a occurs anywhere in S, and X ∈ S
when X occurs anywhere in S.

Definition 2.2.14. An equality is a pair t = u where t and u are terms.

Equalities will be used to state that two terms are provably equal.

Definition 2.2.15. Nominal algebra has two judgement forms:

• A freshness judgement form ∆ ` a#t is a pair of a freshness context ∆
and a freshness a#t.

• An equality judgement form ∆ ` t = u is a pair of a freshness context ∆
and an equality t = u.

We may write ∅ ` a#t as ` a#t, and ∅ ` t = u as ` t = u.

Definition 2.2.16. A theory T = (Σ,Ax ) is a pair of a signature Σ and a possibly
infinite set of equality judgement forms Ax in that signature; we call them the
axioms.

We do not allow freshness judgements as axioms; we shall see that they can be
expressed using equalities instead (see Subsection 3.4.3).

Example 2.2.17. Here are some nominal algebra theories:

• LAM has signature {lam : 1, app : 2, sub : 2} and two axioms

(β) ` (λ[a]Y )X = Y [a 7→ X]
(η) a#X ` λ[a](Xa) = X

where we sugar sub([a]t, u) to t[a 7→ u].

• FOL has signature {⊥ : 0,⊃: 2,∀ : 1,≈: 2, sub : 2} and seven axioms

(MP) ` > ⊃ X = X
(Mer) ` ((((X ⊃ Y ) ⊃ (¬Z ⊃ ¬W )) ⊃ Z) ⊃ V )

⊃ ((V ⊃ X) ⊃ (W ⊃ X)) = >
(Qinst) ` ∀[a]X ⊃ X[a 7→ Y ] = >
(Qdist) ` ∀[a](X ∧ Y ) ⇔ ∀[a]X ∧ ∀[a]Y = >
(Qextr) a#X ` ∀[a](X ⊃ Y ) ⇔ X ⊃ ∀[a]Y = >
(Esubst) ` Z ≈ Y ∧X[a 7→ Y ] ⊃ X[a 7→ Z] = >
(Erefl) ` X ≈ X = >
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Here we use standard classical logic sugar for >, ¬, ∧ and ⇔.
Axioms (MP) and (Mer) characterise propositional logic; axioms (Qinst),
(Qdist) and (Qextr) characterise quantification; and axioms (Esubst) and
(Erefl) characterise object-level equality.
Chapter 6 treats this axiomatisation in detail.

• SUB gives substitution term-former sub the correct behaviour in theories
LAM and FOL. It is a family of theories, one for each signature Σ that
includes sub, with axioms

(var7→) ` a[a 7→ X] = X
(# 7→) a#Y ` Y [a 7→ X] = Y
(f 7→) ` f(Y1, . . . , Yn)[a 7→ X] = f(Y1[a 7→ X], . . . , Yn[a 7→ X])

(abs7→) b#X ` ([b]Y )[a 7→ X] = [b](Y [a 7→ X])
(ren7→) b#Y ` Y [a 7→ b] = (b a) · Y

(η 7→) b#X ` [a]sub(X, a) = X

For each term-former f (including sub), there is one axiom (f 7→). Note the
heavy use of freshness side-conditions to manage the relationship between
atoms and unknowns.
This axiomatisation is the topic of Chapter 4.

• CORE is a family of theories with no axioms; there is one such theory for
each signature Σ. It has built-in α-equivalence, so for example λ[a]a is equal
to λ[b]b.1

Theory CORE is discussed in Section 2.5.

Similar developments for other systems with binding, such as the process al-
gebra with data [Gro97, Lut02, GMR+07] and the π-calculus [Par01] from the
Introduction of this chapter should also be possible.

2.3 A Derivation System

In this section we define notions of derivation which represent freshness assump-
tions on meta-variables (Figure 2.1), and permit axioms involving abstraction that
are conditioned by freshness assumptions (Figure 2.2), just like we do in informal
practice.

2.3.1 Permutation and Substitution Actions

Before we introduce our calculus, we elaborate on two important prequisites for
the instantiation of axioms; we need to be able to permute atoms in terms, and
substitute terms for unknowns in a capturing way.

1α-equivalence is expressed as a derivation rule: the (perm) rule from Figure 2.2. The (perm)
rule is discussed in detail in Subsection 2.3.2.
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Definition 2.3.1. The (object-level) permutation action π · t on terms is
inductively defined by:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

Intuitively, π propagates through the structure of t until it reaches an atom or
a moderated unknown. The reader should read the above definition as syntactic
sugar. For instance, this means that π · [a](π′ ·X) is not an actual term but sugar
for [π(a)]((π ◦ π′) ·X).

Composition and identity of permutations naturally extend to terms as shown
in the following lemma.

Lemma 2.3.2. (π ◦ π′) · t ≡ π · (π′ · t) and ι · t ≡ t.

Proof. By induction on the structure of t, using Definition 2.3.1.

Substitution is the mechanism by which unknowns become terms, and is neces-
sary in algebra in order to define instances of axioms.

Definition 2.3.3. A (meta-level) substitution σ is a function from unknowns
to terms with finite support meaning that for some finite set of unknowns
σ(X) 6≡ X, and for all other unknowns σ(X) ≡ X.

We need some notation.

Definition 2.3.4. We write [t1/X1, . . . , tn/Xn] for the substitution σ such that
σ(Xi) ≡ ti for 1 ≤ i ≤ n, and σ(Y ) ≡ Y for Y 6≡ Xi.

Write [] for the empty substitution such that t[] ≡ t. Write σ ◦ σ′ for com-
position of substitutions, i.e. t(σ ◦ σ′) ≡ (tσ)σ′.

Write a ∈ σ if there exists an X such that a ∈ σ(X), and similarly write a 6∈ σ
if there is no such X. For example a ∈ [a/X] and a 6∈ [].

Definition 2.3.5. The (meta-level) substitution action tσ on terms is induc-
tively defined by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ)
f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Intuitively, σ propagates through the structure of t until it reaches an atom or
a moderated unknown. σ ‘evaporates’ on an atom, and acts on the unknown X
of a moderated unknown π ·X. The moderating permutation π then passes into
the term substituted in that position. We suggest a reading of π ·X as ‘permute
π in whatever X eventually becomes’.

Note that meta-level substitution does not avoid capture; ([a]X)[a/X] ≡ [a]a.
In this sense X is ‘meta’ and really does represent an unknown term. There
is an exact and deliberate analogy here with context substitution, which is the
substitution used when we write ‘let - be a in λa.-’, to obtain λa.a.
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Definition 2.3.6. Give substitution and permutation actions higher precedence
than abstraction and any of the sugared term-formers, and put substitution before
permutation.

Note how substitution interacts with permutation in the case of an unknown, for
example ((a b) ·X)[b/X] ≡ (a b) · b ≡ a. So π in X is ‘waiting for a substitution
to arrive’, as also made formal in the following property:

Lemma 2.3.7. π · tσ ≡ (π · t)σ.
Proof. By induction on the structure of t, using Definitions 2.3.1 and 2.3.5. The
case of t ≡ π′ ·X uses Lemma 2.3.2.

Another permutation action is useful.

Definition 2.3.8. The meta-level permutation action tπ on terms t is induc-
tively defined by:

aπ ≡ π(a) (π′ ·X)π ≡ π ◦ π′ ◦ π-1 ·X ([a]t)π ≡ [π(a)]tπ

f(t1, . . . , tn)π ≡ f(t1π, . . . , tnπ)

Also for this permutation action, composition and identity of permutations ex-
tend to terms.

Lemma 2.3.9. tπ◦π
′ ≡ tπ

′π
and tι ≡ t.

Proof. By induction on the structure of t, using Definition 2.3.8.

In the presence of substitution, the two permutation actions π · t and tπ are
interdefinable; however, sometimes one is more natural than the other, we shall
point out how later (Remark 2.3.15).

Lemma 2.3.10. Given a term t, let σ be a substitution that maps each X ∈ t to
π ·X, and let σ′ be a substitution that maps each X ∈ t to π-1 ·X.

Then π · t ≡ tπσ and tπ ≡ (π · t)σ′.
Proof. By induction on the structure of t, using Definitions 2.3.1, 2.3.8 and 2.3.5
of π · t, tπ and tσ. The only interesting case is when t ≡ π′ ·X. Then we need
to show π · (π′ ·X) ≡ (π′ ·X)πσ. Using Definitions 2.3.8 and 2.3.5 we obtain
(π′ ·X)πσ ≡ (π ◦ π′ ◦ π-1) · (π ·X) for the right-hand-side. By Definition 2.3.1
this is equivalent to (π ◦ π′ ◦ π-1 ◦ π) ·X, which is equivalent to (π ◦ π′) ·X by
basic permutation group theory. Again by Definition 2.3.1 this is equivalent to
π · (π′ ·X), which we needed to show. The proof of (π′ ·X)π ≡ (π · (π′ ·X))σ′

follows similar lines.

Definition 2.3.11. We extend notation for tπ, π · t and tσ to freshness contexts
∆ as follows:

∆π is {π(a)#X | a#X ∈ ∆}
π ·∆ is {π(a)#π ·X | a#X ∈ ∆}

∆σ is {a#σ(X) | a#X ∈ ∆}
Note that ∆π is a freshness context, but π ·∆ and ∆σ need not be.
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(#ab)
a#b

π-1(a)#X
(#X) (π 6= ι)

a#π ·X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Figure 2.1 Derivation rules for freshness

2.3.2 Inference Rules

Definition 2.3.12. Define derivability on freshnesses (in some signature Σ)
in natural deduction style by the rules in Fig. 2.1. Here we have used the following
conventions:

• a and b range over distinct atoms (see Convention 2.2.2);
• π ranges over permutations;
• X ranges over unknowns;
• t and t1, . . . , tn range over terms;
• f ranges over term-formers; there is one copy of the rule for each term-former.

We use similar conventions henceforth.
Write ∆ ` a#t when a derivation of a#t exists according to the rules in Fig. 2.1

using the elements of ∆ as assumptions; say that a#t is derivable from ∆.
Write ∆ 0 a#t when a#t is not derivable from ∆.

Finally, we write ∆ ` S for a set of freshnesses S when ∆ ` a#t for each a#t ∈ S.

Note that the (#X) rule excludes the identity permutation ι. While there is
no mathematical reason for this, there is a nice computational one: the algorithm
obtained by reading the rules bottom-up, must terminate.

Example 2.3.13. In the signature of theory LAM (Example 2.2.17) we know
` a#λ[b]b and a#X ` a#X(λ[a]Y ):

(#ab)
a#b

(#[]b)
a#[b]b

(#f)
a#λ[b]b

a#X

(#[]a)
a#[a]Y

(#f)
a#λ[a]Y

(#f)
a#X(λ[a]Y )

The following are non-derivable freshnesses in this signature:

0 a#a 0 a#X(λ[a]Y ) 0 a#(λ[a]b)a
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(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(t1, . . . , t, . . . , tn) = f(t1, . . . , u, . . . , tn)

∇πσ
(ax∇`t=u)

tπσ = uπσ

a#t b#t
(perm)

(a b) · t = t

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (n ≥ 1, a 6∈ t, u,∆)

t = u

Figure 2.2 Derivation rules for equality

In the signature of theory FOL (Example 2.2.17), derivable freshnesses are:

` a#∀[a]P a#T ` a#(a ≈ a)[a 7→ T ] a#X ` b#(b a) ·X.

Non-derivable freshnesses in this signature are:

0 a#∀[b]P 0 a#(a ≈ a)[a 7→ T ] a#X 0 a#(b a) ·X.

In order to define derivability on equalities recall notation π · t, tσ and tπ for
actions on terms t from Definitions 2.3.1, 2.3.5 and 2.3.8. Also recall notation ∆σ
and ∆π for the extensions to freshness contexts ∆ from Definition 2.3.11. Finally,
recall from Definition 2.2.12 that as well as ∆ we write ∇ for freshness contexts.

Definition 2.3.14. Define derivability on equalities (between terms in the
signature of T) by the rules in Fig. 2.2. Write ∆ `

T
t = u when a derivation of

t = u exists using the rules in Figure 2.2 (and the ones in Figure 2.1), such that:

• for each instance of (ax∇`t=u), ∇ ` t = u is an axiom of T;
• in the derivations of freshnesses (introduced by instances of (ax∇`t=u) and

(perm)) the assumptions used are from ∆ only.

Say that t = u is derivable from ∆ in T.
Write ∆ 0

T
t = u when there does not exist such a derivation.

The (fr) rule allows us to introduce freshness assumptions a#X1, . . . , a#Xn into
the derivation of t = u from assumptions ∆, for atoms a that do not occur at all in
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t, u or ∆. The square brackets denote discharge in the sense of natural deduction
(as in implication introduction) of these extra assumptions a#X1, . . . , a#Xn.

The rules (refl), (symm) and (tran) ensure that equality is an equivalence
relation, and rules (cong[]) and (congf) ensure that it is a congruence. The rules
(ax∇`t=u), (perm) and (fr) are discussed in more detail below.

Examples of derivability of equality can be found in the rest of this section.

The (ax∇`t=u) rule: instantiating axioms

(ax∇`t=u) allows us to permutatively rename atoms and to instantiate unknowns.
This gives the effect that atoms in axioms can be understood to range over any
(distinct) atoms, and unknowns can be understood to range over any terms. So

(axβ)
(λ[b]a)b = a[b 7→ b]

(axβ)
(λ[b]b)a = b[b 7→ a]

are valid derivations in theory LAM (Example 2.2.17). The right derivation shows
that substitution does not avoid capture, reflecting informal practice.

The use of the (ax∇`t=u) rule introduces new proof obligations on the freshness
side-conditions in ∇, as the following derivations show:

(#ab)
a#b

(axη)
λ[a](ba) = b

a#a
(axη)

λ[a](aa) = a

The left derivation is valid but the right one is not, because a#a is not derivable.
Note that instantiation of axioms (abs7→) and (ren7→) from theory SUB (Ex-

ample 2.2.17), which both mention distinct atoms a and b, can never identify these
atoms. For example,

c#X
(axabs7→)

([c]Y )[c 7→ X] = [c](Y [c 7→ X])

is not a valid instance of (abs7→) (even when c#X is derivable) since permutations
are bijective: there is no π such that both π(a) = c and π(b) = c.

In informal practice, derivations are often presented in a calculational style, e.g.
the sequence of equalities

λx.(((λx.y)x)x) =β λx.(yx) =η y

represents that two terms can be related by (reading from left to right) first ap-
plying β-conversion followed by η-conversion. This is fully formally represented
by the derivation in Figure 2.3. Reading the derivation bottom-up, the instance
of (tran) in the conclusion introduces two equalities that correspond directly to
the two equations in the above sequence of equalities. The derivation of the right
equality takes care of η-equality: it instantiates the (η) axiom, and shows that the
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(axβ)
(λ[a]b)a = b[a 7→ a]

(#ab)
a#b

(ax#7→)
b[a 7→ a] = b

(tran)
(λ[a]b)a = b

(congf)
((λ[a]b)a)a = ba

(cong[])
[a](((λ[a]b)a)a) = [a](ba)

(congf)
λ[a](((λ[a]b)a)a) = λ[a](ba)

(#ab)
a#b

(axη)
λ[a](ba) = b

(tran)
λ[a](((λ[a]b)a)a) = b

Figure 2.3 An example derivation in nominal algebra

freshness side-condition is satisfied. The derivation of the left equality takes care
of the β-equality: it instantiates the (β) axiom, which introduces a substitution,
and we show how this substitution is applied.

Remark 2.3.15. Another version of the (ax∇`t=u) rule is possible, which uses
the object-level action π · t instead of the meta-level action tπ:

π · ∇σ
(ax′∇`t=u).

π · tσ = π · uσ

However in this case, atoms in substitution σ are renamed according to π. For
example, from the axiom [a]X = [b]X it is immediate that [b]a = [a]a is derivable
with (ax[a]X=[b]X) where we choose π = (b a) and σ = [a/X]. It is also derivable
with (ax′[a]X=[b]X) but we must choose π = (b a) and σ = [b/X]. We find this
version less natural.

The (perm) rule: α-equivalence

The (perm) rule provides us with a concise way of expressing α-equivalence. To
illustrate this, the following derivations are valid in CORE (the theory with no
axioms):

(#ab)
a#b

(#[]b)
a#[b]b

(#[]a)
b#[b]b

(perm)
[a]a = [b]b

a#X
(#[]b)

a#[b]X
(#[]a)

b#[b]X
(perm)

[a](b a) ·X = [b]X

So `
CORE

[a]a = [b]b and a#X `
CORE

[a](b a) ·X = [b]X. To see that the instances
of (perm) are valid, we note that [a]a ≡ (b a) · [b]b and [a](b a) ·X ≡ (b a) · [b]X.
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As another example, we show how we use (perm) rule to rename a bound
variable in a λ-term. Consider the following derivation in the λ-calculus:

(λx.xx)(λx.λy.xy) =β (λx.λy.xy)(λx.λy.xy) =β λy.(λx.λy.xy)y =β λy.λz.yz.

In the last step the bound variable x is implicitly renamed during β-reduction
to avoid capture. Nominal algebra makes this explicit. We present the nominal
algebra derivation of this last step as a calculation:

λ[b](λ[a]λ[b]ab)b
= { axiom (β) }

λ[b](λ[b]ab)[a 7→ b]
= { axiom (f 7→) }

λ[b]λ([b]ab)[a 7→ b]
= { (perm), since ` b#[c]ac and ` c#[c]ac }

λ[b]λ([c]ac)[a 7→ b]
= { axiom (abs7→), since ` c#b }

λ[b]λ[c](ac)[a 7→ b]
= { axiom (f 7→) }

λ[b]λ[c](a[a 7→ b])(c[a 7→ b])
= { axiom (var7→) }

λ[b]λ[c]b(c[a 7→ b])
= { axiom (# 7→), since ` a#c }

λ[b]λ[c]bc

In each step of the calculation, we have indicated in the hint which derivation rule
is applied and which freshness constraints it had to satisfy (if any), and we have
underlined the subterm on which the axiom is applied. From this information the
full derivation can be reconstructed using (cong[]), (congf) and (tran).

As a final example we show that we can rename an atom which is substituted
for using explicit substitution term-former sub from theory SUB (Example 2.2.17):

Lemma 2.3.16. b#X `
CORE

X[a 7→ T ] = ((b a) ·X)[b 7→ T ]

Proof. De-sugaring, we derive sub([a]X,T ) = sub([b](b a) ·X,T ) from b#X:

(#[]a)
a#[a]X

b#X
(#[]b)

b#[a]X
(perm)

[b](b a) ·X = [a]X
(symm)

[a]X = [b](b a) ·X
(congf)

sub([a]X,T ) = sub([b](b a) ·X,T )
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In Section 2.5 we will show that derivability in CORE precisely corresponds
to α-equivalence on nominal terms, in the sense of nominal unification [UPG04,
Figure 2] and nominal rewriting [FG07, p.13].

Remark 2.3.17. Instead of expressing (perm) as a derivation rule, we could also
have added it as a mandatory axiom, such as

a#X, b#X ` (a b) ·X = X.

We did not do this here in order to keep a strict distinction between derivation
rules and axioms.

The (fr) rule: introducing fresh atoms

The (fr) rule allows us to introduce a fresh atom into the derivation. It mirrors
the generation of a fresh name in rules such as the ∀ right-introduction rule ‘from
Γ ` φ derive Γ ` ∀x.φ provided x is not free in Γ’. In a sequent style presentation
of nominal algebra, (fr) would be

∆, a#X1, . . . , a#Xn ` t = u

∆ ` t = u
(n ≥ 1, a 6∈ t, u,∆).

To illustrate the extra power (fr) gives us, we consider a theory C with one
axiom a#X ` X = a.

Lemma 2.3.18. We can derive `
C
X = Y with (fr), but we cannot without it.

Proof. The following is a derivation of `
C
X = Y with (fr):

[a#X]1
(axa#X`X=a)

X = a

[a#Y ]1
(axa#X`X=a)

Y = a
(symm)

a = Y
(tran)

X = Y
(fr)1

X = Y

In the above derivation, the superscript number one 1 is an annotation associating
the instance of the rule (fr) with the assumptions it discharges in the derivation.

In order to show that it is impossible to derive `
C
X = Y without (fr), we show

the more general property that we can never conclude equations of the form X = t
or t = X, where t 6≡ X, without the use of (fr).

We proceed by contradiction. Suppose we can conclude equations of the form
X = t and t = X where t 6≡ X. Looking at the structure of the derivation rules,
it is easy to see that the (refl), (cong[]) and (congf) rules could not have been
applied. Also we can see that we could never have applied the (axa#X`X=a)
and (perm) rules: the derivations of the freshness side-conditions belonging to
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these rules require the presence of at least one freshness assumption, but this is
impossible since we work in the empty freshness context. So the only rules that
could have been applied are (symm) and (tran).

We only consider the X = t case, the t = X case is completely analogous. Sup-
pose the derivation of X = t concludes in:

• (symm). Then X = t is derived from t = X, which fits the pattern.
• (tran). Then X = t is derived from X = u and u = t. Now there are two

cases: either u 6≡ X, in which case the first equation fits the pattern, or
u ≡ X, in which case the second equation fits the pattern.

So using (symm) and (tran) we cannot conclude the derivation. We have arrived
at a contradiction and the result follows.

Another example that shows the extra power of the (fr) rule is derivability of
X[a 7→ a] = X in theory SUB (Example 2.2.17).

Lemma 2.3.19. `
SUB

X[a 7→ a] = X.

Proof. We derive X[a 7→ a] = X as follows:

(#[]a)
a#[a]X

[b#X]1
(#[]b)

b#[a]X
(perm)

[b](b a) ·X = [a]X
(symm)

[a]X = [b](b a) ·X
(congf)

X[a 7→ a] = ((b a) ·X)[b 7→ a]

[b#X]1
(#X)

a#(b a) ·X
(axren 7→)

((b a) ·X)[b 7→ a] = X
(tran)

X[a 7→ a] = X
(fr)1

X[a 7→ a] = X

The instance of the (ren7→) axiom is valid since we have used the fact that
X ≡ (a b) · (b a) ·X in the right-hand side of the equation.

We conjecture that we cannot derive X[a 7→ a] = X in SUB without (fr). Intu-
itively this is because to α-rename a so that we can use (ren7→), we need an atom
fresh for X.

2.4 Proof-Theoretical Results

We provide a number of proof-theoretical results for freshness and equality that
will be used throughout this thesis.

Lemma 2.4.1. It is decidable whether ∆ ` a#t, for any ∆, a and t.

Proof. We observe that the derivation rules of Figure 2.1 are syntax-directed.
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The rules for freshness also hold in the opposite direction:

Lemma 2.4.2.

1. If ∆ ` a#X then a#X ∈ ∆.
2. If ∆ ` a#π ·X then ∆ ` π-1(a)#X.
3. If ∆ ` a#[b]t then ∆ ` a#t.
4. If ∆ ` a#f(t1, . . . , tn) then ∆ ` a#ti, for all i, 1 ≤ i ≤ n.

Proof. By an induction on the structure of the derivation rules in Figure 2.1.

Definition 2.4.3. We naturally extend notation for tπ and ∆π to theories: given
a theory T = (Σ,Ax ), write Tπ for (Σ,Axπ) such that ∇π ` tπ = uπ ∈ Axπ if and
only if ∇ ` t = u ∈ Ax .

Lemma 2.4.4. If ∆ `
T
t = u then ∆ `

Tπ t = u.

Proof. By induction on derivations. The only non-trivial case is (ax∇`t=u), where
after applying the inductive hypothesis we need to show that

∆ `
Tπ ∇π′σ implies ∆ `

Tπ tπ
′
σ = uπ

′
σ.

By Lemma 2.3.9, it is equivalent to show that

∆ `
Tπ ∇ππ′◦π-1

σ implies ∆ `
Tπ tπ

π′◦π-1

σ = uπ
π′◦π-1

σ.

This follows by (ax∇π`tπ=uπ ) taking permutation π′ ◦ π-1 and substitution σ.

The following result uses the principle of logical ZFA equivariance: if an assertion
is true of some arguments, then it is also true of those arguments with some atoms
permuted provided the axiom of choice is not used (in the cases we are interested
in, it is not). This principle is treated formally in Appendix A.

Theorem 2.4.5 (Meta-level equivariance). For any π:

1. if ∆ ` a#t then ∆π ` π(a)#tπ;
2. if ∆ `

T
t = u then ∆π `

T
tπ = uπ.

Proof. For the second case suppose that ∆ `
T
t = u. By ZFA equivariance also

∆π `
Tπ tπ = uπ. Then by Lemma 2.4.4 we obtain

∆π `
Tππ-1 t

π = uπ.

Using Lemma 2.3.9 we can easily show that Tπ
π-1

is syntactically equivalent to T,
so we obtain ∆π `

T
tπ = uπ as required.

The proof of the first case is simpler, since it does not refer to theory T.
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We can permute atoms in freshnesses and equations at the object-level without
changing the freshness context:

Theorem 2.4.6 (Object-level equivariance). For any π:

1. if ∆ ` a#t then ∆ ` π(a)#π · t;
2. if ∆ `

T
t = u then ∆ `

T
π · t = π · u.

Proof. By induction on the structure of derivations. We consider the most inter-
esting cases only. Suppose the derivation concludes in. . .

• (#X). Then a#π′ ·X is derived from π′-1(a)#X, for some π′ 6= ι, and
we need to show π(a)#π · (π′ ·X). By Lemma 2.3.2, this is equivalent to
π(a)#(π ◦ π′) ·X. We continue by case distinction:

– If π ◦ π′ = ι then π(a)#(π ◦ π′) ·X is equivalent to the assumption
π′-1(a)#X, since π = π′-1 by basic permutation group theory.

– If π ◦ π′ 6= ι then π(a)#(π ◦ π′) ·X follows from (π ◦ π′)-1(π(a))#X by
(#X) (which may now be applied). This is equivalent to the assumption
π′-1(a)#X, since (π ◦ π′)-1(π(a)) = π′-1(a).

• (ax∇`t=u). Then tπ
′
σ = uπ

′
σ is derived and ∆ `

T
∇π′σ. We need to derive

π · tπ′σ = π · uπ′σ from ∆. By Lemma 2.3.7, π · tπ′σ = π · uπ′σ is equivalent
to (π · tπ′)σ = (π · uπ′)σ. Now let σ′ map each X ∈ ∇, t, u to π ·X, then by
Lemma 2.3.10 it suffices to derive

tπ
′π

(σ′ ◦ σ) = uπ
′π

(σ′ ◦ σ).

By Lemma 2.3.9, this is equivalent to tπ◦π
′
(σ′ ◦ σ) = uπ◦π

′
(σ′ ◦ σ). Now

this follows from ∇π◦π′(σ′ ◦ σ) by (ax∇`t=u) with permutation π ◦ π′ and
substitution σ′ ◦ σ. By Lemmas 2.3.7, 2.3.10 and 2.3.9 this is equivalent to
π · ∇π′σ. We are done since this follows from ∆ by the inductive hypothesis.

• (fr). Then ∆, a#X1, . . . , a#Xn `T
t = u for some a 6∈ ∆, t, u and we as-

sume the inductive hypothesis of this derivation. If π(a) = a there is no
problem since then a 6∈ ∆, π · t, π · u and we may extend the derivation with
(fr).
However, suppose π(a) 6= a and so (possibly) a ∈ π · t, π · u. We observe that
the predicate

“if the labelled tree Π is a valid derivation of ∆ `
T
t = u, then for

all permutations π′ there are derivations of ∆ `
T
π′ · t = π′ · u”

has free variables Π, ∆, T, t and u.
By ZFA equivariance (Theorem A.2.5), the precidate above holds of Π(a′ a),
∆(a′ a), T(a′ a), t(a

′ a) and u(a′ a) (the informal notation Π(a′ a) denotes Π in
which all atoms are permuted according to (a′ a)). Now using Lemma 2.4.4
we deduce the inductive hypothesis of ∆, a′#X1, . . . , a

′#Xn `T
t = u for any

a′ 6∈ ∆, t, u, π. Then ∆, a′#X1, . . . , a
′#Xn `T

π · t = π · u and we extend the
derivation with (fr) to deduce ∆ `

T
π · t = π · u as required.
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Note that instead of using ZFA equivariance in the (fr) case of the above proof,
we could have proven the theorem by an induction on the depth of derivations. We
prefer equivariance however, because it allows for a more compact and readable
proof.

Definition 2.4.7. We write ds(π, π′) for the difference set {a | π(a) 6= π′(a)} of
π and π′. We write ds(π, π′)#t for the set of freshnesses {a#t | π(a) 6= π′(a)}.

Lemma 2.4.8. If ∆ ` ds(π, π′)#t then ∆ `
CORE

π · t = π′ · t.

Proof. We work by induction on the number of elements in ds(π, π′). If this
set is empty then π = π′ and the result follows easily by (refl). Now suppose
a ∈ ds(π, π′). We construct a partial derivation of the proof obligation:

π · t = ((π(a) π′(a)) ◦ π′) · t

π(a)#π′ · t π′(a)#π′ · t
(perm)

((π(a) π′(a)) ◦ π′) · t = π′ · t
(tran)

π · t = π′ · t

The following proof obligations remain:

1. π · t = ((π(a) π′(a)) ◦ π′) · t follows from ds(π, (π(a) π′(a)) ◦ π′)#t by the
inductive hypothesis, provided |ds(π, (π(a) π′(a)) ◦ π′)| < |ds(π, π′)|. This
condition is satisfied, since ds(π, (π(a) π′(a)) ◦ π′) = ds(π, π′) \ {a}. Finally,
the remaining proof obligation ds(π, (π(a) π′(a)) ◦ π′)#t follows from as-
sumption ds(π, π′)#t.

2. π(a)#π′ · t follows from π′-1(π(a))#t by object-level equivariance (Theo-
rem 2.4.6). Now if π′-1(π(a)) ∈ ds(π, π′), this follows from assumptions
ds(π, π′)#t. It turns out that this is the case: π′-1(π(a)) ∈ ds(π, π′) when
π(π′-1((π(a))) 6= π(a), and, using the fact that 6= is invariant under permu-
tation, this follows from the assumption π(a) 6= π′(a).

3. π′(a)#π′ · t follows from a#t by object-level equivariance (Theorem 2.4.6).
This follows directly from assumption ds(π, π′)#t, since a ∈ ds(π, π′).

Derivability of equalities satisfies the following congruence property:

Lemma 2.4.9 (Congruence). For any X, v:

If ∆ `
T
t = u then ∆ `

T
v[t/X] = v[u/X].

Proof. By an induction on the structure of v.

We can substitute terms for unknowns provided those terms violate no freshness
assumptions made on the unknowns:
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Theorem 2.4.10 (Meta-level substitution). For any ∆′,∆, σ such that ∆′ ` ∆σ:

1. if ∆ ` a#t then ∆′ ` a#tσ;
2. if ∆ `

T
t = u then ∆′ `

T
tσ = uσ.

Proof. Natural deduction derivations are such that the conclusion of one deriva-
tion may be ‘plugged in’ to an assumption in another derivation. For (#X) we
use object-level equivariance (Theorem 2.4.6). For (fr) we might have to use ZFA
equivariance (Theorem A.2.5) to rename the freshly chosen atom a if it is men-
tioned by σ.

The above condition ∆′ ` ∆σ ensures that ∆σ is consistent, in the sense that
a#σ(X) is derivable for each a#X ∈ ∆.

Corollary 2.4.11. For closed t, u, if `
T
t = u then it has a derivation that does

not mention any unknowns or instances of (#X) or (fr).

Proof. Let Π be a derivation of `
T
t = u. Now take c to be an atom that does not

occur anywhere in Π, and let Π′ be Π in which:

• each unknown X is mapped to c;
• each instance of (#X) is replaced by (#ab); that is, each instance of (#X)

is of the form
[π-1(a)#X]

(#X),
a#π ·X

where square brackets denote discharge of the freshness assumption. This is
replaced by

(#ab).
a#c

Note that we write c instead of π(c) since π(c) = c.

Using Theorem 2.4.10 it is not hard to see that Π′ is a valid derivation of t = u
that does not mention unknowns. Since the instances of (fr) do not discharge
any assumptions anymore (they have been removed in the previous step), these
instances be safely removed. The result follows.

Another corollary of Theorem 2.4.10 is that we can weaken the freshness context
in derivations:

Corollary 2.4.12 (Weakening). If ∆ ⊆ ∆′ then:

1. if ∆ ` a#t then ∆′ ` a#t;
2. if ∆ `

T
t = u then ∆′ `

T
t = u.

Proof. By meta-level substitution (Theorem 2.4.10), using the empty substitution
σ = [], the proof obligations follow from ∆′ ` ∆. So for each a#X ∈ ∆, we must
show ∆′ ` a#X. This is trivial since ∆ ⊆ ∆′.
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Sometimes the freshness contexts ∆ may also be strengthened. We need some
terminology in order to state this.

Definition 2.4.13. Let ∆′ and ∆ be freshness contexts, and S be a set of terms.
Say that ∆′ freshly extends ∆ with atoms not in S when ∆ ⊆ ∆′ and a 6∈ ∆, S
for each a#X ∈ ∆′ \∆. If S is empty we just say that ∆′ freshly extends ∆.

For example:

• b#X, a#X freshly extends a#X.
• b#X, a#X freshly extends a#X with atoms not in a.
• b#X, a#X does not freshly extend a#X with atoms not in b.
• a#Y, a#X does not freshly extend a#X.

Theorem 2.4.14 (Strengthening).

1. If ∆′ ` a#t and ∆′ freshly extends ∆ with atoms not in a, t, then ∆ ` a#t.
2. If ∆′ `

T
t = u and ∆′ freshly extends ∆ with atoms not in t, u, then ∆ `

T
t = u.

Proof. For the freshness case, we inductively transform a derivation of ∆′ ` a#t
to a derivation of ∆ ` a#t:

• If ∆′ ` a#X by assumption, then a#X ∈ ∆′. We proceed by case distinc-
tion:

– If a#X ∈ ∆, then ∆ ` a#X by assumption.
– If a#X ∈ ∆′ \∆, then the result holds vacuously: a#X does not freshly

extend ∆ with respect to a,X, since a ∈ ∆, a,X.

• (#X): Suppose ∆′ ` a#π ·X is derived using (#X), π 6= ι, and ∆′ freshly
extends ∆ with atoms not in a, π ·X. Then ∆′ ` π-1(a)#X by assumption
and ∆′ freshly extends ∆ with atoms not in π-1(a), X. By the inductive
hypothesis ∆ ` π-1(a)#X, and by (#X) we conclude ∆ ` a#π ·X.

• (#ab) and (#[]a) carry over directly.
• (#[]b) is straightforward using the inductive hypothesis and the fact that if
a 6∈ [b]t then a 6∈ t.

• (#f) is straightforward using the inductive hypothesis and the fact that if
a 6∈ f(t1, . . . , tn) then a 6∈ ti for all i.

For the equational case, we note that the (fr) rule precisely introduces a ‘∆′

freshly extending ∆ with atoms not in t, u’. We just extend the derivation of
∆′ `

T
t = u with instances of the rule (fr) to obtain a derivation of ∆ `

T
t = u.

We do this as follows. Let a1, . . . , an be the atoms mentioned in ∆′ \∆, and let
∆ai = {ai#X | ai#X ∈ ∆′ \∆} for each ai. Then

∆′ = ∆ ∪∆a1 ∪ · · · ∪∆an .
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(Ax)
a ≈∆ a

∆ ` ds(π′, π)#X
(Ds)

π ·X ≈∆ π′ ·X

t ≈∆ u
(Absaa)

[a]t ≈∆ [a]u

(b a) · t ≈∆ u ∆ ` b#t
(Absab)

[a]t ≈∆ [b]u

t1 ≈∆ u1 · · · tn ≈∆ un

(F)
f(t1, . . . , tn) ≈∆ f(u1, . . . , un)

Figure 2.4 Syntax-directed rules for CORE

From the definition of freshly extending, we also know ai 6∈ t, u,∆,∆aj for each
i, j, j 6= i. We extend the derivation of ∆′ `

T
t = u to one of ∆ `

T
t = u using n

instances of (fr), each instance i corresponds to ai removing ∆ai
.

2.5 α-Equivalence with Meta-Variables

In Example 2.2.17 we defined CORE as a family of nominal algebra theories with no
axioms (one for each signature). In Subsection 2.3.2 we have given some examples
to show that the (perm) rule expresses α-equivalence with meta-variables.

In this section we will prove that theory CORE precisely corresponds to the
existing syntax-directed notion of α-equivalence on nominal terms from [UPG04,
FG07]. We will use this correspondence to show that CORE-equality is decidable.

Decidability of equality in CORE is important, because we want to show that
CORE is consistent (does not equate all terms; Corollary 2.5.5). Furthermore, in
Chapter 4 we want to show that equality up to axioms for capture-avoiding sub-
stitution is decidable. If we had been unable to determine equality and inequality
of terms without any axioms then our project would be doomed from the start.

Definition 2.5.1 was introduced in [UPG04, Figure 2]; the proofs are modelled
on a method presented in [FG07, p.13].

Recall from Definition 2.4.7 that we write ds(π, π′) for the difference set of π
and π′.

Definition 2.5.1. Let t ≈∆ u be an ordered tuple of a term t, a freshness context
∆, and a term u. Let the derivable equalities of t ≈∆ u be inductively defined
by the rules in Figure 2.4.

Syntax-directed equality ≈∆ is transitive:

Lemma 2.5.2. If t ≈∆ u and u ≈∆ v then t ≈∆ v.

Proof. By induction on the size of t (we do not count permutations in the size).
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For each t we exploit the syntax-directed nature of the rules of Figure 2.4 to
determine the possibilities for u and v.

For the abstraction case t ≡ [a]t′ we need the following properties:

• If t ≈∆ u then π · t ≈∆ π · u. This follows by induction on the structure of
derivations of t ≈∆ u.

• If ∆ ` ds(π, π′)#t then π · t ≈∆ π′ · t. By induction on the structure of t.
• If t ≈∆ u then ∆ ` a#t if and only if ∆ ` a#u. By induction on the struc-

ture of t.

Full details can be found in [FG07, Proof of Lemma 23(2)].

We use Lemma 2.5.2 to show that CORE is equivalent to the syntax-directed
equality of Figure 2.4.

Theorem 2.5.3 (Equivalence of CORE and ≈∆). ∆ `
CORE

t = u if and only if
t ≈∆ u is derivable using the rules of Figure 2.4.

Proof. The left-to-right direction is by induction on the structure of nominal alge-
bra derivations of ∆ `

CORE
t = u. By the inductive hypothesis it suffices to show:

• t ≈∆ t (is derivable). This follows by a trivial induction on t.
• If t ≈∆ u then u ≈∆ t. By induction on derivations of t ≈∆ u. Except

for (Absab), all cases are trivial using the inductive hypothesis, since they
are symmetric. For the remaining case, suppose [a]t ≈∆ [b]u is derived from
(b a) · t ≈∆ u and ∆ ` b#t. We need to show [b]u ≈∆ [a]t. By transitivity of
≈∆ (Lemma 2.5.2), this follows from

[b]u ≈∆ [b](b a) · t and [b](b a) · t ≈∆ [a]t.

By (Absaa) [b]u ≈∆ [b](b a) · t follows from u ≈∆ (b a) · t; by the inductive
hypothesis this follows from the assumption (b a) · t ≈∆ u. By (Absab)
[b](b a) · t ≈∆ [a]t follows from t ≈∆ t and ∆ ` a#(b a) · t. We have already
shown t ≈∆ t. ∆ ` a#(b a) · t follows from the assumption ∆ ` b#t by
object-level equivariance (Theorem 2.4.6).

• If t ≈∆ u and u ≈∆ v then t ≈∆ v. This is Lemma 2.5.2.
• If t ≈∆ u then [a]t ≈∆ [a]u. This is (Absaa).
• If t ≈∆ u then f(t1, . . . , t, . . . , tn) ≈∆ f(t1, . . . , u, . . . , tn). This is an instance

of (F), using the fact that ti ≈∆ ti for all i.
• If ∆ ` a#t and ∆ ` b#t then (a b) · t ≈∆ t. By induction on t.
• If t ≈∆,a#X1,...,a#Xn

u where a 6∈ t, u,∆ then t ≈∆ u. By straightforward in-
duction on the structure of derivations of t ≈∆,a#X1,...,a#Xn

u. The case of
(Absab) uses strengthening (Theorem 2.4.14) to strengthen the assumption
∆, a#X1, . . . , a#Xn ` c#t to ∆ ` c#t.
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For the right-to-left direction we work by induction on derivations of t ≈∆ u.
By the inductive hypothesis it suffices to show:

• ∆ `
CORE

a = a. This is an instance of (refl).
• If ∆ ` ds(π, π′)#X then ∆ `

CORE
π ·X = π′ ·X. This is a direct instance of

Lemma 2.4.8.
• If ∆ `

CORE
ti = ui for 1 ≤ i ≤ n, then ∆ `

CORE
f(t1, . . . , tn) = f(u1, . . . , un).

Using a number of instances of (tran) and (congf).
• If ∆ `

CORE
t = u then ∆ `

CORE
[a]t = [a]u. This is (cong[]).

• If ∆ `
CORE

(b a) · t = u and ∆ ` b#t then ∆ `
CORE

[a]t = [b]u. Suppose that
Π and Π′ are derivations of ∆ `

CORE
(b a) · t = u and ∆ ` b#t respectively.

Then the following is a derivation of ∆ `
CORE

[a]t = [b]u:

··· Π
′

b#t
(#[]b)

b#[a]t
(#[]a)

a#[a]t
(perm)

[b](b a) · t = [a]t
(symm)

[a]t = [b](b a) · t

··· Π
(b a) · t = u

(cong[])
[b](b a) · t = [b]u

(tran)
[a]t = [b]u

As direct corollaries of Theorem 2.5.3, we obtain syntactic criteria for determin-
ing equality in CORE, and consistency of CORE.

Corollary 2.5.4 (Decidability of CORE). ∆ `
CORE

t = u precisely when one of the
following holds:

1. t ≡ a and u ≡ a.
2. t ≡ π ·X and u ≡ π′ ·X and ∆ ` ds(π, π′)#X.
3. t ≡ [a]t′ and u ≡ [a]u′ and ∆ `

CORE
t′ = u′.

4. t ≡ [a]t′ and u ≡ [b]u′ and ∆ ` b#t′ and ∆ `
CORE

(b a) · t′ = u′.
5. t ≡ f(t1, . . . , tn) and u ≡ f(u1, . . . , un) and ∆ `

CORE
ti = ui for 1 ≤ i ≤ n.

Proof. By Theorem 2.5.3 it suffices to inspect the rules for t ≈∆ u, which are just
a rendering of the above criteria in terms of derivation rules.

Corollary 2.5.5 (Consistency of CORE). For all ∆ there are t and u such that
∆ 0

CORE
t = u.

Proof. By Corollary 2.5.4, ∆ `
CORE

a = b is never derivable.

The following technical corollary will be useful later (in the proof of Lemma 4.3.9)
and has a simple proof using Corollary 2.5.4:
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Corollary 2.5.6. If ∆ `
CORE

t = u then ∆ ` a#t if and only if ∆ ` a#u.

Proof. By induction on t using the syntactic criteria of Corollary 2.5.4.

2.6 Conclusions

Nominal terms embrace the difference between the object-level and the meta-level.
There are two classes of variables, atoms a and unknowns X. Substitution for X
can capture abstractions by a. For instance the syntactic equality

(λ[a]X)[a/X] ≡ λ[a]a

formally reflects informal practice where instantiation in λx.t of t to x yields λx.x.
Freshness side-conditions of the form a#X manage the interaction between the
two levels and ‘recover’ capture-avoidance where this is required.

Nominal algebra stakes a claim to nominal terms as a logical system, and the
support for binding allows us to reflect binding in logic directly.

2.6.1 Related Work

A number of solutions have been proposed to formalise equations with binding
and meta-variables.

Nominal techniques

The derivation rules for freshness and equality (Figures 2.1 and 2.2) are inspired
by the rules of freshness and α-equivalence from nominal unification [UPG04, Fig.
2 on page 480] and nominal rewriting [FG07, Definition 6 on page 926]. Our
system generalises this theory of α-equivalence to arbitrary theories with binding
by extending the rules of equality with the possibility to instantiate axioms and
to introduce fresh atoms into a derivation.

Nominal algebra has similarities to nominal logic [Pit03] and is closely related
to the recently conceived nominal equational logic [CP07].2 For instance our rules
(perm) and (fr) correspond to axioms (F1) and (F4) from [Pit03, page 191],
and our rules (#X) and (fr) correspond to the rules (//≈-EQUIVAR) and (ATM-ELIM)
from [CP07, Fig. 5 on page 238]. However, there are some significant differences:

• These approaches do not use nominal terms. In nominal logic, atoms and
abstractions are modelled using the sorts of the ambient first-order logic
framework. In nominal equational logic, atoms and abstractions can be
modelled using families of term-formers, indexed by an infinite collection of
atoms.

2In fact, existing work on nominal algebra has influenced the development of nominal equa-
tional logic (as the authors acknowledge in [CP07, page 226]).
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• The notion of freshness is slightly different: it does not correspond precisely
to x 6∈ fv(t), like the notion of freshness in nominal algebra. In nominal logic
and nominal equational logic more atoms are fresh for a term than there are
in nominal algebra.

Consider for example the informal derivation

λx.(((λx.y)x)x) =β λx.(yx) =η y

from Subsection 2.3.2. Both nominal algebra and nominal equational logic
can formally represent this derivation. But now consider the following ‘in-
correct’ informal derivation

λx.(((λx.y)x)x) =η (λx.y)x =β y.

This derivation is incorrect because the side-condition x 6∈ fv((λx.y)x) of the
η-equality is not satisfied. Nominal algebra cannot represent this derivation,
but nominal equational logic can: the representation of x is fresh for the
representation of (λx.y)x. In Chapter 3 we treat this notion of freshness in
more detail.

• Regarding nominal logic it is important to mention that this is a first-order
logic (with equality) while nominal algebra is an equational logic. Compar-
ing these logics is like comparing standard first-order logic with equality to
equational logic.

Higher-order techniques

The theory of contexts [Mic01] can be used to axiomatise systems with bind-
ing. So, differently, can higher-order algebra [Mei92]. So indeed can simply-
typed λ-calculus [Bar00]. These systems are different and intended for different
purposes but they share a core which is in essence simply-typed λ-terms up to
αβη-equivalence. Just like nominal terms, this richer term-language gives more
expressivity which can be used to give stronger axioms. However, meta-variables
are represented by function variables, and this inherits some distinctive features
from their intended functional semantics:

• You have to choose the arity of your unknown in advance. A function variable

F :

n︷ ︸︸ ︷
T → · · · → T → T

can be interpreted as an unknown n-ary predicate — but which n? Thus
these logics distribute meta-variables across many types.

• Perhaps more importantly, instantiation of these variables avoids capture.
This has a side-effect that it is not possible to represent a meta-variable
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uniformly across contexts. For example to represent a meta-variable φ in
the context we can intuitively express as ∀x.φ, it suffices to write ∀λx.F (x)
where F : T → T; but to represent φ in the context ∀x.∀y.φ we must write
∀λx.∀λy.F (x)(y) — F must take a higher type. Since for any given F we
must choose a type for it, it is not possible to directly represent the context we
might write as Qsφ, where Qs represents an unknown context (of quantifiers).

Instantation of unknowns in nominal algebra does not avoid capture so that
∀[a]X accurately reflects our intention when we write ∀x.φ where φ may be
instantiated in a capturing manner. Furthermore X still represents φ in
∀[a]∀[b]X.

• Moving to higher orders engenders certain computational difficulties. For
example unification up to αβ-equivalence is not decidable (although restric-
tions of it are in [Mil91]), while unification up to CORE is decidable [UPG04].

Still, quotienting terms by αβη is convenient, as exploited by theorem-
provers such as Isabelle [Pau89]. It remains to be seen whether nominal
algebra or something like it can enjoy the success and usefulness enjoyed by
Isabelle and similar systems.

In [GJ02, Joj04], Geuvers and Jojgov tackle the first of the above issues by
extending higher-order logic with explicit meta-variables. Although the approach
of their oHOL language is similar to ours, there are a number of fundamental
differences:

• The default notion of instantiation of meta-variables in oHOL is still capture-
avoiding; capturing instantiation can be achieved by parameterising the
meta-variable, just like in the function variable approach.

• Meta-variables are equipped with pending substitutions of object-variables
in oHOL. In nominal algebra meta-variables are equipped with α-renamings
of object-variables. Note that we could record these substitutions by using
the explicit substitutions from theory SUB.

Besides these fundamental differences, we have not investigated how well nominal
algebra can serve as a basis for implementation. From that point of view, Geuvers
and Jojgov are far ahead of us.

Other approaches

A host of ‘cylindric’ algebraic techniques exist. These embrace meta-variables
and reject object-level variables, preferring to encode their expressive power in the
term-formers. Examples are lambda-abstraction algebras [Sal00] for the λ-calculus
and cylindric algebras [BS81, ANS01] for first-order logic. Combinators [Bar84]
reject object-level variables altogether. These systems are effective for their ap-
plications, but they cannot naturally represent equalities with binding and meta-
variables from the simple fact that there are no object-variables.
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We should also mention Sun’s binding algebras [Sun99]. This work is based on a
functional semantics for binding, whereas we work according to the relatively newer
nominal semantics which is decidedly non-functional (see Chapter 3); currently the
two strands are essentially independent and it remains to see what ideas might flow
between them. Fiore, Plotkin and Turi’s binding algebras [FPT99] are discussed
in the Related Work of Chapter 3.

2.6.2 Future Work

We have seen examples of three fundamental systems axiomatised in nominal
algebra: (capture-avoiding) substitution, the λ-calculus, and first-order logic. In
Chapters 4 and 6 we study the axiomatisations of substitution and first-order logic.
We would like to study other systems with binding; we have in mind particular
process calculi which often feature quite complex binding side-conditions and for
which algebraic reasoning principles are frequently being developed [AG97, Lut02,
KD02].

We are also interested in developing logics with hierarchies of ‘increasingly meta-
’variables. Since nominal algebra offers two levels of variable, why not extend this
to allow an infinite hierarchy of variables, by analogy with type hierarchies in the
λ-calculus [Bar84]? Work already started in this direction by extending nominal
terms with a hierarchy of variables [Gab05, Gab07b, GL07]. We would like to
extend these hierarchical nominal terms to a logic framework of equations.

Finally, as mentioned before, we are interested in exploring how well nominal
algebra can be used as a basis for an implementation of an interactive proof assis-
tent.
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Chapter 3

A Semantics

3.1 Introduction

In this chapter we give a denotation to the freshness and equality judgements
defined in Chapter 2. We consider a denotation in so-called nominal sets.

Nominal sets were introduced by Gabbay and Pitts in [GP02].1 They have
proved to be an effective model for syntax with names and binding (see for exam-
ple [Pit03]). In fact, nominal sets have inspired the design of nominal terms, which
form the basis of nominal algebra. For this reason, nominal sets permit a natural
semantic interpretation of atoms a, abstractions [a]t, permutations of atoms π,
and freshness a#t, which are not conveniently definable on ‘ordinary’ sets.

Overview In Section 3.2 we give a brief overview of nominal sets. For full
treatments we refer the reader to [GP02] or [Pit03] ([Pit03] contains a simplified
presentation of [GP02]).

In Section 3.3 we show how we can interpret freshness and equality from nominal
algebra in nominal sets. We define what constitutes a model of a theory in nominal
algebra, and when freshnesses and equalities are valid.

In Section 3.4 we show that derivability of equality (in some theory) is complete
with respect to its models. We also show that derivability of freshness is not
complete, but that validity of freshness can be expressed in terms of derivability
of certain equalities.

We conclude in Section 3.5.

1In [GP02], nominal sets are called FM-sets, named after the Fraenkel and Mostowski who
devised a permutation model of set theory in order to prove the independence of the axiom of
choice in Zermelo-Fraenkel set theory with atoms.

33
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3.2 Nominal Sets

Recall from Definitions 2.2.3 and 2.2.4 that we write A for the set of all atoms, P
for the set of all permutations, ι and ◦ for the identity and composition of permu-
tations, and recall from Definition 2.4.7 that we write ds(π, π′) for the difference
set of π and π′.

Definition 3.2.1. A P-action · on a set X is a function · : P× X → X, write it
infix as π · x, such that ι · x = x and π · (π′ · x) = (π ◦ π′) · x for all x ∈ X. Say
that a finite set of atoms A supports x when for any permutation π:

if π(a) = a for each a ∈ A, then π · x = x.

Say that x has finite support when there exists such a set of atoms.
A nominal set is a set X equipped with a P-action on X such that each x ∈ X

has finite support.

In [GP02, Proposition 3.4] it is shown that if an element x ∈ X has finite support,
then there is a unique least finite set of atoms that supports x.

Definition 3.2.2. When x ∈ X has finite support, call the least set of atoms that
supports x the support of x, and write it as supp(x).

Write a#x when a 6∈ supp(x), and say that a is fresh for x.

Lemma 3.2.3. Basic results on nominal sets are:

1. supp(x) = {a ∈ A | {b ∈ A | (a b) · x 6= x} is not finite}.
2. If x = y then a#x if and only a#y.
3. If a#x for every a ∈ ds(π, π′) then π · x = π′ · x.
4. If a#x then π(a)#π · x.
5. If x = y then π · x = π · y.

Proof. Elsewhere [GP02, Proposition 3.4] and by calculations.

Example 3.2.4.

1. The set A of all atoms with action π · a = π(a) is a nominal set; the support
of a ∈ A is {a}. Note that for x, y ∈ A, x#y when x 6= y.

2. The powerset P(A) = {U | U ⊆ A} of A with action π · U = {π · u | u ∈ U},
is not a nominal set; {a1, a3, a5, . . .} ∈ P(A) does not have finite support,
since for no finite set of atoms it is the case that all permutations fixing that
set map {a1, a3, a5, . . .} to itself. Note that the support of A ∈ P(A) is ∅, so
a#A for any a.

3. Call U ⊆ A cofinite when A\U is finite. The set Pfs(A) of finite and cofinite
subsets of A, which can be defined as {U | U ⊆ A, U finite or cofinite}, with
the pointwise action inherited from P(A), is a nominal set (fs stands for
finite support); the support of A\{a} ∈ Pfs(A) is a, so b#A\{a} but not
a#A\{a}.
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4. The empty set ∅ with the trivial action is a nominal set.
5. If X and Y are nominal sets write X× Y for {(x, y) | x ∈ X, y ∈ Y} with

action π · (x, y) = (π · x, π · y). This is also a nominal set; the support of
(x, y) ∈ X× Y is the union of the supports of x and y.

6. If X is a nominal set write Xn for {(x1, . . . , xn) | xi ∈ X, 1 ≤ i ≤ n} with
action π · (x1, . . . , xn) = (π · x1, . . . , π · xn). Again, this is a nominal set; the
support of an element (x1, . . . , xn) is the union of the supports of the xi.

7. The set of infinitary λ-terms [KKSdV97] with the pointwise action is not
a nominal set: terms might mention an infinite number of different atoms,
so they do not adhere to the finite support property. This problem can
be overcome by moving to FMG (Fraenkel Mostowski Generalised). This
generalises the countable set of atoms to any large cardinality, and finite
sets of atoms to any strictly smaller cardinality (well-orderable sets to be
precise); see elsewhere [Gab07a] for further details.

We can think of a#x as an abstract notion of ‘does not occur in x in any
distinguished manner’. We say ‘distinguished’, because the example of Pfs(A)
shows that # is not the same as 6∈: for example a 6∈ (A\{a}) but not a#(A\{a}).

Definition 3.2.5. We assume the permutation actions on the sets from Exam-
ple 3.2.4 henceforth.

Definition 3.2.6. For any nominal sets X,Y, call a function f ∈ X → Y (on the
underlying sets) equivariant when π · f(x) = f(π · x) for any x ∈ X.

Lemma 3.2.7. For any nominal sets X,Y, equivariant function f ∈ X → Y and
x ∈ X, supp(f(x)) ⊆ supp(x).

As a corollary, a#x implies a#f(x).

Proof. By Definition 3.2.6 π · f(x) = f(π · x), so if π · x = x then π · f(x) = f(x).
The corollary follows by Definition 3.2.2.

Subsets of (the underlying set of) a nominal set will be important later when
we build free term algebras.

Definition 3.2.8. X ⊆ X inherits a pointwise action π · X = {π · x | x ∈ X}.
We will always use this action on X ⊆ X.

a#X does not imply that a#x for every x ∈ X . For example A ⊆ A and it is
a fact that a#A — but a ∈ A and not a#a. Furthermore X ⊆ X does not imply
that X is finitely supported. For example {a1, a2, a3, . . .} ⊆ A but {a1, a3, a5, . . .}
is not finitely supported. However, the finitely-supported subsets of X form a
nominal set — they have a permutation action, and are finitely supported.

Lemma 3.2.9. Suppose X is a nominal set and X ⊆ X is finitely-supported. Then
if a1#X , . . . , an#X there exists some x ∈ X such that a1#x, . . . , an#x.
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Proof. Choose any y ∈ X . Let b1, . . . , bn be fresh (so bi#X and bi#y for 1 ≤ i ≤ n).
Then by part 3 of Lemma 3.2.3 (b1 a1) · · · (bn an) · X = X .

Write x = (b1 a1) · · · (bn an) · y. Then x ∈ X by Definition 3.2.8 and we con-
clude ai#x for 1 ≤ i ≤ n by part 4 of Lemma 3.2.3 and the assumption bi#y.

3.3 Interpretations, Models and Validity

We now give a semantics in nominal sets to nominal algebra theories.

Definition 3.3.1. An interpretation of a signature Σ, which we write as J K,
is a nominal set T with equivariant functions

• J K ∈ A → T to interpret atoms;
• [ ] ∈ A× T → T such that a#[a]x always, to interpret abstraction;
• JfK ∈ Tn → T for each term-former f : n in Σ, to interpret term-formers.

We extend the notion of interpretation to terms, where we map unknowns to
elements of the nominal set T:

Definition 3.3.2. A valuation ς maps unknowns X to elements ς(X) ∈ T. We
write JtKς for the interpretation of a term t under a valuation ς, inductively
defined by:

JaKς = JaK Jπ ·XKς = π · ς(X) J[a]tKς = [a]JtKς
Jf(t1, . . . , tn)Kς = JfK(Jt1Kς , . . . , JtnKς)

Interpretations are equivariant.

Lemma 3.3.3. For any π, π · JtKς = Jπ · tKς .

Proof. By induction on the structure of t, using Lemma 3.2.7 for the cases of a,
[a]t and f(t1, . . . , tn).

Using the interpretations of signatures and terms, we define the notion of validity
on judgement forms as follows:

Definition 3.3.4. For any interpretation J K, say that:

J∆Kς (is valid) when a#ς(X) for each a#X ∈ ∆
J∆ ` a#tKς when J∆Kς implies a#JtKς

J∆ ` t = uKς when J∆Kς implies JtKς = JuKς
J∆ ` a#tK when J∆ ` a#tKς for all valuations ς

J∆ ` t = uK when J∆ ` t = uKς for all valuations ς

Then a model of a theory is an interpretation that validates its axioms:
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Definition 3.3.5. A model of a theory T is an interpretation J K of its signature
such that J∇ ` t = uK for all axioms ∇ ` t = u of T.

So a model of a nominal algebra theory is just like a model of any other al-
gebraic theory, but we must interpret permutations by permutations, and atoms,
abstractions and term-formers by equivariant functions on the underlying sets.

Definition 3.3.6. For any theory T, define validity with respect to T for
judgement forms as follows:

• Write ∆ |=
T
a#t when J∆ ` a#tK for all models J K of T.

• Write ∆ |=
T
t = u when J∆ ` t = uK for all models J K of T.

Note the T subscript in |=
T
, which indicates that freshness validity is not a

purely syntactic affair as in freshness derivability, but also depends on the axioms
of theory T. More on this in Subsection 3.4.3.

Derivability of freshness and equality is sound for the semantics:

Theorem 3.3.7 (Soundness). For any T, ∆, a, t, u:

1. If ∆ ` a#t then ∆ |=
T
a#t.

2. If ∆ `
T
t = u then ∆ |=

T
t = u.

Proof. Let J K be a model of T. We must show that if a#t (or t = u) is derived
from ∆ then J∆Kς implies a#JtKς (or JtKς = JuKς) for any valuation ς. We work by
induction on derivations built using the rules in Figures 2.1 and 2.2.

• (#ab). We must show a#JbK. By Lemma 3.2.7 this follows from a#b,
which is a standard property of freshness (see part 1 of Example 3.2.4).

• (#X). By the inductive hypothesis we know π-1(a)#ς(X). By part 4 of
Lemma 3.2.3 we conclude a#π · ς(X).

• (#[]a). a#[a]JtKς holds by construction.
• (#[]b). a#JtKς implies a#[b]JtKς , by Lemma 3.2.7.
• (#f). If a#JtiKς for 1 ≤ i ≤ n then a#JfK(Jt1Kς , . . . , JtnKς) follows using

Lemma 3.2.7.
• (refl), (symm), (tran), (cong[]), (congf). By properties of equality.
• (perm). We know that a#JtKς and b#JtKς imply (a b) · JtKς = JtKς by part 3

of Lemma 3.2.3. We conclude J(a b) · tKς = JtKς by Lemma 3.3.3.
• (ax∇`t=u). Suppose J∇πσKς for any ς. Then π(a)#σ(X)ς holds for all
a#X ∈ ∇. By part 4 of Lemma 3.2.3 also a#π-1 · σ(X)ς for all a#X ∈ ∇.
Let ς ′ be defined as ς ′(X) = π-1 · σ(X)ς for any X. Then a#ς ′(X) for
all a#X ∈ ∇, so J∇Kς′ holds. But then also JtKς′ = JuKς′ since ∇ ` t = u
is an axiom of T. By part 5 of Lemma 3.2.3 π · JtKς′ = π · JuKς′ , and by
Lemma 3.3.3 we obtain Jπ · tKς′ = Jπ · uKς′ . Now by a straightforward induc-
tion on syntax we can verify that Jπ · tKς′ = JtπσKς and Jπ · uKς′ = JuπσKς ,
and we conclude JtπσKς = JuπσKς .
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• (fr). So suppose ∆ `
T
t = u is derived from ∆, a#X1, . . . , a#Xn `T

t = u,
where a 6∈ t, u,∆. By ZFA equivariance (Theorem A.2.5) then also

∆, a′#X1, . . . , a
′#Xn `T

t = u

for all other a′ not occurring in ∆, t or u. We also retain the inductive
hypothesis for ∆, a′#X1, . . . , a

′#Xn `T
t = u by ZFA equivariance.

We must show that J∆ `
T
t = uKς for any ς. Now pick an a′ 6∈ ∆, t, u such

that a′#ς(Xi) for 1 ≤ i ≤ n. Then by the inductive hypothesis we obtain
J∆, a′#X1, . . . , a

′#Xn `T
t = uKς . But this is equivalent to J∆ `

T
t = uKς ,

since Ja′#X1, . . . , a
′#XnKς . The result follows.

3.4 Completeness

In this section we show that derivability of equality is complete with respect to
the semantics. We also show that completeness does not hold for derivability of
freshness, and that this is precisely what we want. For this we use the notion of a
free term model, which we introduce first.

3.4.1 Free Term Models

Definition 3.4.1. In this subsection fix a signature Σ, a theory T = (Σ,Ax ), and
fix a set of term-formers D disjoint from Σ.

The usual technique to obtain models for a theory T is to add constant sym-
bols to the language (to ensure a supply of ‘arbitrary elements’) and quotient by
provable equality. But in nominal algebra constants have empty support; if d has
arity 0 then ` a#d is derivable for any a. Adding constants only ensures a supply
of elements with empty support.

To reflect in syntax that an element of a nominal set can have support, we use
n-ary term-formers d applied to n distinct atoms. This idea goes back to [Gab06].
We now give the construction in detail.

Definition 3.4.2. Let free terms be inductively generated by the following gram-
mar:

g ::= a | [a]g | f(g1, . . . , gn) | d(a1, . . . , an)

Here f : n ranges over elements of Σ, and d : n ranges over elements of D.

Recall the notation π · t for the object-level permutation action on a term t from
Definition 2.3.1.

Lemma 3.4.3. The set of free terms with action π · g is a nominal set; the support
of g is {a ∈ A | a 6∈ g}.

As a corollary, a 6∈ g if and only if a#g.
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Proof. supp(g) = {a ∈ A | a 6∈ g} follows by an induction on the structure of g,
using part 1 of Lemma 3.2.3. The corollary follows by Definition 3.2.2.

We need a technical lemma:

Lemma 3.4.4. For any free term g, if a 6∈ g then ` a#g.

Proof. By an induction on syntax using the rules in Figure 2.1.

Definition 3.4.5. Write (congd) for an instance of the (congf) rule when f ∈ D.
Write [g]

T
for the set of free terms g′ such that a derivation of `

T
g = g′ exists that

does not mention (congd) for any d ∈ D.
Let the set of free terms up to T be the set {[g]

T
| g a free term}.

Lemma 3.4.6. The set of free terms up to T with action π · [g]
T

= [π · g]
T

is a
nominal set; the set [g]

T
is supported by {a ∈ A | 0 a#g}.

As a corollary, if ` a#g then a#[g]
T
.

Proof. Let A be the set {a | 0 a#g}; this is finite by Lemma 3.4.4. It suffices to
show that A supports [g]

T
.

So let π be a permutation such that π(a) = a for all a ∈ A. We must show
π · [g]

T
= [g]

T
. By assumption π · [g]

T
= [π · g]

T
, so it suffices to show [π · g]

T
= [g]

T
.

By definition of [ ]
T
, this is when `

T
π · g = g. By Lemma 2.4.8, this follows from

` ds(π, ι)#g. But this follows from the assumption on π since ds(π, ι) and A are
disjoint.

The corollary follows by Definition 3.2.2.

The following technical lemma will be useful later:

Lemma 3.4.7. a1#[g]
T
, . . . , an#[g]

T
if and only if there exists some g′ ∈ [g]

T
such

that ` a1#g′, . . . ,` an#g′ are all derivable.

Proof. For the left-right implication we use Lemma 3.2.9 to pick some g′ ∈ [g]
T

such that a1#g′, . . . , an#g′. We conclude ` a1#g′, . . . ,` an#g′ by Lemmas 3.4.3
and 3.4.4.

For the right-to-left implication, we observe that if g′ ∈ [g]
T

then [g]
T

= [g′]
T
.

The result follows by Lemma 3.4.6.

The following example shows why Lemma 3.4.7 is non-trivial.

Example 3.4.8. Consider a theory ATOM with one axiom ` a = b. It is easy
to verify that a#[a]

ATOM
(since [a]

ATOM
= A) but a#a is not derivable. Of course

a = b and a#b are derivable. Similarly in LAM it is a fact that a#[(λ[a]b)a]
LAM

but a#(λ[a]b)a is not derivable; of course (λ[a]b)a = b and a#b are derivable.

Definition 3.4.9. We construct the free term model J KT of T over D as follows:

• Take as underlying nominal set the set of free terms up to T with action
π · [g]

T
= [π · g]

T
.
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• Take as interpretations of the equivariant functions:

– JaKT = [a]
T
.

– [a]x = [[a]g]
T

for some g ∈ x.
– JfKT (x1, . . . , xn) = [f(g1, . . . , gn)]T for some g1 ∈ x1, . . . , gn ∈ xn

(for each term-former f : n in Σ).

It is usual to build free term models by quotienting by provable equality; we
exclude (congd) to avoid the following degenerate case: if we allow (congd) and
T contains an axiom such as ` a = b, then supp[d(a1, . . . , an)]T = ∅. This is not
the behaviour we want. Similarly our syntax of free terms does not allow terms of
the form d(g1, . . . , gn) in general. The only purpose of [d(a1, . . . , an)]T is to ‘be an
unknown element with support a1, . . . , an’.

Lemma 3.4.10. J KT is an interpretation of Σ.

Proof. The underlying set of J KT is a nominal set by Lemma 3.4.6. For the
interpretation functions we must show that they are well-defined (for [ ] and JfKT
the choices of g ∈ x and g1 ∈ x1, . . . , gn ∈ xn do not matter) and equivariant. This
is easy using the definitions of [ ]

T
and the permutation action. Finally, for the [ ]

function, we must show that a#[a]x holds, i.e. a#[[a]g]
T
, which we will do now.

Choose b fresh (so b 6∈ g and b#[[a]g]
T
). Since b#[[a]g]

T
, also a#(b a) · [[a]g]

T

by part 4 of Lemma 3.2.3. By definition of the permutation action, then also
a#[[b](b a) · g]

T
. Now since ` a#[b](b a) · g and ` b#[b](b a) · g by Lemma 3.4.4

and the derivation rules of Figure 2.1, we know `
T

[b](b a) · g = [a]g by (perm).
Then [[b](b a) · g]

T
= [[a]g]

T
, and we obtain a#[[a]g]

T
as required.

Theorem 3.4.11. J KT is a model of T.

Proof. Suppose ∇ ` t = u is an axiom of T. Suppose that ς is a valuation to the
underlying set of J KT and that a#ς(X) for every a#X ∈ ∇. We must show that
JtKς = JuKς .

Let X be the set of all unknowns mentioned in ∇, t, or u. By Lemma 3.4.7, for
every X ∈ X there is an element g

X
∈ ς(X) such that ` a#g

X
for every a#X ∈ ∇.

Let σ be the substitution such that σ(X) = g
X

when X ∈ X and σ(X) = X when
X 6∈ X . Then ` ∇σ, and `

T
tσ = uσ by (ax∇`t=u). Since this derivation does not

mention (congd), we know [tσ]
T

= [uσ]
T

by Definition 3.4.5. By an induction on
syntax we verify that [tσ]

T
= JtKς and [uσ]

T
= JuKς , and the result follows.

3.4.2 Completeness for Equality Derivations

Definition 3.4.12. For this subsection, fix a signature Σ, a theory T = (Σ,Ax ),
and terms t, u and a freshness context ∆ in signature Σ.

We will show that derivability of ∆ `
T
t = u is complete. That is, we will prove:

Theorem 3.4.13 (Completeness). If ∆ |=
T
t = u then ∆ `

T
t = u.
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The proof takes up the rest of this subsection.
We shall consider a specific free term model and a specific valuation to this

model that preserves sufficient information to allow us to reconstruct a derivation
of ∆ `

T
t = u.

Definition 3.4.14. Let X be the unknowns mentioned in ∆, t, u, and let A be
the atoms mentioned in ∆, t, u. For each X ∈ X :

• let aX1, . . . , aXkX
be the atoms in A (in some arbitary but fixed order) such

that aXi#X 6∈ ∆;
• let dX : kX be a term-former.

For each unknown X 6∈ X , let dX : 0 be a term-former.
Let D be the set of all dX ’s (so dX ∈ D for each X).

Definition 3.4.15. Now we consider the free term model J KT of T over D, and
the following valuation ς to the underlying set:

ς(X) = [dX(aX1, . . . , aXkX
)]

T
(X ∈ X )

ς(X) = [dX()]
T

(X 6∈ X )

Lemma 3.4.16. J∆Kς holds.

Proof. Suppose a#X ∈ ∆. We must show that a#ς(X). By construction X ∈ X
so ς(X) = [dX(aX1, . . . , aXkX

)]
T
. But also a 6∈ {aX1, . . . , aXkX

} by construction so
a 6∈ dX(aX1, . . . , aXkX

) . The result follows by Lemmas 3.4.4 and 3.4.6.

We define a substitution to talk about a specific element each ς(X).

Definition 3.4.17. Let σ be the following substitution:

σ(X) = dX(aX1, . . . , aXkX
) (X ∈ X )

σ(X) = X (X 6∈ X )

Lemma 3.4.18. [tσ]
T

= JtKς and [uσ]
T

= JuKς .

Proof. By an induction on syntax, using the fact that t and u only mention un-
knowns from X .

Definition 3.4.19. Let Π be a derivation of `
T
tσ = uσ without using (congd).

By Corollary 2.4.11 we assume that Π does not contain unknowns or instances of
(#X) and (fr).

Let A+ be A extended with:

• atoms mentioned anywhere in Π (that were not already in A);
• a set B = {bXi | X, i such that aXi ∈ A} of fresh atoms in bijection with A;
• one fresh atom c (so c does not occur in A, Π, or B).
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Let ∆+ be ∆ extended with freshness assumptions a′#X for every X ∈ X and
every a′ ∈ A+ \ A.

Definition 3.4.20. For the rest of this subsection let g and h range over free
terms in Σ ∪ D that mention only atoms from A+ \ (B ∪ {c}). Define an inverse
mapping --1 from such free terms to terms in Σ inductively as follows:

a-1 ≡ a ([a](g))-1 ≡ [a]g-1 f(g1, . . . , gn)-1 ≡ f(g-1
1 , . . . , g

-1
n )

dX(a′X1, . . . , a
′
XkX

)-1 ≡ πX(a′X1, . . . , a
′
XkX

) ·X (X ∈ X )
dX()-1 ≡ c (X 6∈ X )

Here we use the abbreviation

πX(a′X1, . . . , a
′
XkX

) for (a′X1 bX1) · · · (a′XkX
bXkX

)(bX1 aX1) · · · (bXkX
aXkX

).

We extend the notation --1 to freshnesses and freshness contexts by acting on
the terms they mention.

The inverse mapping is equivariant (for the terms we care about):

Lemma 3.4.21. ∆+ `
CORE

(π · g)-1 = π · g-1 when π mentions only atoms from
A+ \ (B ∪ {c}).

Proof. By induction on the structure of g. The only non-trivial case is when
g ≡ dX(a′X1, . . . , a

′
XkX

) with X ∈ X . Then we must show

∆+ `
CORE

πX(π(a′X1), . . . , π(a′XkX
)) ·X = (π ◦ πX(a′X1, . . . , a

′
XkX

)) ·X.

By the syntactic criteria for CORE derivability of Corollary 2.5.4 it suffices to show

∆+ ` ds(πX(π(a′X1), . . . , π(a′XkX
)), (π ◦ πX(a′X1, . . . , a

′
XkX

)))#X.

This follows by a case analysis on the atoms in the difference set, using the fact
that π does not mention any of the b

Xi
.

Lemma 3.4.22. ∆+ `
CORE

tσ-1 = t and ∆+ `
CORE

uσ-1 = u.

Proof. We show ∆+ `
CORE

vσ-1 = v for each subterm v of t and u. We do this by
induction on the structure of v. The proof of the case of v ≡ π ·X is analogous to
the dX(a′X1, . . . , a

′
XkX

) case in the proof of Lemma 3.4.21.

Lemma 3.4.23. If `
T
tσ = uσ without using (congd) then ∆ `

T
t = u.

Proof. Suppose we could transform the derivation Π of `
T
tσ = uσ into a deriva-

tion of ∆+ `
T
tσ-1 = uσ-1. Given that, the result follows because by Lemma 3.4.22

we deduce ∆+ `
T
t = u and we obtain ∆ `

T
t = u as required by strengthening

(Theorem 2.4.14).
Our transformation of `

T
tσ = uσ into ∆+ `

T
tσ-1 = uσ-1 is inductive on Π.

Suppose Π concludes with an instance of . . .
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• (#ab), (#[a]), (#[b]), (refl), (symm), (tran) or (cong[]). Then the result
trivially follows by an instance of the same rule, possibly using the inductive
hypothesis.

• (#X) or (fr). This is impossible by assumption (see Definition 3.4.19).
• (#f). There are three cases to consider:

– The case of ` a#f(g1, . . . , gn) for f ∈ Σ.
Then by assumption ` a#gi for 1 ≤ i ≤ n, and ∆+ ` a#g-1

i by the in-
ductive hypothesis. We conclude ∆+ ` a#f(g-1

1 , . . . , g
-1
n ) using (#f).

– The case of ` a#dX(a′X1, . . . , a
′
XkX

) for dX ∈ D and X ∈ X .
Then by assumption ` a#a′Xi for 1 ≤ i ≤ kX , and we obtain a 6= a′Xi by
(#ab). We must show ∆+ ` a#πX(a′X1, . . . , a

′
XkX

) ·X. By (#X), this
follows from ∆+ ` πX(a′X1, . . . , a

′
XkX

)-1(a)#X. Since a 6= a′Xi and also
a 6= bXi for all i, we have

πX(a′X1, . . . , a
′
XkX

)-1(a) = (bX1 aX1) · · · (bXkX
aXkX

)(a).

We proceed by a case distinction on a:
– If a = aXi for some i, then (bX1 aX1) · · · (bXkX

aXkX
)(a) = bXi, and

the result follows since bXi#X ∈ ∆+ by construction.
– If a 6= aXi for all i, then (bX1 aX1) · · · (bXkX

aXkX
)(a) = a since also

a 6= bXj for any j. Then by construction a#X ∈ ∆ since the aXi

are the only atoms in A for which aXi#X 6∈ ∆. The result follows.
– The case of ` a#dX() for dX ∈ D and X 6∈ X .

It is immediate by (#ab) that ` a#c.
• (congf). We consider two cases:

– The case of f ∈ Σ follows using the inductive hypothesis.
– The case of d ∈ D is impossible, since we assumed that Π does not

mention (congd).

• (perm). By the inductive hypothesis we have ∆+ ` a#g-1 and ∆+ ` b#g-1.
Then ∆+ `

T
(a b) · g-1 = g-1 by (perm). Using Lemma 3.4.21, we conclude

∆+ `
T

((a b) · g)-1 = g-1.
• (ax∇`v=w). Then ` ∇πτ and `

T
vπτ = wπτ for some permutation π and

substitution τ such that ∇τ , vτ and wτ do not mention any unknowns. We
must show ∆+ `

T
(vπτ)-1 = (wπτ)-1.

Now let τ ′ be the substitution such that τ ′(X) = τ(X)-1 when τ(X) 6= X
and τ ′(X) = X when τ(X) = X. Then (vπτ)-1 ≡ vπτ ′, (wπτ)-1 ≡ wπτ ′ and
(∇πτ)-1 ≡ ∇πτ ′, so it suffices to show ∆+ `

T
vπτ ′ = wπτ ′. By (ax∇`v=w),

this follows from ∆+ ` ∇πτ ′, i.e. ∆+ ` (∇πτ)-1. By the inductive hypothe-
sis, this follows from the assumption ` ∇πτ .
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We are now ready for the main result of this subsection:

Proof of Theorem 3.4.13. Suppose ∆ |=
T
t = u, so J∆ ` t = uKς for the free term

model J KT and valuation ς constructed above. Now J∆Kς by Lemma 3.4.16 so
JtKς = JuKς . By Lemma 3.4.18 [tσ]

T
= JtKς and [uσ]

T
= JuKς . Therefore by con-

struction `
T
tσ = uσ without using (congd). It follows by Lemma 3.4.23 that

∆ `
T
t = u.

3.4.3 The Status of Freshness Derivations

Definition 3.3.6 states that validity of freshness depends on the axioms of a theory.
Derivability does not depend on axioms, it only inspects syntax. For this reason,
we do not have completeness for freshnesses. That is, ∆ |=

T
b#t does not imply

∆ ` b#t necessarily.
For examples of incompleteness of freshness, we recall Example 3.4.8. We showed

that in theory ATOM with one axiom ` a = b, a#JaKTς is valid for the term model
J KT (and any valuation ς). It is not hard to verify that this property holds for all
models J K of ATOM. So we have |=

ATOM
a#a, but also 0 a#a. Similarly, we can

show that J(λ[a]b)aKς = JbKς for any model J K of theory LAM, so |=
LAM

a#(λ[a]b)a,
but also 0 a#(λ[a]b)a.

To understand why this is desirable we must draw a distinction between the
intension and the extension of a term.

‘` a#(λ[a]b)a’ has the status of ‘x 6∈ fv((λx.y)x)’; both are false. Yet (λx.y)x is
β-convertible to y and x 6∈ fv(y) holds. A freshness judgement ∆ ` a#t is an inten-
sional judgement on concrete syntax.2 All the capture-avoidance side-conditions
we know of are in accordance with the slogan ‘ε away from informal practice’, this
is what ∆ ` a#t models.

Nominal sets is unusual amongst semantics in that it has an extensional semantic
notion of freshness a#x. In fact, semantic freshness is hiding in nominal algebra
in the theory of equality.

Theorem 3.4.24. Suppose {X1, . . . , Xn} and {a1, . . . , am} are the unknowns and
atoms mentioned in ∆ and t, and suppose that b 6∈ {a1, . . . , am}. Then:

∆ |=
T
a#t if and only if ∆, b#X1, . . . , b#Xn `T

(b a) · t = t.

Proof. Choose a model J K and any valuation ς such that b#ς(X1), . . . , b#ς(Xn);
it follows by an induction on syntax that b#JtKς . It is a fact that a#JtKς if and
only if (b a) · JtKς = JtKς (see [GP02] for details). By Lemma 3.3.3, the last part is
equivalent to J(b a) · tKς = JtKς .

Now suppose ∆ |=
T
a#t. By definition a#JtKς for any J K and ς such that

J∆Kς . By the arguments above J(b a) · tKς = JtKς if b#ς(X1), . . . , b#ς(Xn). By
completeness Theorem 3.4.13 it follows that ∆, b#X1, . . . , b#Xn `T

(b a) · t = t.
The reverse implication is similar.

2The reader familiar with a theorem-prover such as Isabelle [Pau89] might like to imagine
that # maps to Prop and = maps to o.
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Theorem 3.4.24 tells us for instance that |=
ATOM

a#a if and only if `
ATOM

b = a
(which follows by the axiom ` a = b), and that |=

LAM
a#(λ[a]b)a if and only if

`
LAM

(λ[a]b)a = (λ[c]b)c (which follows since both sides are derivably equal to b).
So semantic freshness ∆ |=

T
a#t can be expressed as an equality axiom. Any

undecidability or algorithmic complexity is isolated in the equality judgement form.

3.5 Conclusions

We have given a semantics to nominal algebra in nominal sets. In this seman-
tics, object-level variables are first-class entities in the denotation; so an atom a
represents an object-level variable symbol in the syntax and in the semantics.

3.5.1 Related Work

To put things into perspective we discuss some related work.

Functions

Nominal sets provide a model of α-conversion that is pretty close to informal
practice. Semantic notions based on functions are models of α-conversion and
substitution of terms for variables. These are less close to informal practice because
they do not have the ability to manipulate names of bound variables explicitly.
See [GP02, Subsection 1.1] and [Pit03, Section 9] for excellent discussions on this.

However, in addition to α-conversion, we often do need substitution behaviour
on nominal sets. We can do this by imposing axioms such as theory SUB from
Example 2.2.17. If we can substitute for an atom a then it has the flavour of a
variable ‘ranging over’ denotational elements; so SUB is a theory of ‘variables in
denotation’. A detailed account of the proof-theory of SUB is in Chapter 4.

Binding algebras

Just like us, Fiore, Plotkin and Turi investigate a general framework for bind-
ing [FPT99]. They use categories of presheaves, whereas we use nominal sets.
Categories of presheaves do not have a notion of “least supporting set” like nomi-
nal sets do [GP02, Related Work]. So in its current form, the freshness judgement
of a#x cannot be expressed in their framework. For this reason, it is not clear
how an easy and direct connection can be made between the two frameworks.

Freshness

Finally we briefly return to our discussion in the Conclusions of Chapter 2 on
the difference in freshness derivability between nominal algebra on the one hand,
and nominal logic [Pit03] and nominal equational logic [CP07] on the other hand.
Using terminology from Subsection 3.4.3, nominal algebra uses syntactic freshness
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while nominal logic and nominal equational logic use semantic freshness. For
this reason, derivability of freshness in nominal equational logic is complete with
respect to its semantics in nominal sets [CP07, Theorem 10.10], while derivability
of freshness in nominal algebra is not. However, nominal algebra is capable of
expressing semantic freshness using the notion of equality (Theorem 3.4.24).



Chapter 4

Capture-Avoiding
Substitution

4.1 Introduction

Substitution is intuitively the operation v[x 7→ t] meaning:

“Replace the variable x by t in v.”

Can we give an algebraic characterisation of the properties of v[x 7→ t] indepen-
dently of what v and t are (λ-terms, formulae of a logic, terms of some process
calculus, or any mixture or variation thereof)?

Consider by way of analogy the notion of ‘a field’. This has an algebraic char-
acterisation which tells us what properties ‘a field’ must have, independently of
which field it is, or how it may be implemented (if we are programming). This is
useful; for example the definition of ‘vector space’ is parametric over fields, and
this step requires a characterisation of what fields are [BS81].

When we begin to axiomatise substitution, unusual difficulties present them-
selves. Consider the following informally expressed candidate property of substi-
tution:

v[x 7→ t][y 7→ u] = v[y 7→ u][x 7→ t[y 7→ u]] if x 6∈ fv(u)

This is not algebraic, because of the side-condition x 6∈ fv(u) (recall that fv(u)
represents the free variables of u, which is a property of the syntax of u).

In this chapter we use the framework of nominal algebra from Chapter 2 to
propose a solution to this problem. We consider theory SUB from Example 2.2.17,
and we will show that the axiomatisation satisfies the following properties:

• The treatment is general in the sense that it is independent of the choice of
term-formers.

• The axioms are natural in the sense that they are close to informal practice.

47
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• It is decidable whether two terms are equal.
• The axioms are sound and complete for a canonical model.

Overview In Section 4.2 we provide a simple sort system to keep terms well-
formed. We recall the definition of SUB in this sorted setting and indicate why
the axiomatisation is both general and natural.

To show that the axiomatisation is decidable and sound and complete takes up
the rest of the chapter. Section 4.3 creates a concrete model out of syntax and
defines a standard capture-avoiding substitution action on the model — this is
what the axioms need to express. Section 4.4 defines a relatively weak subset
of SUB which we call SIMP (for ‘simple’); this subset is sound for the concrete
model, but not complete. Section 4.5 proves useful properties of this simple ax-
iomatisation; here we make heavy use of techniques from (nominal) rewriting.
Section 4.6 explores the stronger axioms of SUB by relating them to the axioms
of SIMP. This enables us to show decidability (Subsection 4.6.2) and completeness
with respect to the concrete model from Section 4.3 (Subsection 4.6.3). Finally,
Subsection 4.6.4 shows how the general axiomatisation of SUB relates to a more
concrete axiomatisation.

4.2 A Sort System

Recall from Example 2.2.17 that sub is a binary term-former for explicit substitu-
tion, and that we usually write t[a 7→ u] for sub([a]t, u). Using the sortless system
of Chapter 2 it is possible to write ‘silly’ terms like sub(a, t) and t[a 7→ sub(u, v)].
Looking at the axioms of theory SUB from Example 2.2.17, we can see that in the
term sub(a, t), t will never replace anything in a since a is not an abstraction. Also
in t[a 7→ sub(u, v)], free occurrences of a in t will be replaced by the term sub(u, v),
which intuitively lives at a different level.

To exclude such terms, we provide a simple sort system. The sort system we
use here is tailored to our application of axiomatising substitution.

Definition 4.2.1. Fix a sort of terms T. Define sorts τ by the following
grammar:

τ ::= T | [A]T | [A][A]T

We call [A]T and [A][A]T abstraction sorts.

This particularly simple grammar consisting of only three sorts is sufficient for
our needs. We only use sorts to make sure that terms are well-formed; the reader
should not view it as a ‘type system’.

Intuitively, the sorts [A]T and [A][A]T contain terms that are abstractions [a]t
and [a][b]t, respectively. However, we will see that the sort [A]T also contains some
unknowns X and some terms of the form sub(t, u).
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Definition 4.2.2. We assume the infinite collection of unknowns X,Y, Z, . . . is
partitioned into two infinite collections XT, YT, ZT, . . . of unknowns of sort T
and X[A]T, Y[A]T, Z[A]T, . . . of unknowns of sort [A]T.

We usually leave out the sort subscripts of the unknowns, as these sorts are
usually clear from the context. We will also write X : τ for X of sort τ , where
τ ∈ {T, [A]T}. Typically we let T and U be unknowns of sort T.

Definition 4.2.3. We associate a sorting arity (τ1, . . . , τn)τ with each term-
former f as follows:

• There are two term-formers sub, one with arity ([A]T,T)T, and one with
arity ([A][A]T,T)[A]T.

• For any other term-former f, sorting arities are of the form (τ1, . . . , τn)T,
where τi ∈ {T, [A]T}, 1 ≤ i ≤ n.

We write f : (τ1, . . . , τn)τ for f of arity (τ1, . . . , τn)τ .

The term-formers f excluding sub constitute the term-language in which atoms
are going to be substituted. The sorting arities explicitly allow the use of abstrac-
tion sorts [A]T for the arguments.

Example 4.2.4. The signature of theory LAM has the following term-formers:

lam : ([A]T)T app : (T,T)T sub : ([A]T,T)T sub : ([A][A]T,T)[A]T.

So there are two term-formers sub that should take care of substitution, and there
are two term-formers lam and app that constitute the term-language.

Remark 4.2.5. Term-former sub : ([A][A]T,T)[A]T involves higher abstraction
sorts than any of the unknowns and other term-formers. In combination with
unknowns of sort [A]T, this term-former is convenient because it allows us to talk
about the term-language of substitution at a general level. For instance, we can
phrase the distributivity axiom

(f 7→) ` f(X1, . . . , Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . , Xn[a 7→ T ])

as a schema of axioms (one for each term-former f).
It is also possible to present the theory of substitution without term-former

sub : ([A][A]T,T)[A]T and unknowns of sort [A]T. This is made formal in Subsec-
tion 4.6.4. In fact, it is the approach we take in Chapter 5.

We will not use this more compact sort system here because it makes the presen-
tation less general. Most importantly, in the presentation of the (f 7→) axioms, we
would need to instantiate the schema for each term-formers f (see Subsection 4.6.4
and Figure 5.1 for examples).

Definition 4.2.6. Let (valid) sorting assertions t : τ , read ‘t has sort τ ’ be
inductively defined by:

a : T π ·Xτ : τ

t : τ

[a]t : [A]τ

t1 : τ1 · · · tn : τn
(f : (τ1, . . . , τn)τ)

f(t1, . . . , tn) : τ
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From now on, we will only consider terms that adhere to the valid sorting asser-
tions. Furthermore, we require equalities t = u and meta-level substitutions σ to
be sort-respecting, i.e. t = u is an equality when both t : τ and u : τ . For σ we
have the requirement that σ(X) : τ when X : τ .

Note that in the above rules for moderated unknowns π ·Xτ and abstractions
[a]t, τ is restricted to T and [A]T by construction: for the case of π ·Xτ , the τ
subscript of Xτ is restricted to T or [A]T by assumption; for the case of [a]t, τ can
never be [A][A]T because then [a]t would have sort [A][A][A]T which is undefined.

Remark 4.2.7. The sorting discipline used here resembles the one from nominal
unification [UPG04]. There are a number of important differences, though. On the
one hand our setting is a bit more general because we allow unknowns of non-base
sorts (i.e. X : [A]T), and one term-former of which the result sort is a non-base
sort (i.e. sub : ([A][A]T,T)[A]T). On the other hand it is much more restricted
because we only consider a finite hierarchy of abstractions sorts (i.e. only [A]T
and [A][A]T) as opposed to the infinite hierarchy of [UPG04]. We are interested
in lifting this restriction; this is current work.

We give some intuition of terms and their sorting assertions:

• An atom a represents a variable symbol of sort T.
• A moderated unknown π ·X : τ represents an unknown term of sort τ on

which a permutation of atoms is performed.
• An abstraction [a]t : [A]τ represents a term of sort τ in which an atom a is

abstracted.
• Binders are represented by term-formers that take abstractions as one or

more of their arguments. So for example lam : ([A]T)T is a binder, and both
term-formers sub are binders as well.
The sort system is such that a well-sorted term of the form lam(t) must be of
the form lam(π ·X), lam(sub(t′, u′)) or lam([a]t′) (so t ≡ π ·X, t ≡ sub(t′, u′)
or t ≡ [a]t′). Similarly a well-sorted term of the form sub(t, u) must be of
the form sub(π ·X,u), sub(sub(t′, u′), u), or sub([a]t′, u), i.e. t′[a 7→ u].

We repeat the definition of theory SUB, cast into our sort system.

Definition 4.2.8. Call a signature Σ suitable for SUB when it includes term-
formers sub : ([A]T,T)T and sub : ([A][A]T,T)[A]T. Then SUB is a theory (Σ,Ax )
where Σ is suitable for SUB and Ax is given by the axioms in Figure 4.1, in which:

• (f 7→) represents a schema of axioms: there is one (f 7→) axiom for each f in
Σ excluding sub : ([A][A]T,T)[A]T (but including sub : ([A]T,T)T).

• The (#7→) and (ren7→) axioms each represent two axioms: one for X : T
and one for X : [A]T.

For the rest of this chapter, we will only consider signatures suitable for SUB.
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(var 7→) ` a[a 7→ T ] = T

(# 7→) a#X ` X[a 7→ T ] = X

(f 7→) ` f(X1, . . . , Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . , Xn[a 7→ T ])

(abs7→) b#T ` ([b]U)[a 7→ T ] = [b](U [a 7→ T ])

(ren 7→) b#X ` X[a 7→ b] = (b a) ·X
(η 7→) a#X ` [a]sub(X, a) = X

Figure 4.1 Axioms of theory SUB

Informally, the axioms of Figure 4.1 express the following:

(var7→): If a is a variable then a with a replaced by T , is T .
(# 7→): If a is fresh for X then X with a replaced by T is X.
(f 7→): Substitution distributes through term-formers.

(abs7→): Substitution of a distributes under an abstraction [b]U , provided a
capture-avoidance condition holds (b is fresh for T ).

(ren7→): If b is fresh for X then X with a replaced by b is identical to X with a
replaced by b and simultaneously b replaced by a.

(η 7→): This axiom generalises the property that

∆ ` a#t implies ∆ `
SUB

[a](t[b 7→ a]) = [b]t

from abstractions [b]t : [A]T to all terms of sort [A]T, i.e. the property
also holds for unknowns X and substitutions sub(t′, u′).
The reader can think of (η 7→) as related to η-equality from the world of
the λ-calculus, though X is not a function. The reader can also think of
(η 7→) as related to a known property of the atoms-concretion operation
of Gabbay-Pitts abstraction [GP02], though sub is not atoms-concretion.

Remark 4.2.9. We require the presence of a term-former taking at least two
arguments (like app from theory LAM) to exclude degenerate models. This is
only needed for so-called ω-completeness (Theorem 4.6.28), which is a very strong
notion of completeness with respect to a concrete model.1 The other major results,
including a weaker notion of completeness (Theorem 4.6.19), are in no danger and
remain valid even in a signature with just sub.

4.3 Substitution on Ground Terms

In this section we build a concrete model of syntax from the syntax of SUB, on
which we define the usual notion of capture-avoiding substitution. We will use
this model later to express the meaning of explicit substitution.

1The required term-former is needed in its proof to construct a translation -∗ from terms in
an extended signature to terms in the original syntax (see Subsection 4.6.3).
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Definition 4.3.1. Call a term ground when it does not mention any unknowns
or explicit substitutions. Ground terms are inductively characterised by:

g ::= a | [a]g | f(g, . . . , g)

where f ranges over all term-formers except for sub.

We can easily define a ‘free variables’ function on ground terms. We call it the
‘free atoms’ function, since variables are represented by atoms in nominal algebra.

Definition 4.3.2. Define a ‘free atoms’ function fa(g) on ground terms induc-
tively as follows:

fa(a) = {a} fa([a]g) = fa(g) \ {a} fa(f(g1, . . . , gn)) =
⋃

1≤i≤n

fa(gi)

On ground terms, ‘not in the free atoms of’ coincides with derivability of fresh-
ness:

Lemma 4.3.3 (Freshness on ground terms). For ground terms g:

` a#g if and only if a 6∈ fa(g).

Proof. By induction on the structure of g.

Definition 4.3.4. Let the size of a ground term be inductively defined by:

|a| = 1 |[a]g| = |g|+ 1 |f(g1, . . . , gn)| = |g1|+ . . .+ |gn|+ 1

Definition 4.3.5. For each finite set of atoms arbitrarily choose some canonical
‘fresh’ atom not in that finite set. Then define a ground substitution action
g[h/a] on ground terms of sort T and [A]T inductively on the size of g by:

a[h/a] ≡ h b[h/a] ≡ b

([a]g)[h/a] ≡ [a]g ([b]g)[h/a] ≡ [b](g[h/a]) (b 6∈ fa(h))
([b]g)[h/a] ≡ [c](g[c/b][h/a]) (b ∈ fa(h), c fresh)

f(g1, . . . , gn)[h/a] ≡ f(g1[h/a], . . . , gn[h/a]),

where f ranges over all term-formers excluding sub. ‘c fresh’ means c is chosen
such that c 6∈ {a, b} ∪ fa(g) ∪ fa(h) according to our arbitrary choice. We will not
mention c 6∈ {a, b} anymore in the remainder of this chapter, since this is enforced
by our permutative convention on atoms (see Definition 2.3.12).

Note that the ground substitution action is well-defined, since |g[c/b]| = |g| in
the penultimate case of Definition 4.3.5, as can be shown by induction on the size
of g. We will often use this fact that capture-avoiding substitution of atoms for
atoms preserves size.

We will also use the following simple property relating freshness and capture-
avoiding substitution on ground terms:
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Lemma 4.3.6. For ground terms g, h, fa(g[h/a]) ⊆ (fa(g)\{a}) ∪ fa(h).

Proof. By induction on the size of g. In the calculations we indicate uses of the
inductive hypothesis with a superscript IH . We consider the three more interesting
cases in turn:

• g ≡ [a]g′: Then ([a]g′)[h/a] ≡ [a]g′. We must show

fa(g′) \ {a} ⊆ (fa(g′) \ {a}) ∪ fa(h),

which is trivial.
• g ≡ [b]g′, b 6∈ fa(h): Then ([b]g′)[h/a] ≡ [b](g′[h/a]). We calculate as follows:

fa(g′[h/a])\{b}
IH
⊆ ((fa(g′)\{a})∪fa(h))\{b} = ((fa(g′)\{b})\{a})∪fa(h).

• g ≡ [b]g′, b ∈ fa(h): Then ([b]g′)[h/a] ≡ [c](g′[c/b][h/a]), where c is our choice
of fresh atom such that c 6∈ fa(g′) ∪ fa(h). We must show

(fa(g′[c/b][h/a]) \ {c}) ⊆ ((fa(g′) \ {b}) \ {a}) ∪ fa(h),

which we calculate as follows:

fa(g′[c/b][h/a]) \ {c}
IH
⊆ ((fa(g′[c/b]) \ {a}) ∪ fa(h)) \ {c}
= ((fa(g′[c/b]) \ {c}) \ {a}) ∪ fa(h)
IH
⊆ ((((fa(g′) \ {b}) ∪ fa(c)) \ {c}) \ {a}) ∪ fa(h)

= ((fa(g′) \ {b}) \ {a}) ∪ fa(h).

In the first application of the inductive hypothesis above, we use the fact
that |g′[c/b]| < |[b]g′|.

Lemma 4.3.7. For ground terms g, h:

1. If ` a#h then ` a#g[h/a].
2. If ` a#g and ` a#h then ` a#g[h/b].

Proof. By Lemma 4.3.3 it suffices to show that, using the contrapositive:

1. If a ∈ fa(g[h/a]) then a ∈ fa(h).
2. If a ∈ fa(g[h/b]) then a ∈ fa(g) and a ∈ fa(h).

This is easy using Lemma 4.3.6.

Lemma 4.3.8 states familiar properties of ground terms — but are they true?
Lemma 4.3.8 makes the vital connection between ‘substitution as we know it’ and
the nominal technology we bring to bear on it. We give proofs in some detail.
They run smoothly, and this fact is encouraging evidence that our definitions are
appropriate:
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Lemma 4.3.8. For ground terms g, h, k:

1. Identity. `
CORE

g[a/a] = g.
2. Swapping. If ` b#g then `

CORE
g[b/a] = (b a) · g.

3. Garbage collection. If ` a#g then `
CORE

g[h/a] = g.
4. Distributivity. If ` a#k then `

CORE
g[h/a][k/b] = g[k/b][h[k/b]/a].

Proof of parts 1, 2 and 3. Part 1 follows from the stronger property g[a/a] ≡ g.
We prove that by an induction on the size of g which we omit.

We show part 2 by induction on the size of g. Most cases are easy; the interesting
ones are:

• g ≡ [a]g′. Then ([a]g′)[b/a] ≡ [a]g′, so we must show `
CORE

[a]g′ = (b a) · [a]g′.
By (symm) and (perm), this follows from assumption b#[a]g′ and from
a#[a]g′, which follows by (#[]a).

• g ≡ [b]g′. Then ([b]g′)[b/a] ≡ [c](g′[c/b][b/a]) where c 6∈ fa(g′) is our choice
of fresh atom. We must now show that

`
CORE

[c](g′[c/b][b/a]) = [a](b a) · g′.

By (symm) and the syntactic criteria of Corollary 2.5.4, this happens when

` c#(b a) · g′ and `
CORE

g′[c/b][b/a] = (c a) · (b a) · g′.

We consider each part in turn.
Since c 6∈ fa(g), we know ` c#(b a) · g′ by Lemma 4.3.3 and object-level
equivariance (Theorem 2.4.6).
To prove `

CORE
g′[c/b][b/a] = (c a) · (b a) · g′ it suffices to show that

`
CORE

g′[c/b][b/a] = (b a) · g′[c/b] and `
CORE

(b a) · g′[c/b] = (b a) · (c b) · g′,

by (tran).
Now |g′[c/b]| < |[b]g′| so we use the inductive hypothesis to deduce

`
CORE

g′[c/b][b/a] = (b a) · g′[c/b]

from ` b#g′[c/b], which follows by Lemma 4.3.7.
We deduce `

CORE
(b a) · g′[c/b] = (b a) · (c b) · g′ from `

CORE
g′[c/b] = (c b) · g′

using object-level equivariance (Theorem 2.4.6). By the inductive hypothesis
and Lemma 4.3.3, this follows from the assumption c 6∈ fa(g′).

• g ≡ [c]g′. Then ([c]g′)[b/a] ≡ [c](g′[b/a]), so we need to show

`
CORE

[c](g′[b/a]) = [c](b a) · g′.

This follows directly from the inductive hypothesis using (cong[]).
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We show part 3 by induction on the size of g using the syntactic criteria of
Corollary 2.5.4. The only interesting case is when g ≡ [b]g′ and b ∈ fa(h). Then
([b]g′)[h/a] ≡ [c](g′[c/b][h/a]) where c 6∈ fa(g′) ∪ fa(h), so we must show

`
CORE

[c](g′[c/b][h/a]) = [b]g′.

By (tran) this follows from

`
CORE

[c](g′[c/b][h/a]) = [c](c b) · g′ and `
CORE

[c](c b) · g′ = [b]g′.

By (perm), `
CORE

[c](c b) · g′ = [b]g′ follows from ` b#[b]g′ and ` c#[b]g′, which
follow from assumption c 6∈ fa(g′) by the rules for freshness and Lemma 4.3.3. By
(cong[]) and (tran), `

CORE
[c](g′[c/b][h/a]) = [c](c b) · g′ follows from

`
CORE

g′[c/b][h/a] = g′[c/b] and `
CORE

g′[c/b] = (c b) · g′.

By the inductive hypothesis, `
CORE

g′[c/b][h/a] = g′[c/b] follows from ` a#g′[c/b],
which follows from assumption ` a#[b]g′ by Lemmas 4.3.7 and 2.4.2. Finally,
`

CORE
g′[c/b] = (c b) · g′ is an instance of part 2 of this lemma, since ` c#g′.

We can prove part 4 of Lemma 4.3.8 by induction on the size of g, using parts 2
and 3 and congruence of capture-avoiding substitution on ground terms. We will
only provide the congruence properties here.

Lemma 4.3.9. For ground terms g, h, k:

1. If `
CORE

g = h then `
CORE

g[k/a] = h[k/a].
2. If `

CORE
h = k then `

CORE
g[h/a] = g[k/a].

Proof. The proof of the first part is by induction on the size of g, using the syntactic
criteria of Corollary 2.5.4. We consider the two most interesting cases:

• g ≡ [a]g′. Then there are two possibilities:

– h ≡ [a]h′ and `
CORE

g′ = h′. Then we must show `
CORE

[a]g′ = [a]h′ since
([a]g′)[k/a] ≡ [a]g′ and ([a]h′)[k/a] ≡ [a]h′. The result follows from the
assumption `

CORE
g′ = h′ by (cong[]).

– h ≡ [b]h′, ` b#g′ and `
CORE

(b a) · g′ = h′. Then since ` b#g′, we also
have ` a#(b a) · g′ by object-level equivariance (Theorem 2.4.6). Using
Corollary 2.5.6 and assumption `

CORE
(b a) · g′ = h′ we obtain ` a#h′.

Then ` a#[b]h′ by (#[]b), so by part 3 of Lemma 4.3.8 we obtain
`

CORE
([b]h′)[k/a] = [b]h′.

Now by (cong[]), (symm) and assumption `
CORE

(b a) · g′ = h′, we have
`

CORE
[b]h′ = (b a) · [a]g′. Also `

CORE
(b a) · [a]g′ = [a]g′ by (perm) and

assumption ` b#g′. Since [a]g′ ≡ ([a]g′)[k/a], we may use (tran) and
(symm) to conclude `

CORE
([a]g′)[k/a] = ([b]h′)[k/a], as required.

• g ≡ [b]g′. Then again there are two possibilities:
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g =α g

g =α h

h =α g

g1 =α g2 g2 =α g3

g1 =α g3

g =α h

[a]g =α [a]h

g1 =α h1 · · · gn =α hn

f(g1, . . . , gn) =α f(h1, . . . , hn)

g[c/a] =α h[c/b]

[a]g =α [b]h
(c fresh)

Figure 4.2 α-equivalence on ground terms

– h ≡ [a]h′, ` a#g′ and `
CORE

(a b) · g′ = h′. Completely analogous to the
previous part we can show that `

CORE
([b]g′)[k/a] = ([a]h′)[k/a].

– g ≡ [b]h′ and `
CORE

g′ = h′.
If b 6∈ fa(k) we must show `

CORE
[b](g′[k/a]) = [b](h′[k/a]), which follows

from the assumption `
CORE

g′ = h′ by (cong[]) and the inductive hy-
pothesis.
If b ∈ fa(k) we must show `

CORE
[c](g′[c/b][k/a]) = [c](h′[c/b][k/a]) where

c 6∈ fa(g′) ∪ fa(h′) ∪ fa(k).2 By an instance of (cong[]) this follows from
`

CORE
g′[c/b][k/a] = h′[c/b][k/a]. By inductive hypothesis, this follows

from `
CORE

g′[c/b] = h′[c/b]. Since ` c#g′ and ` c#h′, this is equivalent
to `

CORE
(c b) · g′ = (c b) · h′ by part 2 of Lemma 4.3.8. By object-level

equivariance (Theorem 2.4.6) this follows from `
CORE

g′ = h′, which we
assumed.

The proof of the second part is similar, but simpler.

We will now show how equality on ground terms in theory CORE coincides with
a straightforward definition of α-equivalence on ground terms: syntactic equality
extended with a rule to rename bound variables.

Definition 4.3.10. Define α-equivalence g =α h on ground terms g and h
inductively by the rules in Figure 4.2. Here ‘c fresh’ means any c such that
c 6∈ {a, b} ∪ fa(g) ∪ fa(h).

Before we can relate CORE equality and =α, we need to establish a few technical
properties of =α.

Lemma 4.3.11. If b 6∈ g then [b](g[b/a]) =α [a]g.
2Both ([b]g′)[k/a] and ([b]h′)[k/a] introduce the same fresh atom c because fa(g′) = fa(h′).

We can see this as follows: fa(g′) = fa(h′) is equivalent to a′ 6∈ fa(g′) if and only if a′ 6∈ fa(h′)
for all atoms a′. By Lemma 4.3.3 this is equivalent to ` a′#g′ if and only if ` a′#h′, and by
Corollary 2.5.6, this follows from the assumption `CORE g′ = h′.
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Proof. Let c 6∈ g. By the α-conversion rule of Figure 4.2, [b](g[b/a]) =α [a]g fol-
lows from g[b/a][c/b] =α g[c/a]. This follows by reflexivity since we can show
g[b/a][c/b] ≡ g[c/a] by an easy induction on the structure of g: the cases of a and
d are trivial, the cases of f(g1, . . . , gn) and [d]g′ follow using the inductive hypoth-
esis, the case of [a]g′ follows from the fact that g′[c/b] ≡ g′, and the remaining
cases b, c, [b]g′ and [c]g′ are vacuously true.

Lemma 4.3.11 enables us to prove that =α can simulate the (perm) rule.

Lemma 4.3.12. If a, b 6∈ fa(g) then (a b) · g =α g.

Proof. Since a, b 6∈ fa(g), all instances of a and b in g occur in the scope of ab-
stractors [a] and [b]. Traverse the structure of g bottom-up, and use Lemma 4.3.11
to rename those abstractors so they are not a or b anymore, but some completely
fresh set of atoms — a different atom for each instance of [a] and [b]. Call the
new term g′, then it is easy to show (a b) · g′ ≡ g′, since a, b 6∈ g′. Now equality is
symmetric, so we reverse the process to get g back again.

We now have all the ingredients to show the main result of this section.

Theorem 4.3.13 (CORE on ground terms). For ground terms g, h:

`
CORE

g = h if and only if g =α h.

Proof. We prove the left-to-right implication by induction on the structure of g,
using the syntactic criteria for CORE-equality (Corollary 2.5.4). The case of g ≡ a
follows by reflexivity, and the case of g ≡ f(g1, . . . , gn) follows by congruence using
the inductive hypothesis. Now suppose g ≡ [a]g′, then there are two possibilities:

1. h ≡ [a]h′ and `
CORE

g′ = h′. Then g′ =α h
′ by the inductive hypothesis, and

we conclude [a]g′ =α [a]h′ by congruence.
2. h ≡ [b]h′, ` b#g′ and `

CORE
(b a) · g′ = h′. By Lemma 4.3.3 and some easy

calculations we know a, b 6∈ fa([a]g′), so [a]g′ =α [b](b a) · g′ by Lemma 4.3.12
and symmetry. Also [b](b a) · g′ =α [b]h′ by congruence and the inductive
hypothesis. We conclude [a]g′ =α [b]h′ by transitivity.

Conversely suppose that g =α h. It suffices to show that equality in CORE can
simulate every derivation rule of =α. We treat the only non-trivial case.

Suppose we have deduced [a]g =α [b]h from g[c/a] =α h[c/b], where c is chosen
fresh. Since c 6∈ fa(g) ∪ fa(h), we know ` c#g and ` c#h, and we obtain

`
CORE

g[c/a] = (c a) · g and `
CORE

h[c/b] = (c b) · h

by part 2 of Lemma 4.3.8.
Now also `

CORE
g[c/a] = h[c/b] by the inductive hypothesis. Then we obtain

`
CORE

[c](c a) · g = [c](c b) · h.

by (symm), (tran) and (cong[]).
By (perm) `

CORE
[c](c a) · g = [a]g and `

CORE
[c](c b) · h = [b]h, since ` c#g and

` c#h. Using (symm) and (tran) we conclude that `
CORE

[a]g = [b]h.
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(var 7→) ` a[a 7→ T ] = T

(b 7→) ` b[a 7→ T ] = b

(f 7→) ` f(X1, . . . , Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . , Xn[a 7→ T ]) (f 6= sub)

(abs7→) c#T ` ([c]U)[a 7→ T ] = [c](U [a 7→ T ])

Figure 4.3 Axioms of theory SIMP

4.4 Theory SIMP: Substitution on Closed Terms

We define a nominal algebra theory SIMP which is sound but not complete with
respect to the ground term model from Section 4.3. This is an important technical
step towards SUB because we shall prove properties of SUB by reducing them to
properties of SIMP.

Definition 4.4.1. Let SIMP be the nominal algebra theory with axioms as in
Figure 4.3.

Here, f ranges over all term-formers except for sub. Recall that T and U are
unknowns of T, and that the Xi are unknowns of sort T or [A]T (which one applies
depends on the instance of f).

Lemma 4.4.2. For ground terms g, h, if ` a#g then `
SIMP

g[a 7→ h] = g.

Proof. We work by induction on the size of g. We consider the cases in turn:

• g ≡ a. Then 0 a#a and there is nothing to prove.
• g ≡ b. Then ` a#b. `

SIMP
b[a 7→ h] = b by axiom (b7→).

• g ≡ [a]g′. Take c fresh for g′ and h. Then `
CORE

[c](c a) · g′ = [a]g′ by (perm)
since ` c#g′ and ` a#g′. Using (symm), (cong[]) and (congf) we obtain

`
CORE

([a]g′)[a 7→ h] = ([c](c a) · g′)[a 7→ h].

Now by (abs7→) also

`
SIMP

([c](c a) · g′)[a 7→ h] = [c](((c a) · g′)[a 7→ h])

since ` c#h. Since ` a#(c a) · g′ we know `
SIMP

((c a) · g′)[a 7→ h] = (c a) · g′
by the inductive hypothesis ((c a) · g′ has the same size as g′, and so is smaller
than [a]g′). Using (cong[]) and `

CORE
[c](c a) · g′ = [a]g′ we obtain

`
SIMP

[c]((c a) · g′)[a 7→ h] = [a]g′.

We use (tran) to obtain `
SIMP

([a]g′)[a 7→ h] = [a]g′, as required.
• g ≡ [b]g′. Analogous to the previous part.
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• g ≡ f(g1, . . . , gn)[a 7→ h], f 6= sub. By assumption ` a#f(g1, . . . , gn). Then
` a#gi by Theorem 2.4.2 and `

SIMP
gi[a 7→ h] = gi by the inductive hypoth-

esis for 1 ≤ i ≤ n. Using (congf) and (tran) we obtain

`
SIMP

f(g1[a 7→ h], . . . , gn[a 7→ h]) = f(g1, . . . , gn).

Now by axiom (f 7→)

`
SIMP

f(g1, . . . , gn)[a 7→ h] = f(g1[a 7→ h], . . . , gn[a 7→ h]).

We obtain `
SIMP

f(g1, . . . , gn)[a 7→ h] = f(g1, . . . , gn) by (tran), as required.

Theorem 4.4.3. For ground terms g, h, `
SIMP

g[a 7→ h] = g[h/a].

Proof. By induction on the size of g:

• g ≡ a. Then `
SIMP

a[a 7→ h] = h by axiom (var7→), and a[h/a] ≡ h.
• g ≡ b. Then `

SIMP
b[a 7→ h] = b by axiom (b7→), and b[h/a] ≡ b.

• g ≡ [a]g′. Then `
SIMP

([a]g′)[a 7→ t] = [a]g′ by Lemma 4.4.2 since ` a#[a]g′.
We are done since ([a]g′)[h/a] ≡ [a]g′.

• g ≡ [b]g′, b 6∈ fa(h). Then `
SIMP

([b]g′)[a 7→ h] = [b](g′[a 7→ h]) is an instance
of axiom (abs7→), since ` b#h by Lemma 4.3.3. By the inductive hypothe-
sis also `

SIMP
g′[a 7→ h] = g′[h/a], so we conclude ([b]g′)[a 7→ h] = [b](g′[h/a])

using (cong[]) and (tran). We are done, since ([b]g′)[h/a] ≡ [b](g′[h/a]).
• g ≡ [b]g′, b ∈ fa(h). Then ([b]g′)[h/a] ≡ [c](g[c/b][h/a]) where c is a fresh

atom according to our arbitary choice, i.e. c 6∈ fa(g′) ∪ fa(h). Then also
` c#g′ and ` c#h by Lemma 4.3.3 . Now `

CORE
[c](c b) · g′ = [b]g′ by (perm)

since ` b#[b]g′ and ` c#[b]g′. By (symm), (cong[]) and (congf) we obtain

`
CORE

([b]g′)[a 7→ h] = ([c](c b) · g′)[a 7→ h].

By axiom (abs 7→) also

`
SIMP

([c](c b) · g′)[a 7→ h] = [c](((c b) · g′)[a 7→ h])

since ` c#h. By the inductive hypothesis and (cong[])

`
SIMP

[c](((c b) · g′)[a 7→ h]) = [c](((c b) · g′)[h/a]).

Since `
CORE

g′[c/b] = (c b) · g′ by part 2 of Lemma 4.3.8, we deduce

`
SIMP

[c](((c b) · g′)[h/a]) = [c](g′[c/b][h/a])

using the rules of equality and Lemma 4.3.9. Using (tran) we put the pieces
together to conclude

`
SIMP

([b]g′)[a 7→ h] = [c](g′[c/b][h/a]),

as required.
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• g ≡ f(g1, . . . , gn), f 6= sub. Then

`
SIMP

f(g1, . . . , gn)[a 7→ h] = f(g1[a 7→ h], . . . , gn[a 7→ h])

by (f 7→). By the inductive hypothesis `
SIMP

gi[a 7→ h] = gi[h/a] for 1 ≤ i ≤ n.
Then using (congf) and (tran) we obtain

`
SIMP

f(g1, . . . , gn)[a 7→ h] = f(g1[h/a], . . . , gn[h/a])

Since f(g1, . . . , gn)[h/a] ≡ f(g1[h/a], . . . , gn[h/a]) we are done.

On closed terms we can interpret all occurrences of term-former sub by capture-
avoiding substitution.

Definition 4.4.4. Define the translation t

7→

of closed terms t to ground terms
inductively on closed terms by:

a

7→

≡ a ([a]t)
7→

≡ [a](t

7→

) sub(t, u)

7→

≡ g[u

7→

/a] ([a]g ≡ t

7→

)

f(t1, . . . , tn)

7→

≡ f(t

7→

1, . . . , t

7→

n) (f 6= sub).

Note that (t[a 7→ u])

7→

≡ t

7→

[u

7→

/a] follows from the sub case, since [a](t

7→

) ≡ ([a]t)

7→

by the abstraction case.

Lemma 4.4.5 (Freshness on closed terms). For any closed term t:

if ` a#t then ` a#t

7→

.

Proof. By induction on the structure of t. The only interesting case is when
t ≡ sub(u, v). By assumption we know ` a#sub(u, v). By Lemma 2.4.2 also ` a#u
and ` a#v. By the inductive hypothesis, ` a#u

7→

and ` a#v

7→

.
We proceed by case distinction on uT :

• u

7→

≡ [b]g for some atom b. Then sub(u, v)

7→

≡ g[v

7→

/b] and we must show
` a#g[v

7→

/b]. This follows from ` a#v

7→

and ` a#g by Lemma 4.3.7. ` a#v

7→

is an assumption, and ` a#g follows from assumption ` a#u

7→

(recall that
u

7→

≡ [b]g) by Lemma 2.4.2.
• u

7→

≡ [a]g. Then sub(u, v)

7→

≡ g[v

7→

/a], and ` a#g[v

7→

/a] follows from assump-
tion ` a#v

7→

by Lemma 4.3.7.

Note that the converse of Lemma 4.4.5 does not hold. Consider for instance the
term b[c 7→ a]. Then ` a#(b[c 7→ a])

7→

since (b[c 7→ a])

7→

≡ b, but 0 a#b[c 7→ a] since
0 a#a.
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Theorem 4.4.6 (SIMP on closed terms). For any closed term t:

`
SIMP

t = t

7→

.

Proof. By induction on the structure of t:

• t ≡ a. Then a

7→

≡ a, and we conclude `
SIMP

a = a by (refl).
• t ≡ [a]u. Then ([a]u)

7→

≡ [a](u

7→

). By (cong[]) `
SIMP

[a]u = [a](u

7→

) follows from
`

SIMP
u = u

7→

, which holds by the inductive hypothesis.

• t ≡ f(t1, . . . , tn), f 6= sub. Then f(t1, . . . , tn)
7→

≡ f(t

7→

1, . . . , t

7→

n). By (congf)
and (tran) `

SIMP
f(t1, . . . , tn) = f(t

7→

1, . . . , t
7→

n) follows from `
SIMP

ti = t

7→

i for
1 ≤ i ≤ n, which hold by the inductive hypothesis.

• t ≡ sub(u, v). Then sub(u, v)

7→

≡ g[v
7→

/a] where [a]g ≡ u

7→

. By the inductive
hypothesis, `

SIMP
u = u

7→

and `
SIMP

v = v

7→

. By (congf) and (tran), we obtain

`
SIMP

sub(u, v) = sub(u

7→

, v

7→

).

By Theorem 4.4.3 we know `
SIMP

g[a 7→ v

7→

] = g[v

7→

/a]. Since [a]g ≡ u

7→

and
g[v

7→

/a] ≡ sub(u, v)

7→

, this is

`
SIMP

sub(u

7→

, v

7→

) = sub(u, v)

7→

.

Using (tran) we conclude `
SIMP

sub(u, v) = sub(u, v)

7→

as required.

As a corollary of Theorem 4.4.6 the standard properties of capture-avoiding
substitution on ground terms from Lemma 4.3.8 carry over to closed terms:

Corollary 4.4.7. For closed terms t, u, v:

1. `
SIMP

t[a 7→ a] = t.
2. If ` b#t then `

SIMP
t[a 7→ b] = (b a) · t.

3. If ` a#t then `
SIMP

t[a 7→ u] = t.
4. If ` a#v then `

SIMP
t[a 7→ u][b 7→ v] = t[b 7→ v][a 7→ u[b 7→ v]].

Proof. Using Theorem 4.4.6 and Lemma 4.3.8. For the second case we also use
the property that `

CORE
(π · t)

7→

= π · t

7→

for closed terms t, which we can show by
an induction on t.

In this section we have established that in the presence of the equalities of SIMP,
t and t

7→

are provably equal, for closed terms t. Yet many questions related to open
terms remain:

1. Is SIMP conservative over CORE? That is, if two terms that do not mention
sub are equated in SIMP, are they necessarily equated in CORE?

(Answer: Yes.)
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2. Is equality in SIMP decidable?

(Answer: Yes.)

3. Is SIMP sound for the ground term model? That is, if two terms are equated
in SIMP, are all their closed instances α-equivalent, if we interpret every
occurrence of sub by capture-avoiding substitution?

(Answer: Yes.)

4. Is SIMP complete for the ground term model? That is, if all closed instances
of two terms are α-equivalent where we interpret sub by capture-avoiding
substitution, are the terms themselves provably equal in SIMP?

(Answer: No, but a more powerful theory SUB exists which is complete, and
which retains properties 1 to 3 of this list.)

The next two sections provide answers to these questions together with detailed
proofs.

4.5 Substitution on Open Terms using SIMP

In this section we recall a notion of rewriting called nominal rewriting, which
is tailored to nominal terms [FG07]. We will use nominal rewriting to prove
properties on open terms of theory SIMP.

4.5.1 Nominal Rewriting

Definition 4.5.1. A nominal rewrite rule ∇ ` l→ r is a tuple of a freshness
context ∇ and terms l and r of the same sort such that ∇ and r mention only
unknowns appearing in l.

A nominal rewrite system R is a set of nominal rewrite rules. It deter-
mines a set of (nominal) rewrites ∆ `

R
t→ u inductively defined by the rules

in Figure 4.4.
Write ∆ 0

R
t→ u when the rewrite ∆ `

R
t→ u is not derivable.

In Figure 4.4, f ranges over all term-formers of the signature of R (whatever
that signature is). The (→rew) rule is closely related to the (ax∇`t=u) rule from
Figure 2.2. We discuss the aspects of this rule in more detail:

• The permutation π allows us to permutatively rename atoms. Consider
for instance the signature of theory LAM (Example 4.2.4) extended with a
term-former const : ()T, and write const() as const. Then the rewrite rule
ab→ const generates, for example, rewrites

ba→ const and ac→ const
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∆ `CORE t = lπσ ∆ `CORE u = rπσ ∆ ` ∇πσ
(→rew)

∆ `R t→ u
(∇ ` l→ r ∈ R)

∆ `R t→ u
(→[])

∆ `R [a]t→ [a]u

∆ `R t→ u
(→f)

∆ `R f(t1, . . . , t, . . . , tn) → f(t1, . . . , u, . . . , tn)

Figure 4.4 Derivation rules for nominal rewriting

∆ `R t→ u
(→∗→)

∆ `R t→
∗ u

∆ `CORE t = u
(→∗refl)

∆ `R t→
∗ u

∆ `R t→
∗ u ∆ `R u→

∗ v
(→∗tran)

∆ `R t→
∗ v

Figure 4.5 Derivation rules for the transitive reflexive closure of R

but not
aa→ const

because no π can identify a with b.
• The substitution σ gives unknowns X in rules the character of ‘unknown

terms’, and is subject to the freshness conditions formulated by ∆ ` ∇πσ.
• The use of equality in CORE gives abstractions [a]t the character of real

abstractions. For example the rule λ[a]λ[b]b→ const generates rewrites

λ[a]λ[a]a→ const λ[b]λ[b]b→ const λ[b]λ[c]c→ const.

The following result is easy to prove from the definition of rewriting:

Lemma 4.5.2. If ∆ `
R
t→ u and ∆′ `

R
∆σ, then ∆′ `

R
tσ → uσ.

Proof. By induction on the derivation of ∆ `
R
t→ u we construct a derivation of

∆′ `
R
tσ → uσ.

Definition 4.5.3. Write ∆ `
R
t→∗ u for the transitive reflexive closure of R

defined inductively by the rules in Figure 4.5.
Write ∆ 0

R
t→∗ u when ∆ `

R
t→∗ u is not derivable.

If a term does not have any rewrites, the transitive reflexive closure of R is
precisely CORE-equality:
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Lemma 4.5.4. If there is no t′ such that ∆ `
R
t→ t′ then

∆ `
R
t→∗ u if and only if ∆ `

CORE
t = u.

Proof. Suppose there is no t′ such that ∆ `
R
t→ t′. If ∆ `

CORE
t = u then by

(→∗refl) also ∆ `
R
t→∗ u. Conversely if ∆ `

R
t →∗ u then this rewrite must be

derived using (→∗refl) by an inductive argument.

Definition 4.5.5. Call a nominal rewrite system R confluent when if ∆ `
R
t→∗ u

and ∆ `
R
t→∗ v then there is some w such that ∆ `

R
u→∗ w and ∆ `

R
v →∗ w.

Definition 4.5.6. Call a nominal rewrite system R strongly normalising when
there is no infinite sequence t1, t2, t3, . . . such that ∆ `

R
ti → ti+1 for all 1 ≤ i.

Lemma 4.5.7. If a derivation exists of ∆ `
R
t→ u then that derivation mentions

(→rew) exactly once.

Proof. By the structure of the derivation rules from Figure 4.4.

Definition 4.5.8. If a rewrite ∆ `
R
t→ u occurs, it must occur at some subterm

t′ of t (the subterm t′ where we actually use (→rew) and prove ∆ ` ∇πσ and
∆ `

CORE
t′ = lπσ). We say that the rewrite occurs at t′ in t. If the derivation

tree is just an instance of (→rew), then we say the rewrite occurs at top level.
Call a pair of nominal rewrites ∆ `

R
t→ u and ∆ `

R
t→ v a critical pair when

at least one of the rewrites occurs at top level. If any of the two rewrites occurs
at a moderated unknown in t, call the critical pair trivial. Otherwise call it
non-trivial.

Definition 4.5.9. Call a rewrite rule ∇ ` l→ r uniform when ∆ ` a#l and
∆ ` ∇ imply ∆ ` a#r for all ∆ and a. A rewrite rule ∇ ` l→ r is left-linear
when l does not mention the same unknown more than once. A uniform nom-
inal rewrite system with only left-linear rules and no non-trivial critical pairs is
orthogonal.

Theorem 4.5.10. An orthogonal uniform nominal rewrite system is confluent.

Proof. See [FG07, Theorem 65].

Remark 4.5.11. Nominal rewriting is the default notion of rewriting for nominal
terms, like higher-order rewriting (such as CRS’s [KvOvR93] and HRS’s [MN98])
is for higher-order terms. The major differences between the two frameworks can
be summarised as follows:

• The default notion of instantiation of meta-variables is capturing for nominal
rewriting whereas it is capture-avoiding for higher-order rewriting.

• Nominal rewriting uses unification up to α whereas higher-order rewriting
uses unification up αβ(η).

A more detailed comparison of these frameworks can be found in [FG07].
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(Rvar) ` a[a 7→ T ] → T

(Rb) ` b[a 7→ T ] → b

(Rf) ` f(X1, . . . , Xn)[a 7→ T ] → f(X1[a 7→ T ], . . . , Xn[a 7→ T ]) (f 6= sub)

(Rabs) c#T ` ([c]U)[a 7→ T ] → [c](U [a 7→ T ])

Figure 4.6 Substitution as a rewrite system SIMPr

4.5.2 SIMPr: Explicit Substitution Rewritten

Definition 4.5.12. The nominal rewrite system SIMPr is defined by the rules in
Figure 4.6.

Remark 4.5.13. The (Rb) rule cannot be represented by a rule in a higher-order
rewrite system, since in such a system object-variables only exist when they are
bound by a meta-level abstraction. That is, the rule sub(λx.y, T ) → y does not
represent (Rb) since y represents a meta-variable instead of an object-variable. It
represents the more general rule a#X ` X[a 7→ T ] → X.

A basic correctness result is this:

Theorem 4.5.14 (SIMPr implies SIMP). For possibly open terms t, u:

if ∆ `
SIMPr

t→ u then ∆ `
SIMP

t = u.

Proof. We work by induction on the derivation of ∆ `
SIMPr

t→ u to show that
∆ `

SIMP
t = u is derivable.

If the derivation concludes in (→[]) or (→f) we may use the inductive hypothesis
and extend the derivation with (cong[]) or (congf) respectively.

Suppose the derivation concludes in (→rew). Then there are various cases
depending on which rewrite rule is used:

• (Rvar). ∆ `
SIMP

a[a 7→ u] = u is derivable using axiom (var7→).
• (Rb). ∆ `

SIMP
b[a 7→ t] = b is derivable using axiom (b7→).

• (Rf). ∆ `
SIMP

f(u1, . . . , un)[a 7→ t] = f(u1[a 7→ u], . . . , un[a 7→ u]) is deriv-
able using axiom (f 7→).

• (Rabs). ∆ `
SIMP

([b]u)[a 7→ t] = [b](u[a 7→ t]) is derivable using (abs7→); the
freshness side-condition of (Rabs) is guaranteed by the identical condition
on (abs→).

The result follows.

Corollary 4.5.15. For possibly open terms t, u:

if ∆ `
SIMPr

t→∗ u then ∆ `
SIMP

t = u.

Proof. By induction on the structure of derivations of ∆ `
SIMPr

t→∗ u. The case of
(→∗→) uses Theorem 4.5.14, (→∗refl) uses (refl), and (→∗tran) uses (tran).
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4.5.3 Confluence, Conservativity and Consistency

Lemma 4.5.16. All rewrite rules of SIMPr are uniform.

Proof. For each rule, use appropriate instances of Lemma 2.4.2. For example, for
the (Rabs) rule, we need to show that ∆ ` a′#([c]U)[a 7→ T ] and ∆ ` c#T imply
∆ ` a′#[c](U [a 7→ T ]) for any a′ and ∆. From the first assumption we know, by
Lemma 2.4.2:

• if a′ = a or a′ = c then a′#T ∈ ∆;
• if a′ 6= a and a′ 6= c then a′#T ∈ ∆ and a′#U ∈ ∆.

Using these assumptions it is easy to show ∆ ` a′#[c](U [a 7→ T ]) by case distinc-
tion on a′.

Theorem 4.5.17 (Confluence of SIMPr). SIMPr is confluent.

Proof. By Lemma 4.5.16 all rewrite rules of SIMPr are uniform. Also, SIMPr has no
non-trivial critical pairs and every rule is left-linear (each unknown is mentioned on
the left at most once). Then SIMPr is orthogonal and uniform by Definition 4.5.9.
We conclude that it is confluent by Theorem 4.5.10.

Confluence of SIMPr has a number of nice corollaries, which comprise the re-
mainder of this subsection.

Definition 4.5.18. Call a term t a SIMPr-normal form with respect to ∆
when there is no u such that ∆ `

SIMPr
t→ u.

Theorem 4.5.19. Suppose that t and u are SIMPr-normal forms with respect to
∆. Then

∆ `
SIMP

t = u if and only if ∆ `
CORE

t = u.

Proof. The (empty) set of axioms of CORE is a subset of the axioms of SIMP so a
derivation in CORE is also a derivation in SIMP and it follows that ∆ `

CORE
t = u

implies ∆ `
SIMP

t = u.
Conversely suppose ∆ `

SIMP
t = u. By Theorem 4.5.17 there is some term v

such that ∆ `
SIMPr

t→∗ v and ∆ `
SIMPr

u→∗ v. By assumption there can be no
t′ and u′ such that ∆ `

SIMPr
t→ t′ and ∆ `

SIMPr
u→ u′. Then ∆ `

CORE
t = v and

∆ `
CORE

u = v by Lemma 4.5.4, and we conclude ∆ `
CORE

t = u by (symm) and
(tran).

Corollary 4.5.20 (Conservativity of SIMP over CORE). Suppose that t and u do
not mention the term-former sub. Then

∆ `
SIMP

t = u if and only if ∆ `
CORE

t = u.

Proof. This is an instance of Theorem 4.5.19, since if t and u do not mention sub,
then t and u are SIMPr-normal forms with respect to any ∆.
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Recall the notation t

7→

for closed terms t from Definition 4.4.4.

Corollary 4.5.21. For closed terms t and u,

`
SIMP

t = u if and only if `
CORE

t

7→

= u

7→

.

Proof. `
SIMP

t = u is equivalent to `
SIMP

t

7→

= u

7→

by Theorem 4.4.6 and (tran). By
Corollary 4.5.20 this is equivalent to `

CORE
t

7→

= u

7→

.

Corollary 4.5.22 (Consistency of SIMP). For all ∆ there are t and u such that
∆ 0

SIMP
t = u.

Proof. By the syntactic criteria for CORE-equality (Corollary 2.5.4), we know
∆ 0

CORE
a = b. This is equivalent to ∆ 0

SIMP
a = b by conservativity of SIMP over

CORE (Corollary 4.5.20).

For the final theorem of this subsection we need a few definitions.

Definition 4.5.23. Call a substitution σ closing for an unknown X when
σ(X) is a closed term. Call σ closing for a term t or closing for a freshness
context ∆ when σ(X) is closed for every X ∈ t or X ∈ ∆.

Say a closing substitution σ for ∆ is ∆-consistent when ` ∆σ, i.e. when
` a#σ(X) for all a#X ∈ ∆.

Theorem 4.5.24 (Soundness of SIMP). Theory SIMP is sound for the ground
term model. That is: if ∆ `

SIMP
t = u then tσ

7→

=α uσ

7→

for all ∆-consistent closing
substitutions σ (for ∆, t and u).

Proof. `
SIMP

tσ = uσ by meta-level substitution (Theorem 2.4.10) and our assump-
tion that ` ∆σ. We obtain `

CORE
tσ

7→

= uσ

7→

by Corollary 4.5.21, since tσ and uσ
are closed. We conclude tσ

7→

=α uσ

7→

by Theorem 4.3.13, since tσ

7→

and uσ

7→

are
ground.

4.5.4 Failure of Completeness for SIMP

SIMP is not a complete theory of substitution on ground terms. Unknowns in
nominal algebra represent unknown terms, and here are some examples of state-
ments that are true for every closing σ (for the unknowns in the statements) but
not derivable in SIMP:

Theorem 4.5.25 (Incompleteness of SIMP).

1. 0
SIMP

X[a 7→ a] = X.
2. b#X 0

SIMP
X[a 7→ b] = (b a) ·X.

3. a#X 0
SIMP

X[a 7→ T ] = X.
4. a#U 0

SIMP
X[a 7→ T ][b 7→ U ] = X[b 7→ U ][a 7→ T [b 7→ U ]].
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Proof. We consider part 4. We can easily check using the syntactic criteria of
CORE-equality (Corollary 2.5.4) that

a#U 0
CORE

X[a 7→ T ][b 7→ U ] = X[b 7→ U ][a 7→ T [b 7→ U ]].

Since X[a 7→ T ][b 7→ U ] and X[b 7→ U ][a 7→ T [b 7→ U ]] have no SIMPr rewrites with
respect to a#U , we conclude

a#U 0
SIMP

X[a 7→ T ][b 7→ U ] = X[b 7→ U ][a 7→ T [b 7→ U ]]

by Theorem 4.5.19.
The proofs of the other parts are similar.

The fact that above assertions are derivable for closing substitutions follows by
Corollary 4.4.7.

So SIMP defines substitution, but it does not express all of the properties which
emerge from that definition. To do that we must strengthen the theory. Before
that however, it is useful to consider the computational content of SIMP.

4.5.5 Strong Normalisation and Decidability

We expect the part of a λ-calculus that handles substitution to be terminat-
ing [BR95, Les94] — so is SIMP terminating? After all our syntax contains sub
as an explicit term-former, and it contains unknowns so that sub cannot always
be completely eliminated. Also, we consider single substitutions and not simulta-
neous substitutions, so that the order of substitutions matters. Perhaps that all
makes enough of a difference that reductions could cycle or diverge in some way?

In fact reductions in SIMPr are extremely well-behaved. We show strong nor-
malisation by a standard method: define a well-founded measure on terms and
show that rewrites reduce it.

Definition 4.5.26. Let the measure |t|m on terms t be inductively defined by:

|a|m = 1 |π ·X|m = 1 |[a]t|m = |t|m + 1
|sub(t, u)|m = |t|m ∗ (|u|m + 1)

|f(t1, . . . , tn)|m = |t1|m + . . .+ |tn|m + n+ 1 (f 6= sub).

For terms u[a 7→ t] we have

|u[a 7→ t]|m ≡ |sub([a]u, t)|m = |[a]u|m ∗ (|t|m + 1) = (|u|m + 1) ∗ (|t|m + 1).

Lemma 4.5.27. For all terms t and permutations π:

1. |t|m > 0.
2. |t|m = |π · t|m. As a corollary, if ∆ `

CORE
t = u then |t|m = |u|m.
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Proof. Both parts can be proven by a simple induction on the structure of t. The
corollary follows by the syntactic criteria for CORE-equality (Corollary 2.5.4) which
states that t and u are renamed versions of each other by means of permutations.

Lemma 4.5.28. For terms t, u, t1, . . . , tn and term-formers f 6= sub:

1. |a[a 7→ t]|m > |t|m.
2. |b[a 7→ t]|m > |b|m.
3. |f(t1, . . . , tn)[a 7→ t]|m > |f(t1[a 7→ t], . . . , tn[a 7→ t])|m.
4. |([c]u)[a 7→ t]|m > |[c](u[a 7→ t])|m.

Proof. By straightforward calculations. The last part uses the fact that |t|m > 0
(Lemma 4.5.27 above).

Lemma 4.5.29. For terms t, u, t1, . . . , tn and term-formers f:

1. If |t|m > |u|m then |[a]t|m > |[a]u|m.
2. If |t|m > |u|m then |f(t1, . . . , t, . . . , tn)|m > |f(t1, . . . , u, . . . , tn)|m.

Proof. Again by straightforward calculations. The last part uses the fact that
|t|m > 0 when f = sub.

Theorem 4.5.30 (Strong normalisation of SIMPr). SIMPr is strongly normalising.

Proof. It suffices to show that if ∆ `
SIMPr

t→ u then |t|m > |u|m. We proceed by
induction on the rules from Figure 4.4, using the rewrite rules from Figure 4.6.

Suppose ∆ `
SIMPr

t→ u is derived using (→[]) and (→f); then the result follows
by Lemma 4.5.29 and the inductive hypothesis.

Suppose ∆ `
SIMPr

t→ u is derived using (→rew); then for each SIMPr rewrite
rule of the form ∇ ` l→ r from Figure 4.6 we have, for some π and σ,

∆ `
CORE

t = π · lσ and ∆ `
CORE

u = π · rσ and ∆ ` π · ∇σ.

By part 2 of Lemma 4.5.27, |t|m = |π · lσ|m = |lσ|m and |u|m = |π · rσ|m = |rσ|m.
So in order to show |t|m > |u|m, it is equivalent to show |lσ|m > |rσ|m. For each
rule of SIMPr this is an instance of Lemma 4.5.28.

We have already given an algorithm to compute normal forms on closed terms
in Definition 4.4.4:

Lemma 4.5.31. If t is closed then t

7→

is a SIMPr-normal form of t.

Proof. By an induction on t.

Theorem 4.5.32 (Unique normal forms for SIMPr). SIMPr-normal forms are
unique up to equality in CORE.
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Proof. Let ∆ be a freshness context and t be a term. By Theorem 4.5.30, t has a
normal form, say u, with respect to ∆. Now suppose v is also a normal form of t
with respect to ∆. Then ∆ `

SIMPr
t→∗ u and ∆ `

SIMPr
t→∗ v. By confluence (The-

orem 4.5.17) there exists a term w such that ∆ `
SIMPr

u→∗ w and ∆ `
SIMPr

v →∗ w.
Since u and v do not have any rewrites ∆ `

CORE
u = w and ∆ `

CORE
v = w by

Lemma 4.5.4. Using (symm) and (tran) we conclude ∆ `
CORE

u = v.

As a corollary we obtain decidability of theory SIMP:

Corollary 4.5.33 (Decidability of SIMP). It is decidable whether ∆ `
SIMP

t = u.

Proof. Given ∆, t and u the following procedure decides whether t = u is derivable
from ∆ in SIMP:

1. Rewrite t and u to SIMPr-normal forms t′ and u′ with respect to ∆; by
Theorem 4.5.30 these exist and by Theorem 4.5.32, they are unique up to
equality in CORE.

2. Check whether ∆ `
CORE

t′ = u′ using the syntactic criteria of Corollary 2.5.4.
3. If ∆ `

CORE
t′ = u′ then return ‘true’, otherwise return ‘false’.

4.6 Substitution on Open Terms using SUB

In this section we focus on theory SUB from Definition 4.2.8 and Figure 4.1. We
show that it is decidable and complete with respect to the ground term model by
relating it to theory SIMP.

As a first example, we show that our standard properties of capture-avoiding
substitution are all derivable in SUB.

Lemma 4.6.1. The following judgements are derivable in SUB:

1. `
SUB

X[a 7→ a] = X.
2. b#X `

SUB
X[a 7→ b] = (b a) ·X.

3. a#X `
SUB

X[a 7→ T ] = X.
4. a#U `

SUB
X[a 7→ T ][b 7→ U ] = X[b 7→ U ][a 7→ T [b 7→ U ]].

Proof. Part 1 is Lemma 2.3.19. Parts 2 and 3 are direct from (ren7→) and (# 7→).
For part 4 we give the derivation in full, writing s for [b 7→ U ] and using the
unsugared syntax for the other substitutions:

(axf 7→)
sub([a]X,T )s = sub(([a]X)s, T s)

a#U
(axabs 7→)

([a]X)s = [a](Xs)
(congf)

sub(([a]X)s, T s)= sub([a](Xs), T s)
(tran)

sub([a]X,T )s = sub([a](Xs), T s)
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4.6.1 Soundness and the Relation to SIMP

SUB can do everything that SIMP can:

Lemma 4.6.2. If ∆ `
SIMP

t = u then ∆ `
SUB

t = u.

Proof. All the axioms of SIMP are also axioms of SUB, except for (b7→). However
an instance of (b7→) is also an instance of (# 7→). Therefore any SIMP derivation
is also a SUB derivation. The result follows.

We now show that SIMP can do everything that SUB can — provided that the
terms are closed. We need a technical lemma:

Lemma 4.6.3. If t, u, v are closed, then:

1. `
SIMP

sub(t, u)[a 7→ v] = sub(t[a 7→ v], u[a 7→ v]).
2. If ` a#t then `

SIMP
[a]sub(t, a) = t.

Proof. We consider the parts in turn:

1. Since `
SIMP

t = t

7→

by Theorem 4.4.6, the proof obligation is equivalent to

`
SIMP

sub(t

7→

, u)[a 7→ v] = sub(t

7→

[a 7→ v], u[a 7→ v]).

Now t

7→

is of the form [a]g or [b]g, where g is a ground term. We only consider
the case of b, the case of a is completely analogous. Take c fresh such that
` c#g and ` c#v. Then `

CORE
[b]g = [c](c b) · g using (perm), since ` b#[b]g

and ` c#[b]g. Then using the rules for equality, the proof obligation is
equivalent to

`
SIMP

sub([c](c b) · g, u)[a 7→ v] = sub(([c](c b) · g)[a 7→ v], u[a 7→ v]).

Also `
SIMP

([c](c b) · g)[a 7→ v] = [c](((c b) · g)[a 7→ v]) by axiom (abs7→) and
` c#v, so the proof obligation is equivalent to

`
SIMP

sub([c](c b) · g, u)[a 7→ v] = sub([c](((c b) · g)[a 7→ v]), u[a 7→ v]).

Or, using sugar:

`
SIMP

((c b) · g)[c 7→ u][a 7→ v] = ((c b) · g)[a 7→ v][c 7→ u[a 7→ v]].

Since ` c#v, this is an instance of part 4 of Corollary 4.4.7, so we are done.
2. We must show `

SIMP
[a]sub(t, a) = t. By Theorem 4.4.6 this is equivalent to

`
SIMP

[a]sub(t

7→

, a) = t

7→

. We proceed by case distinction on the structure of t

7→

;
here we only consider the two most interesting cases:

• t

7→

≡ [a]g: Then `
SIMP

[a](g[a 7→ a]) = [a]g follows by (cong[]) and part 1
of Corollary 4.4.7.
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• t

7→

≡ [b]g: Then `
SIMP

[a](g[b 7→ a]) = [b]g follows from

`
SIMP

[a](g[b 7→ a]) = [a](a b) · g and `
SIMP

[a](a b) · g = [b]g.

by (tran). By (cong[]), `
SIMP

[a](g[b 7→ a]) = [a](b a) · g follows from
`

SIMP
g[b 7→ a] = (a b) · g. By Corollary 4.4.7, this is when ` a#g. By

(perm) and the rules for freshness also `
SIMP

[a](b a) · g = [b]g when
` a#g. Now by Lemma 2.4.2 ` a#g when ` a#[b]g. Since [b]g ≡ t

7→

,
this follows from the assumption ` a#t by Lemma 4.4.5.

On closed terms, SUB is equivalent to SIMP:

Lemma 4.6.4 (SUB on closed terms). For closed terms t, u:

`
SUB

t = u if and only if `
SIMP

t = u.

Proof. The right-to-left part is Lemma 4.6.2.
For the left-to-right part, we show that SIMP can simulate the axioms of SUB

on closed terms. Axioms (var7→), (abs7→) and (f 7→), for f 6= sub, are also present
in SIMP. Each instance of axiom (f 7→), where f = sub, is an instance of part 1
of Lemma 4.6.3. Instances of axioms (ren7→) and (# 7→) are instances of parts 2
and 3 of Corollary 4.4.7. Finally, each instance of (η 7→) is an instance of part 2 of
Lemma 4.6.3.

To recap, SIMP is sound for a ground term model by Theorem 4.4.3, equality in
SIMP is decidable by Corollary 4.5.33, but not complete by the Theorem 4.5.25.

We now build the tools to prove that SUB is sound, decidable — and also
complete for the ground term model. For soundness we have already done all the
hard work:

Theorem 4.6.5 (Soundness of SUB). SUB is sound for the ground term model.
That is: If ∆ `

SUB
t = u then tσ

7→

=α uσ

7→

for all ∆-consistent closing substitutions
σ (for ∆, t and u).

Proof. `
SUB

tσ = uσ by meta-level substitution (Theorem 2.4.10) and our assump-
tions. tσ and uσ are closed so by Lemma 4.6.4 `

SIMP
tσ = uσ. By Corollary 4.5.21

we obtain `
CORE

tσ

7→

= uσ

7→

. We conclude tσ

7→

=α uσ

7→

by Theorem 4.3.13, since tσ

7→

and uσ

7→

are ground.

4.6.2 Decidability

In this section we will establish that equality in SUB is decidable. We do this
by transforming the problem of deciding whether a derivation of ∆ `

SUB
t = u

exists, into the problem of deciding whether a derivation of `
SIMP

t′ = u′ exists,
for some carefully-chosen closed terms t′ and u′ in an extended signature (to be
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precise: in a correspondingly extended theory with extra (f 7→) axioms for the extra
term-formers). We can then exploit decidability of SIMP (Corollary 4.5.33), and
conclude that SUB is decidable. The rest of this subsection makes this formal.

Remark 4.6.6. The constructions are similar to those in the completeness proof
of Chapter 3 (Subsection 3.4.2). However, the situation is a bit more complicated:
in the completeness proof of Chapter 3 we only needed to take care of permutations
of atoms, but here we also have to deal with capture-avoiding substitution of terms
for atoms.

First we introduce some notation.

Definition 4.6.7. Fix some signature Σ suitable for SUB, and fix ∆, t, and u
where t and u are terms in the signature Σ. Let A be the atoms mentioned
anywhere in ∆, t, or u, and let X be the unknowns mentioned anywhere in ∆, t,
or u. For each X ∈ X :

• let aX1, . . . , aXkX
be the atoms in A (in some arbitrary but fixed order) such

that aXi#X 6∈ ∆;
• pick some fresh term-former dX : (T, . . . ,T)T (so dX does not occur in Σ)

with kX arguments.

Write D = {dX | X ∈ X}, and let Σ′ be the signature Σ ∪ D.

Definition 4.6.8. Define a substitution ς by:

ς(X) = dX(aX1, . . . , aXkX
) (X ∈ X , X : T)

ς(X) = [a′X ]dX(aX1, . . . , aXkX
) (X ∈ X , X : [A]T)

ς(X) = X (X 6∈ X )

Here for each X ∈ X , a′X is an arbitrarily chosen fresh atom.

Note that ς maps unknowns to terms in Σ′. Furthermore, if v is term that
mentions only unknowns from X , then v is closed.
ς is ∆-consistent:

Lemma 4.6.9. ` ∆ς is derivable.

Proof. For each a#X ∈ ∆, we need to show ` a#ς(X).
Suppose a#X ∈ ∆ and X : T. We must prove ` a#dX(aX1, . . . , aXkX

). By con-
struction aXi#X 6∈ ∆, so a 6∈ {aX1, . . . , aXkX

}, and the result follows.
The case of X : [A]T is similar.

Now it is not hard to show that ς preserves derivability:

Theorem 4.6.10. If ∆ `
SUB

t = u then `
SIMP

tς = uς.
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Proof. Suppose ∆ `
SUB

t = u in the syntax of Σ. Then also ∆ `
SUB

t = u in the
syntax of Σ′, since Σ ⊆ Σ′. We obtain `

SUB
tς = uς by meta-level substitution

(Theorem 2.4.10) and Lemma 4.6.9. We conclude `
SIMP

tς = uς by Lemma 4.6.4.

Since t and u mention only unknowns from X , tς and uς are closed terms. Then
by Lemma 4.5.31, tς

7→

and uς

7→

are the SIMPr-normal forms of tς and uς.

Definition 4.6.11. Let A+ be the set of all atoms mentioned anywhere in the
chain of SIMPr-reductions

tς ≡ t′1 → t′2 → . . .→ t′m ≡ tς

7→

and uς ≡ u′1 → u′2 → . . .→ u′n ≡ uς

7→

,

extended with

• a set B = {bXi | X, i such that aXi ∈ A} of fresh atoms in bijection with A;
• a set C = {cX | X ∈ X} of fresh atoms.

Let ∆+ be ∆ enriched with freshness assumptions a′#X for every a′ ∈ A+ \ A
and every X ∈ X .

Definition 4.6.12. Let t′ and u′ range over closed terms in Σ′ mentioning only
atoms in A+ \ (B ∪ C).

Define an inverse translation from these closed terms in Σ′ to terms in Σ,
inductively as follows, where X : T and Y : [A]T:

a′
-1 ≡ a′ ([a′]t′)-1 ≡ [a′](t′

-1
) f(t′1, . . . , t

′
n)-1 ≡ f(t′1

-1
, . . . , t′n

-1
) (f 6∈ D)

dX(t′1, . . . , t
′
kX

)-1 ≡ ((bXkX
aXkX

) · · · (bX1 aX1) ·X)[bX1 7→ t′1
-1

] · · · [bXkX
7→ t′kX

-1
]

dY (t′1, . . . , t
′
kY

)-1 ≡ sub(((bY kY
aY kY

) · · · (bY 1 aY 1) · Y )[bY 1 7→ t′1
-1

] · · · [bY kY
7→ t′kY

-1
], cY )

The importance of t′ and u′ is that they include all of the t′i and u′i in the two
chains of SIMPr-reductions mentioned above.

The following lemma shows that --1 is the inverse of ς (regarding t and u):

Lemma 4.6.13. ∆+ `
SUB

(tς)-1 = t, and ∆+ `
SUB

(uς)-1 = u.

Proof. We prove ∆+ `
SUB

(vς)-1 = v for any subterm v of t or u, by induction on
the structure of v.

The only interesting case is when v ≡ π ·X. When X : T, we must show

∆+ `
SUB

π ·X = ((bX1 aX1) · · · (bXkX
aXkX

) ·X)[bX1 7→ π(aX1)] · · · [bXkX
7→ π(aXkX

)].

Take π′ = (bXkX
π(aXkX

)) · · · (bX1 π(aX1)) ◦ (bX1 aX1) · · · (bXkX
aXkX

). Then the
proof obligation follows from ∆+ `

SUB
π ·X = π′ ·X by (ren7→), since

∆+ ` π(aXi)#((bX1 aX1) · · · (bXkX
aXkX

) ·X)[bX1 7→ π(aX1)] · · · [bXi−1 7→ π(aXi−1)]

for all i. We can see this as follows: it suffices to show

∆+ ` π(aXi)#(bX1 aX1) · · · (bXkX
aXkX

) ·X,
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since the π(aXi) are pairwise disjoint and by using the rules for freshnesses. Then
there are two possibilities:

• π(aXi) 6= aXj for all j: then π(aXi)#X ∈ ∆+ since π(aXi)#X ∈ ∆.
• π(aXi) = aXj for some j: then bXj#X ∈ ∆+ by definition.

The remaining proof obligation is

∆+ `
SUB

π ·X = π′ ·X.

It is convenient to show the stronger property ∆+ `
CORE

π ·X = π′ ·X. By the
syntactic criteria of Corollary 2.5.4 we need only show that ∆+ ` ds(π, π′)#X.
That is, we must show that ∆+ ` ds(π, π′)#X for every a such that π(a) 6= π′(a).
We consider every possible a (every a ∈ π and a ∈ π′):

• a = bXi: then bXi#X ∈ ∆+ by definition, and the result follows.
• a = aXi: then π(aXi) = π′(aXi) and there is nothing to prove.
• a = π(aXi): then we distinguish two cases:

– if π(aXi) = aXj for some j, the result follows by the case of aXi;
– if π(aXi) 6= aXj for all j, then π(aXi)#X ∈ ∆+ by definition.

• a ∈ π, but a 6= aXj for all j, then a#X ∈ ∆+ by definition.

The case of X : [A]T is similar except that we additionally need to prove that

∆+ `
SUB

[cX ]sub(π ·X, cX) = π ·X.

This follows by axiom (η 7→), since ∆+ ` cX#π ·X.

Remark 4.6.14. The reader might wonder why the inverse mapping of the dX

needs to rename the atoms aXi to the fresh bXi. We give an example to make this
clear. Consider (aT1 aT2) · T , where we do not know aT1#T or aT2#T . Then

(((aT1 aT2)·T )ς)-1 ≡ dT (aT2 aT1)-1 ≡ ((bT2 aT2)(bT1 aT1)·T )[bT1 7→ aT2][bT2 7→ aT1].

By calculations we can verify Lemma 4.6.13:

((bT2 aT2)(bT1 aT1) · T )[bT1 7→ aT2][bT2 7→ aT1] = (aT1 aT2) · T

is derivable in an appropriate freshness context. Had we left out the renaming
to fresh atoms the result of (((aT1 aT2) · T )ς)-1 would be T [aT1 7→ aT2][aT2 7→ aT1],
which is not equal to (aT1 aT2) · T , since for example

((aT1 aT2) · T )[aT1/T ] = aT2 but (T [aT1 7→ aT2][aT2 7→ aT1])[aT1/T ] = aT1.

We now build up towards Theorem 4.6.19, which is our main result. Recall from
Definition 4.6.12 that t′ and u′ are closed terms in Σ′ mentioning only atoms in
A+ \ (B ∪ C).
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Lemma 4.6.15. For any a′ ∈ A+, if ` a′#t′ then ∆+ ` a′#t′-1.

Proof. By induction on the structure of t′. The only non-trivial case is when
t′ ≡ dX(t′1, . . . , t

′
kX

). We treat the case of X : T, the case of X : [A]T is similar.
Suppose ` a′#dX(t′1, . . . , t

′
kX

). Then ` a′#t′i for 1 ≤ i ≤ kX by Lemma 2.4.2. By
the inductive hypothesis, ∆+ ` a′#t′-1i . We must show

∆+ ` a′#(π ·X)[bX1 7→ t′1
-1] · · · [bXkX

7→ t′kX

-1],

where π = (bXkX
aXkX

) · · · (bX1 aX1). We distinguish two cases:

• a′ = bXj for some j: then bXj#[bXj]((π ·X)[bX1 7→ t′1
-1] · · · [bXj−1 7→ t′j−1

-1])
by (#[]a), and the result follows by the rules of freshness using the inductive
hypothesis.

• a′ 6= bXj for all j: then π-1(a′) 6= aXj for all j, so π-1(a′)#X ∈ ∆+ by def-
inition. The result follows using the rules for freshness and the inductive
hypothesis.

Lemma 4.6.16. ∆+ `
CORE

(π · t′)-1 = π · t′-1 when π mentions only atoms from
A+ \ (B ∪ C).

Proof. By induction on the structure of t′. In the case of t′ ≡ dX(a′X1, . . . , a
′
XkX

)
with X ∈ X , we use the fact that π does not mention atoms from B or C.

Lemma 4.6.17. If `
CORE

t′ = u′ then ∆+ `
CORE

t′
-1 = u′

-1.

Proof. By induction on the structure of t′, using the syntactic criteria of Corol-
lary 2.5.4. The only non-trivial case is when t′ ≡ [a′]v′, u′ ≡ [b′]w′, ` b′#v′ and
`

CORE
(b′ a′) · v′ = w′. By Lemma 4.6.15 we obtain ∆+ ` b′#v′-1, and by the in-

ductive hypothesis ∆+ `
CORE

((b′ a′) · v′)-1 = w′-1. By Lemma 4.6.16 we also know
∆+ `

CORE
((b′ a′) · v′)-1 = (b′ a′) · v′-1, so by standard reasoning using the rules for

freshness and equality we conclude ∆+ `
CORE

[a′]v′-1 = [b′]w′-1.

Lemma 4.6.18. If `
SIMPr

t′ → u′ then ∆+ `
SUB

t′
-1 = u′

-1.

Proof. We work by induction on the derivation of `
SIMPr

t′ → u′ to show that
∆+ `

SUB
t′

-1 = u′
-1 is derivable.

If the derivation concludes in (→[]) or (→f) we may use the inductive hypothesis
and extend the derivation with (cong[]) or (congf) respectively.

Suppose the derivation concludes in (→rew). Then there are various cases
depending on which rewrite rule is used:

• (Rvar). ∆+ `
SUB

a′[a′ 7→ v′
-1] = v′

-1 is an instance of axiom (var7→).

• (Rb). ∆+ `
SUB

b′[a′ 7→ v′
-1] = b′ is an instance of (# 7→), since ∆+ ` a′#b′.
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• (Rf), f 6∈ D.

∆+ `
SUB

f(v′1
-1
, . . . , v′n

-1)[a′ 7→ v′
-1] = f(v′1

-1[a′ 7→ v′
-1], . . . , v′n

-1[a′ 7→ v′
-1])

is an instance of (f 7→).
• (Rf), f ∈ D. In case X : T, we must show

∆+ `
SUB

(π ·X)[bX1 7→ v′1
-1] · · · [bXkX

7→ v′kX

-1][a′ 7→ v′
-1] =

(π ·X)[bX1 7→ v′-11 [a′ 7→ v′
-1]] · · · [bXkX

7→ v′kX

-1[a′ 7→ v′
-1]],

where π = (bXkX
aXkX

) · · · (bX1 aX1).
Since bXi 6∈ v′ for all i, we know ` bXi#v′. Then also ∆+ ` bXi#v′-1 by
Lemma 4.6.15. Now we apply part 4 of Lemma 4.6.1, such that the left-
hand-side of the proof obligation is SUB-equal to

(π ·X)[a′ 7→ v′
-1][bX1 7→ v′1

-1[a′ 7→ v′
-1]] · · · [bXkX

7→ v′kX

-1[a′ 7→ v′
-1]].

By the rules for equality, this is equal to the right-hand-side of the proof
obligation when ∆+ `

SUB
(π ·X)[a′ 7→ v′

-1] = π ·X. By axiom (# 7→) this is
when ∆+ ` a′#π ·X, i.e. when π-1(a′)#X ∈ ∆+. There are two possibilities:

– a′ = aXi for some i: then π-1(a′) = bXi, and bXi#X ∈ ∆+ by definition.
– a′ 6= aXi for all i: then π-1(a′) = a′, and a′#X ∈ ∆+ by definition.

The result follows.
The case of X : [A]T is similar.

• (Rabs). Suppose ` c#v′. Then ∆+ ` c#v′-1 by Lemma 4.6.15. Then

∆+ `
SUB

([c]w′-1)[a′ 7→ v′
-1] = [c](w′-1[a′ 7→ v′

-1])

is an instance (abs7→), and we are done.

The result follows.

Theorem 4.6.19 (SUB on open terms).

∆ `
SUB

t = u if and only if `
SIMP

tς = uς.

Proof. The left-to-right part is Lemma 4.6.10.
For the right-to-left part, suppose that `

SIMP
tς = uς. We have observed that

there are SIMPr rewrites

tς ≡ t′1 → t′2 → . . .→ t′m ≡ tς

7→

and
uς ≡ u′1 → u′2 → . . .→ u′n ≡ uς

7→

.
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Then by Lemma 4.6.18, we know

∆+ `
SUB

(tς)-1 ≡ t′-11 = t′-12 = . . . = t′-1m ≡ (tς

7→

)-1

and
∆+ `

SUB
(uς)-1 ≡ u′-11 = u′-12 = . . . = u′-1n ≡ (uς

7→
)-1,

so ∆+ `
SUB

(tς)-1 = (tς

7→

)-1 and ∆+ `
SUB

(uς)-1 = (uς

7→

)-1 by transitivity.
We supposed that `

SIMP
tς = uς so by Corollary 4.5.21 it must be the case that

∆+ `
CORE

tς

7→

= uς

7→

. By Lemma 4.6.17 also ∆+ `
CORE

(tς
7→

)-1 = (uς

7→

)-1.
Then ∆+ `

SUB
(tς)-1 = (uς)-1 using symmetry and transitivity. By Lemma 4.6.13

then also ∆+ `
SUB

t = u. Since ∆+ freshly extends ∆ with atoms not in t and u,
we conclude ∆ `

SUB
t = u by strengthening (Theorem 2.4.14).

As a simple corollary of Theorem 4.6.19, we obtain decidability of SUB.

Corollary 4.6.20 (Decidability of SUB).

∆ `
SUB

t = u if and only if `
CORE

tς

7→

= uς

7→

.

As a corollary, it is decidable whether ∆ `
SUB

t = u.

Proof. By Theorem 4.6.19, ∆ `
SUB

t = u is equivalent to `
SIMP

tς = uς. By Corol-
lary 4.5.21, this is equivalent to tς

7→

= uς

7→

.
The corollary then follows by the syntactic criteria of equality in CORE (Corol-

lary 2.5.4).

By a similar method to the one we used to prove Theorem 4.6.19 we can prove
conservativity of SUB over CORE. We use the notation and machinery of this
subsection in the following proof:

Theorem 4.6.21 (Conservativity of SUB over CORE). Suppose that t and u do
not mention term-former sub. Then

∆ `
SUB

t = u if and only if ∆ `
CORE

t = u.

Proof. A derivation in CORE is also a derivation in SUB so the right-to-left impli-
cation is immediate.

Now suppose that ∆ `
SUB

t = u. We take a suitably chosen enriched signature
and suitably chosen ς, as in the proofs above. By Lemma 4.6.10, `

SIMP
tς = uς.

By construction tς and uς do not mention sub, therefore by Corollary 4.5.20 also
`

CORE
tς = uς.

Given `
CORE

tς = uς we can show ∆ `
CORE

t = u by exploiting the syntactic cri-
teria of Corollary 2.5.4. The proof is by induction on t using detailed but entirely
routine calculations. We consider just one case, the hardest one:

Suppose t ≡ π ·X and X : [A]T. Then

tς ≡ [cX ]dX(π(aX1), . . . , π(aXkX
)).
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By the syntactic criteria of Corollary 2.5.4 if `
CORE

tς = uς it must be that

uς ≡ [b]dX(π(aX1), . . . , π(aXkX
)).

Here b is not equal to π(aXi) for 1 ≤ i ≤ kX . By the construction of uς and the
way we chose aX1, . . . , aXkX

to be the atoms mentioned in ∆, t, or u which are not
provably fresh for X in ∆, it follows that u must have been equal to π′ ·X for
some π′ such that ∆ ` ds(π, π′)#X. It follows that ∆ `

CORE
t = u as required.

4.6.3 ω-Completeness

We consider completeness with respect to the ground term model (see Defini-
tion 4.6.22 below for a formal definition). This is also called ω-completeness.
Before we go into the proof of this notion of completeness, it is useful to mention
why this is an appropriate notion to consider.

In Chapter 3 we have shown that nominal algebra enjoys a general completeness
result with respect to a standard class of semantics in nominal sets [GP02]. SUB is
a nominal algebra theory, so it is automatically sound and complete with respect
to the standard class of nominal sets semantics.

A completeness result is weaker, the larger the class of semantics that it uses.
Can we strengthen this general result to some more specific class than the nominal
sets models?

Theorem 4.6.19 can be read as a completeness result with respect to a class
of models built out of syntax enriched with finitely but unboundedly many extra
term-formers dX . We could stop there, however, we would have an even more
powerful completeness result if we could strengthen this to completeness with
respect to terms of signature Σ itself.

In fact, so long as Σ contains a term-former which takes more than one argument
(like pair : (T,T)T)), then we can nail SUB down to the theory of capture-avoiding
substitution on ground terms in Σ. We now have all the machinery to do this
quite easily.

Definition 4.6.22. Call σ a ground substitution for ∆, t and u when for every
unknown X in ∆, t and u, σ(X) is a ground term.

Call SUB ω-complete when for all ∆, t and u, if tσ

7→

=α uσ

7→

for all ∆-consistent
ground substitutions σ (for ∆, t and u), then ∆ `

SUB
t = u.

We shall prove the contrapositive. Supposing ∆ 0
SUB

t = u, we will exhibit some
∆-consistent ground substitution σ such that tσ

7→

6=α uσ

7→

.
We cannot use ς from Subsection 4.6.2 because ς maps to an extended signature

Σ′ with extra term-formers dX , but we can use ς to construct another substitution
with the right properties, as we now see.

Recall from the previous subsection the chain of rewrites

tς ≡ t′1 → t′2 → . . .→ t′m ≡ tς

7→

and uς ≡ u′1 → u′2 → . . .→ u′n ≡ uς

7→

.

Note that tς

7→

and uς

7→

are ground.
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Definition 4.6.23. Let A′ be the set of all atoms mentioned in the above chains,
let t′ and u′ range over closed terms in Σ′ mentioning only atoms from A′, and
choose atoms {aX | X ∈ X} completely fresh from A′.

Assuming that Σ contains a binary term-former, say pair : (T,T)T), define a
translation -∗ from closed terms in Σ′ to closed terms in Σ by:

a′∗ ≡ a′ ([a′]t′)∗ ≡ [a′]t′∗ f(t′1, . . . , t
′
n)
∗ ≡ f(t′∗1 , . . . , t

′∗
n ) (f 6∈ D)

dX()∗ ≡ pair(aX , aX) dX(t′1)
∗ ≡ pair(aX , t

′∗
1 )

dX(t′1, . . . , t
′
kX

)∗ ≡ pair(aX , pair(t′∗1 , pair(t′∗2 , . . . , pair(t′∗kX−1, t
′∗
kX

)))) (kX > 1)

It is not hard to verify the following properties:

Lemma 4.6.24.

1. ` (t′∗)

7→

≡ (t′

7→

)∗.
2. `

CORE
t′ = u′ if and only if `

CORE
t′
∗ = u′

∗.
3. `

SIMP
t′ = u′ if and only if `

SIMP
t′
∗ = u′

∗.

Proof. Part 1 is by induction on the syntax of t′. For the case of t′ ≡ sub(u′, v′), we
use the property that g′[h′/a′]∗ ≡ g′∗[h′∗/a′] (where g′, h′, a′ and g′[h′/a′] mention
only atoms from A′), which is easy to verify.

Part 2 is by induction on the syntax of t′, using the syntactic criteria from
Corollary 2.5.4.

For part 3, by Corollary 4.5.21 it suffices to prove the equivalent

`
CORE

t′

7→

= u′

7→

if and only if `
CORE

(t′∗)

7→

= (u′∗)

7→

,

which follows by parts 1 and 2.

Definition 4.6.25. Define the substitution ς∗ by:

ς∗(X) = ς(X)∗ (X ∈ X )
ς∗(X) = X (X 6∈ X )

It is a fact of the construction that ς∗ maps every X appearing in ∆, t, or u, to
a ground term in Σ. This is morally ‘the same’ as ς(X), but we map each extra
term-former dX to a collection of instances of pair.

Lemma 4.6.26. For any subterm v of t or u, v(ς∗) ≡ (vς)∗.

Proof. By straightforward induction on the structure of v.

Corollary 4.6.27. `
SIMP

tς = uς if and only if `
SIMP

t(ς∗) = u(ς∗).

Proof. By Lemma 4.6.26 and part 3 of Lemma 4.6.24.

Theorem 4.6.28 (ω-completeness). SUB is ω-complete.
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Proof. We show that if ∆ 0
SUB

t = u then there exists a ∆-consistent ground sub-
stitution σ (for ∆, t and u) such that tσ

7→

6=α uσ

7→

.
Suppose ∆ 0

SUB
t = u. Then also 0

SIMP
tς = uς by Theorem 4.6.19. Now by

Corollary 4.6.27 we obtain 0
SIMP

t(ς∗) = u(ς∗). Then (tς∗)

7→

6=α (uς∗)
7→

by Theo-
rem 4.3.13 and Corollary 4.5.21.

Now take σ = ς∗. Since ς∗ maps to ground terms in Σ, the result follows.

4.6.4 Restricting the Sort System

We now turn to our discussion in Section 4.2 on unknowns of abstraction sort [A]T
and term-formers sub : ([A][A]T,T)[A]T (Remark 4.2.5). We mentioned that they
are convenient, but not strictly necessary. One way of seeing this is by observing
that we could redo all the mathematics in this chapter in the restricted setting with
minor modifications. Another way is to make the argument formal by leveraging
the proof of Theorem 4.6.19. We will pursue this more formal approach here.

Since the restriction of unknowns implies that we have to instantiate (f 7→) for
each term-former f, we will consider a concrete signature. We consider a typical
signature for languages with binding, namely that of theory LAM from Exam-
ple 4.2.4.

Definition 4.6.29. Consider the following signature:

lam : ([A]T)T app : (T,T)T sub : ([A]T,T)T.

As usual, we write lam([a]t) as λ[a]t, app(t, u) as tu and sub([a]t, u) as t[a 7→ u].
Now let theory SUB′ over this signature have the following axioms:

(var7→′) ` a[a 7→ T ] = T
(# 7→′) a#U ` U [a 7→ T ] = U

(lam 7→′) b#T ` (λ[b]U)[a 7→ T ] = λ[b](U [a 7→ T ])
(app7→′) ` (UV )[a 7→ T ] = (U [a 7→ T ])(V [a 7→ T ])
(sub 7→′) b#T ` V [b 7→ U ][a 7→ T ] = V [a 7→ T ][b 7→ U [a 7→ T ]]
(ren7→′) b#T ` T [a 7→ b] = (b a) · T

Theorem 4.6.30. Suppose SUB is a theory of substitution over the signature of
LAM. Then for any ∆, t and u (in this signature) not mentioning unknowns of
sort [A]T or terms of sort [A][A]T:

∆ `
SUB

t = u if and only if ∆ `
SUB′ t = u

Proof. For the right-to-left part it suffices to show that each axiom of SUB′ can
be derived in SUB. Both axiom (lam 7→′) and (sub 7→′) follow by an instance of
(f 7→) and (# 7→), the other axioms of SUB′ follow directly from their corresponding
axioms in SUB.

For the left-to-right part, suppose ∆ `
SUB

t = u. Then also `
SIMP

tς = uς by
Lemma 4.6.10. We observe that there are SIMPr rewrites

tς ≡ t1 → t2 → . . .→ tm ≡ tς

7→

and uς ≡ u1 → u2 → . . .→ un ≡ uς

7→

,
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such that whenever a term of sort [A][A]T is introduced by a rewrite, it is removed
in the next step. More precisely, only an instance of rewrite rule (Rf), where
f = lam, can introduce such a term, but we can always apply the (Rabs) rule to
get rid of it.

We can use properties similar to Lemma 4.6.18 on these chains of rewrites to
obtain derivations of

∆+ `
SUB′ (tς)-1 = (tς

7→

)-1 and ∆+ `
SUB′ (uς)-1 = (uς

7→

)-1.

That is, we need one such property for direct rewrites and another one for two-step
rewrites. Note that in the current setting the inverse translation never introduces
unknowns of sort [A]T or terms of sort [A][A]T.

We also have ∆+ `
CORE

(tς

7→

)-1 = (uς

7→

)-1 by Corollary 4.5.21, Lemma 4.6.17 and
our assumption that `

SIMP
tς = uς. Then ∆+ `

SUB
(tς)-1 = (uς)-1 using (symm)

and (tran). Using a property similar to Lemma 4.6.13 we obtain ∆+ `
SUB′ t = u.

We conclude ∆ `
SUB′ t = u by strengthening (Theorem 2.4.14).

4.7 Conclusions

We have provided a general axiomatisation of capture-avoiding substitution in
nominal algebra. This axiomatisation can be considered the right one, because it
is sound and complete with respect to a canonical term model (Theorem 4.6.28). It
also provides a precise sense in which that axiomatisation be considered tractable;
decidability of equality up to the axioms for substitution (Corollary 4.6.20).

4.7.1 Related Work

At first sight, Crabbé’s axiomatisation of substitution [Cra04] looks much like our
axiomatisation and shares (in our terminology) atoms and freshness conditions.
However, his axiomatisation is not capture-avoiding from the simple fact that
he does not treat binding: ‘. . . we are not concerned with the notion of bound
variable’ [Cra04, page 2].

We now discuss related works that do treat binding.

Nominal approaches

Most existing publications on nominal techniques have treated axiomatisations of
capture-avoiding substitution. In [GP02, Pit03, CP07, FG07], such an axioma-
tisation serves as a motivating example of the theory presented in the paper at
hand. Ohter publication put the axiomatisation to use. In [Pit06], Pitts uses si-
multaneous substitutions in the context of α-structural recursion and induction to
give a clean but mathematically rigorous treatment of normalisation by evualation
in the simply typed λ-calculus. In [FS06], Fiore and Staton use atoms-for-atoms
substitution to define a congruence rule format for name-passing process calculi.
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Finally, in Chapter 5 capture-avoiding substitution is used in the definition of
one-and-a-halfth-order logic.

These papers show that capture-avoiding substitution can be axiomatised in a
way that is close to informal practice. However, none of the papers show that the
axiomatisations they provide are complete with respect to the ground term model.
This is the major contribution of this chapter. This was far from trivial, since we
needed to augment the standard nominal axiomatisation with the axioms (ren7→)
and (η 7→).

Higher-order approaches

Higher-order approaches map substitution to the meta-level, which is capture-
avoiding by default. For example, when writing down axioms for the λ-calculus, we
make use of meta-level abstraction and application (example taken from [MN98]):

(β) app(lam(λx.F (x)), S) = F (S)
(η) lam(λx.app(S, x)) = S

Here lam and app are constants representing object-level abstraction and applica-
tion, and λx.t and t(u) represent meta-level abstraction and application. In the
(β) axiom the function variable F is parameterised by the bound variable x to
make substitution capturing for x. In the (η) axiom x can never become bound in
any term we substitute for S, since the meta-level substitution mechanism takes
care of this.

Binding algebras

Fiore, Plotkin and Turi define substitution in their binding framework [FPT99].
It is not clear how to relate their definition of substitution to our axiomatisation,
because it is not clear how to relate the frameworks altogether (see the Conclusions
of Chapter 3 for details).

Cylindric algebras

Feldman [Fel82] gives an algebraic axiomatisation inspired by a concrete model of
functions/evaluations. His axioms are closer in spirit to cylindric algebras [BS81]
and lambda-abstraction algebras [LS04, Sal00]. The three approaches share an
infinity of term-formers representing λ[a], -[a 7→ -], and ∃[a].

We see the advantage of our treatment as systematising and formalising precisely
what rôle the atoms really have. In any case the approaches above cannot directly
express (ren7→), (#7→), and (abs7→), even though instantiations are derivable for
closed terms by calculations parametric over their specific structure.
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Combinators

Combinatory logic [CF58, Bar84] and related systems implement substitution by
‘pipes’ (e.g. the translation of λ-terms into combinatory logic). There is no native
notion of binder, nor of capture-avoidance. General truths such as (# 7→) are not
provable as equalities between combinators, though they remain true and can be
proved informally by calculations parametric over specific structure.

Calculi of explicit substitutions

Lescanne’s classic survey [Les94] and the thesis of Bloo [Blo97] chart a vast liter-
ature on λ-calculi with explicit substitutions. These decompose β-reduction as a
rule to introduce explicit substitution ( (λa.u)t→ u[a 7→ t] ), and explicit rules for
that substitution’s subsequent behaviour (which is to substitute, of course).

These calculi are designed to measure the cost of a β-reduction (in an imple-
mentation, which may be based on de Bruijn indexes [dB72] or on named variable
symbols). They do not axiomatise substitution, they implement it. For that rea-
son, they are more close in spirit to rewrite system SIMPr than to the equational
theories SIMP and SUB. For example, ‘confluence’ is a typical correctness criterion
for a calculus, and ‘ω-completeness’ often is not.

4.7.2 Future Work

Equality and unification up to CORE is decidable [UPG04]. Equality in SUB is
decidable (Corollary 4.6.20), but unification up to SUB remains an open problem.

In the Conclusions of Chapter 2 we mentioned that we are interested in devel-
oping logics with hierarchies of ‘increasingly meta’-variables. We could use these
techniques [Gab05, Gab07b, GL07] to try to take SUB over itself — that is, to
taking what we write in this chapter as, say, (X[a 7→ Y ])[t/X] and expressing it
in a stronger axiom system as (X[a 7→ Y ])[X 7→ T ] where T is a ‘stronger’ meta-
variable.



Chapter 5

One-and-a-halfth-Order
Logic

5.1 Introduction

Informal use of first-order predicate logic [Gen35, Pra65] has all the features which
the tools we have developed so far are designed to handle; logical and computa-
tional content, binding — and a habit of making heavy use of meta-variables.
Consider for example the following ‘valid sequents’:

` φ ⊃ (ψ ⊃ φ)
φ ` φ[x 7→ t] if x 6∈ fv(φ)

∀x.φ ` ∀y.(φ[x 7→ y]) if y 6∈ fv(φ)
φ ` ∀x.φ if x 6∈ fv(φ)

φ, ψ ` ∀x.φ if x 6∈ fv(φ)
φ,∀x.(φ ⊃ ψ) ` ∀x.ψ if x 6∈ fv(φ)

∀y.∀x.φ ` ∀x.(φ[y 7→ x])

These sequents cannot be derived in the syntax of first-order logic itself, since
they contain meta-variables φ, ψ and t. These meta-variables are not part of the
syntax, they range over it. Furthermore we refer to properties of syntax when we
write ‘x 6∈ fv(φ)’ and ‘φ[x 7→ t]’, but the syntax of first-order logic cannot represent
these explicitly.

Of course to us humans this is all obvious. One reason is that the derivations fall
into a limited number of schema. Consider for example the following ‘derivations’:

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ (ψ ⊃ φ)

(Ax)
⊥,⊥ ` ⊥

(⊃R)
⊥ ` ⊥ ⊃ ⊥

(⊃R)
` ⊥ ⊃ (⊥ ⊃ ⊥)

85
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The ‘derivation’ on the left is not a derivation, but it obviously represents a schema
of derivations of which the (real) derivation on the right is an instance setting φ
and ψ to ⊥. But is there a logic in which the beast on the left is a derivation too?

This chapter presents one-and-a-halfth-order logic. This logic generalises
first-order logic by adding explicit meta-variables P , Q and T which in the logic
represent the φ, ψ and t of the derivations above. The classification one-and-a-
halfth indicates that the logic is somewhere between first- and second-order logic:
it is not just first-order because of the meta-variables, yet not second-order because
there is no quantification over meta-variables.

One-and-a-halfth-order logic permits generalised forms of α-equivalence, substi-
tution, capture-avoidance, and quantifier introduction rules. Even though it is a
completely formal logic with clearly-specified derivation rules, we shall see that
the derivations it admits are very close to the schemas of derivations which we
see all the time in informal practice. For example, one-and-a-halfth-order logic
allows us to write a formal counterpart of the following schema of derivations of
φ,∀x.(φ ⊃ ψ) ` ∀x.ψ where x 6∈ fv(φ) (the 6th derivation of Figure 5.3):

(Ax)
φ,` ψ, φ

(Ax)
ψ, φ ` ψ

(⊃L)
φ, φ ⊃ ψ ` ψ

(∀L) (φ ⊃ ψ =α (φ ⊃ ψ)[x 7→ x])
φ,∀x.(φ ⊃ ψ) ` ψ

(∀R) (x 6∈ fv(φ,∀x.(φ ⊃ ψ)))
φ,∀x.(φ ⊃ ψ) ` ∀x.ψ

Furthermore, we can represent the introduction of fresh atoms, as is essential in
the following justification of φ, ψ ` ∀x.φ, where x 6∈ fv(φ) (the 5th derivation of
Figure 5.3):

“Let y be a variable fresh for x, φ and ψ. Then we derive as follows:

(Ax)
φ, ψ ` φ

(∀R) (y 6∈ fv(φ, ψ)).
φ, ψ ` ∀y.φ

This is φ, ψ ` ∀x.φ since ∀x.φ =α ∀y.φ when x 6∈ fv(φ).”

Overview Our constructions heavily rely on definitions and results from Chap-
ters 2 and 4. In Section 5.2 we refine some of these basic definitions to better suit
our needs.

We present the sequent calculus of one-and-a-halfth-order logic in Section 5.3.
We also show how we can represent the informal valid sequents and derivations
from this introduction in the calculus.

In Section 5.4 we establish some proof-theoretical results. We show that formal
derivations correctly represent schemas of derivations in first-order logic. Further-
more, we show that the logic satisfies cut-elimination and consistency.

In Section 5.5 we show that a subset of one-and-a-halfth-order logic precisely
corresponds to first-order logic. We discuss related and future work in Section 5.6.
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5.2 Sorts, Terms and Substitution

We present the signature of one-and-a-halfth-order logic in the setting of nominal
terms, introduced in Chapter 2. We take the signature of theory FOL from Ex-
ample 2.2.17, which contains term-formers ⊥, ⊃, ∀, ≈ and sub, and possibly some
other term-formers.

We will use a simple sort system to keep our terms well-formed. The construction
is similar to that of Chapter 4, with the major differences being that we use two
base sorts (F for formulae and T for terms) and that we allow unknowns of base
sort only. We do not admit unknowns of abstraction sort like we did in Chapter 4;
detailed reasons for this are given in Remark 5.3.3.

Definition 5.2.1. Fix a sort of formulae F, and a sort of terms T. Define
sorts τ by the following grammar:

τ ::= F | T | [A]F | [A]T

We call [A]F and [A]T abstraction sorts.

Intuitively, sorts [A]F and [A]T contain all formulae and terms in which an atom
is abstracted.

Definition 5.2.2. We assume the infinite collection of unknowns X,Y, Z, . . . is
partitioned into two infinite collections XF, YF, ZF, . . . of unknowns of sort F
and XT, YT, ZT, . . . of unknowns of sort T.

We usually leave out the subscripts of the unknowns, and we typically let P,Q,R
be unknowns of sort F, and T,U, V be unknowns of sort T.

Definition 5.2.3. We associate a sorting arity (τ1, . . . , τn)τ with each term-
former f. We write f : (τ1, . . . , τn)τ for f of arity (τ1, . . . , τn)τ . Then the sorting
arities for the main term-formers are:

⊥ : ()F ⊃: (F,F)F ∀ : ([A]F)F ≈: (T,T)F
sub : ([A]F,F)F sub : ([A]T,T)T

For any other term-former f, we allow two types of sorting assertions:

• An object-level term-former has sorting assertion

(τ1, . . . , τn)T, where τi ∈ {T, [A]T} for 1 ≤ i ≤ n.

• A predicate term-former has sorting assertion

(τ1, . . . , τn)F, where τi ∈ {T,F, [A]T, [A]F} for 1 ≤ i ≤ n.

So there are two term-formers sub, one for terms of sort F and one for terms of
sort T. This suffices for our needs; there are no sub term-formers for abstraction
sorts. Note that the sorting assertions of the object-level and predicate term-
formers explicitly allow the use of abstraction sorts for the arguments.



88 Chapter 5. One-and-a-halfth-Order Logic

Example 5.2.4. Possible object-level term-formers include

0 : ()T S : (T)T + : (T,T)T

but also binders such as

λ : ([A]T)T Σ : ([A]T)T fix : ([A]T)T.

Possible predicate term-formers include

issocrates : (T)F greek : (T)F ⊕ : (F,F)F ∃! : ([A]F)F

(⊕ is standard notation for ‘exclusive or’, and ∃! is standard notation for the ‘there
exists exactly one’ quantifier).

These extra term-formers would cause no difficulties for the results which follow
— aside from some extra cases.

Definition 5.2.5. The (valid) sorting assertions t : τ are inductively defined
by:

a : T π ·Xτ : τ

t : τ

[a]t : [A]τ

t1 : τ1 · · · tn : τn
(f : (τ1, . . . , τn)τ)

f(t1, . . . , tn) : τ

Note that in these rules, τ is restricted to T and F by definition.
From now on, we will only consider terms that adhere to the valid sorting

assertions. Furthermore, we require equalities t = u and meta-level substitutions
σ to be sort-respecting.

Definition 5.2.6. We may call terms of sort F formulae; we usually let φ, ψ,
and ρ range over them.

We write:

⊥() as ⊥ ⊃(φ, ψ) as φ ⊃ ψ ∀([a]φ) as ∀[a]φ ≈(t, u) as t ≈ u

sub([a]φ, t) as φ[a 7→ t] sub([a]u, t) as u[a 7→ t].

We discuss some intuitions. Let a be an atom, π be a permutation of atoms,
T : T and P : F be unknowns, t, u : T be terms, and φ, ψ be formulae (terms of
sort F). Then:

• a is a term of sort T, representing an object-level variable symbol of sort T.
• π · T and π · P are moderated unknowns representing unknown terms (of

sort T and F respectively) in which the atoms are permuted according to π
when instantiated.

• [a]t and [a]φ are abstractions; the sort system is such that abstractions are
the only means to form well-sorted terms of abstraction sorts [A]T and [A]F.

• ⊥ represents false.
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(var 7→) ` a[a 7→ T ] = T

(# 7→) a#X ` X[a 7→ T ] = X

(⊃7→) ` (P ⊃ Q)[a 7→ T ] = P [a 7→ T ] ⊃ Q[a 7→ T ]

(≈7→) ` (U ≈ V )[a 7→ T ] = U [a 7→ T ] ≈ V [a 7→ T ]

(∀7→) b#T ` (∀[b]P )[a 7→ T ] = ∀[b](P [a 7→ T ])

(sub 7→) b#T ` X[b 7→ U ][a 7→ T ] = X[a 7→ T ][b 7→ U [a 7→ T ]]

(ren 7→) b#X ` X[a 7→ b] = (b a) ·X

Figure 5.1 Axioms of theory SUB for one-and-a-halfth-order logic

• φ ⊃ ψ represents logical implication.
• ∀[a]φ represents universal quantification (which takes an abstraction of a

formula and yields a formula). A well-sorted term of the form ∀v must be
of the form ∀[a]φ (so v ≡ [a]φ),

• t ≈ u represents equality in the object-language.
• φ[a 7→ t] and u[a 7→ t] represent capture-avoiding substitution in the object-

language. A well-sorted term of the form sub(v, t) must be of the form
φ[a 7→ t] (so v ≡ [a]φ) or u[a 7→ t] (so v ≡ [a]u).

Definition 5.2.7. We use standard classical logic sugar:

¬φ is φ ⊃ ⊥ > is ¬⊥
φ ∧ ψ is ¬(φ ⊃ ¬ψ) φ ∨ ψ is ¬φ ⊃ ψ

φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Note that these are abbreviations, not term-formers.
To save on (unnecessary) parentheses, assign precedence in descending order as

follows: [ ] , [ 7→ ], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔. Also let ∧, ∨, ⊃ and ⇔ associate
to the right.

Because of the assigned precedence P ∧Q ⊃ R ∨ S is (P ∧Q) ⊃ (R ∨ S) and
∀[a]P ∧Q is (∀[a]P ) ∧Q. Also P ⊃ Q ⊃ R is P ⊃ (Q ⊃ R).

We conclude this section with a formal definition of the theory of substitution
in our sort system.

Definition 5.2.8. Write SUB for the theory with the axioms in Figure 5.1. Here
a, b are distinct atoms, P,Q,R are distinct unknowns of sort F, T,U, V are distinct
unknowns of sort T, and X is an unknown of appropriate sort.

There may also be axioms, which we shall not dwell on, to distribute substitu-
tions through the object-level term-formers such as + and λ and predicate term-
formers such as greek and ∃!. These cause no extra issues; if the term-former takes
terms of abstraction sort the equality should include a freshness side-condition in
the same style as (∀7→).
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Definition 5.2.8 of theory SUB looks a bit different than the definition of SUB
from Definition 4.2.8 of the previous chapter (but it looks very similar to the
definition in Subsection 4.6.4). Next to the axioms, the sort systems are quite
different: on the one hand the sort system presented here is richer because it
has two base sorts, but on the other hand it is more restricted because it lacks
unknowns of abstraction sort or term-former sub : ([A][A]T,T)[A]T. We will show
that nevertheless derivability is the same.

First of all, the notion of having two base sorts is irrelevant for the theory of
substitution: we can just treat sort F as sort T. Write SUB for the theory of
substitution from Definition 5.2.8, where sort F is replaced by T. Also write ∆, t
and u for the replacement of F by T in ∆, t and u.

Lemma 5.2.9. Let SUB be the theory of substitution from Definition 5.2.8. Then:

∆ `
SUB

t = u if and only if ∆ `
SUB

t = u.

Proof. Each derivation of ∆ `
SUB

t = u is also a derivation of ∆ `
SUB

t = u, and
vice versa.

Note that theory SUB equates more terms than SUB, but these terms are not
part of the F to T translation. For example (⊥ ≈ ⊥)[a 7→ T ] = ⊥ ≈ ⊥ is not
derivable in SUB (because the terms do not satisfy the sorting assertions), but
it is derivable in SUB. However, this equation cannot be the result of a translation
from the signature of SUB.

We use theory SUB to make a formal connection with theory SUB from Defini-
tion 4.2.8 of the previous chapter.

Lemma 5.2.10. Let SUB be the theory of substitution from Definition 4.2.8 over
the signature of SUB. Then:

∆ `
SUB

t = u if and only if ∆ `
SUB

t = u.

Proof. Completely analogous to the proof of Theorem 4.6.30.

So Lemmas 5.2.9 and 5.2.10 tell us that we are allowed to use the results from
Chapter 4, which we will do.

5.3 A Sequent Calculus

We present the sequent calculus of one-and-a-halfth-order logic. Recall that by
our terminology a formula φ is a term of sort F.

Definition 5.3.1. Let (formula) contexts Φ,Ψ be finite (possibly empty) sets
of formulae. A (one-and-a-halfth-order) sequent is a triple Φ `∆ Ψ where ∆
is a freshness context and Φ and Ψ are formula contexts; when a context appears
to the right of ` we may call it a co-context.
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We may write φ for {φ}, φ,Φ for {φ} ∪ Φ, and Φ,Φ′ for Φ ∪ Φ′, and we may
omit empty formula contexts, e.g. writing `∆ for ∅ `∆ ∅.

Extend the notions of occurrence and closedness to formula contexts element-
wise; for example a ∈ Φ if a ∈ φ for some φ ∈ Φ.

Definition 5.3.2. Let the derivable sequents of one-and-a-halfth-order logic
be inductively specified by the rules in Figure 5.2.

Our rules resemble those of Gentzen’s sequent calculus for classical first-order
logic with equality [DV01, Gen35, Pra65], but with the following distinctive fea-
tures:

• Unknown formulae and unknown terms are represented explicitly by un-
knowns of sort F and T.

• We can make freshness assumptions about unknowns (using (Fr)), and these
affect derivability, for example in (∀R).

• A theory of equality of terms up to α-equivalence and capture-avoiding sub-
stitution is represented by derivability in theory SUB.

• Side-conditions on substitution, freshness and atoms not occurring in terms,
are all decidable.

(StructL) and (StructR) are so-called structural rules. The side-conditions of
these rules refer to equational derivability in SUB, and they help us to manage
α-equivalence and capture-avoiding substitution in the presence of meta-variables.

(Fr) lets us introduce fresh atoms into a derivation. The difficulty which this
rule addresses is the explicit meta-variables of nominal terms; we need (Fr) to add
explicit information that the atom is fresh for them, into the freshness context.

Remark 5.3.3. In the beginning of Section 5.2 we commented that we do not
allow unknowns of abstraction sort. The reader may note that we do allow these
in Chapter 4. We imposed this restriction on expressivity because it would allow
us to write terms like ∀X, sub(X, a) and ∀(X[a 7→ b]).

This may well be a desirable extension of the system we have presented, and it
is not incorrect — but it would have a dramatic effect on the readability of the
rules in Figure 5.2. For example, the (∀L) and the (∀R) rules would have to be
generalised to something like

sub(t, u), Φ `∆ Ψ
(∀L)

∀t, Φ `∆ Ψ

Φ `∆ Ψ, sub(t, a)
(∀R)

Φ `∆ Ψ, ∀t
(∆ ` a#Φ,Ψ).

We want (the first version of) one-and-a-halfth-order logic to speak directly to the
reader already familiar with first-order logic, so we preferred the less powerful, but
more intuitive, version. There are many ways that one-and-a-halfth-order logic can
be extended and that is future work.

Example derivations in one-and-a-halfth-order logic can be found in Figures 5.3
and 5.4.
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(Ax)
φ, Φ `∆ Ψ, φ

(⊥L)
⊥, Φ `∆ Ψ

Φ `∆ Ψ, φ ψ, Φ `∆ Ψ
(⊃L)

φ ⊃ ψ, Φ `∆ Ψ

φ, Φ `∆ Ψ, ψ
(⊃R)

Φ `∆ Ψ, φ ⊃ ψ

φ[a 7→ t], Φ `∆ Ψ
(∀L)

∀[a]φ, Φ `∆ Ψ

Φ `∆ Ψ, ψ
(∀R)

Φ `∆ Ψ, ∀[a]ψ
(∆ ` a#Φ,Ψ)

φ[a 7→ t′], Φ `∆ Ψ
(≈L)

t′ ≈ t, φ[a 7→ t], Φ `∆ Ψ
(≈R)

Φ `∆ Ψ, t ≈ t

φ′, Φ `∆ Ψ
(StructL) (∆ `

SUB
φ′ = φ)

φ, Φ `∆ Ψ

Φ `∆ Ψ, ψ′
(StructR) (∆ `

SUB
ψ′ = ψ)

Φ `∆ Ψ, ψ

Φ `∆ Ψ, φ φ′, Φ `∆ Ψ
(Cut) (∆ `

SUB
φ = φ′)

Φ `∆ Ψ

Φ `∆,a#X1,...,a#Xn
Ψ

(Fr) (n ≥ 1, a 6∈ Φ,Ψ,∆)
Φ `∆ Ψ

Figure 5.2 Sequent calculus for one-and-a-halfth-order logic
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(Ax)
Q,P `∅ P

(⊃R)
P `∅ Q ⊃ P

(⊃R)
`∅ P ⊃ (Q ⊃ P )

(Ax)
P `a#P P

(StructR) (a#P `SUB P = P [a 7→ T ])
P `a#P P [a 7→ T ]

(Ax)
∀[a]P `b#P ∀[a]P

(StructR) (b#P `SUB ∀[a]P = ∀[b](P [a 7→ b]))
∀[a]P `b#P ∀[b](P [a 7→ b])

(Ax)
P `a#P P

(∀R) (a#P ` a#P )
P `a#P ∀[a]P

(Ax)
P,Q `a#P,b#P,Q P

(∀R) (a#P, b#P,Q ` b#P,Q)
P,Q `a#P,b#P,Q ∀[b]P

(StructR) (a#P, b#P,Q `SUB ∀[b]P = ∀[a]P )
P,Q `a#P,b#P,Q ∀[a]P

(Fr) (b 6∈ P, Q, ∀[a]P, a#P )
P,Q `a#P ∀[a]P

(Ax)
P `a#P Q,P

(Ax)
Q,P `a#P Q

(⊃L)
P, P ⊃ Q `a#P Q

(StructL) (a#P `SUB P ⊃ Q = (P ⊃ Q)[a 7→ a])
P, (P ⊃ Q)[a 7→ a] `a#P Q

(∀L)
P, ∀[a](P ⊃ Q) `a#P Q

(∀R) (a#P ` a#P, ∀[a](P ⊃ Q))
P, ∀[a](P ⊃ Q) `a#P ∀[a]Q

Figure 5.3 Example derivations in one-and-a-halfth-order logic
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We give some intuitions to the example derivations of Figures 5.3 and 5.4:

• ` P ⊃ (Q ⊃ P ) represents a family of tautologies φ ⊃ (ψ ⊃ φ) of proposi-
tional logic. The only difference is that here we are using the provision of
explicit meta-variables to represent this family directly as a single sequent.

• P `
a#P

P [a 7→ T ] expresses a property of capture-avoiding substitution. . .
with meta-variables. The condition a#P intuitively guarantees that what-
ever formula P represents, it is not one that mentions a free in its syntax.
It corresponds to writing a 6∈ fv(φ).
The derivation exploits the power to prove equalities in SUB.

• ∀[a]P `
b#P

∀[b](P [a 7→ b]) expresses α-equivalence. . . with meta-variables. As
in the previous derivation, this derivation exploits the power to prove equal-
ities in SUB.

• P `
a#P

∀[a]P represents a family of tautologies of predicate logic. We use
the freshness assumption a#P in the instance of the (∀R) rule.

• P,Q `
a#P

∀[a]P expresses the same as the previous example, except that we
have an additional assumption Q. The derivation becomes significantly more
complex: we cannot use (∀R) on ∀[a]P because we do not know a#Q. The
solution is to use (Fr) to generate b#P,Q, use structural rules (StructL)
and (StructR) to α-rename, and then use (∀R).
This use of (Fr) is essential: we need this mechanism to introduce a fresh
atom into the derivation. This relates to the discussion in Subsection 2.3.2
on the extra power that the (fr) rule gives to nominal algebra.

• P,∀[a](P ⊃ Q) `
a#P

∀[a]Q represents another family of tautologies of predi-
cate logic [GM02, axiom (2a) on page 33]. For the instance of (∀R) to be
valid we must show a#∀[a](P ⊃ Q). We have made no assumptions about
what is fresh forQ, but the abstraction by a guarantees this property anyway.

• ∀[b]∀[a]P ` ∀[a](P [b 7→ a]) is a relatively non-trivial tautology which might
be written in semi-formal notation as ‘∀a.∀b.φ(a, b) implies ∀a.φ(a, a)’.

We still need to verify the side-conditions from Figures 5.3 and 5.4. The side-
conditions on freshness and non-occurrence of terms are easy, since their deriva-
tions are completely syntax-directed. In order to verify the side-conditions on
equality in SUB we could provide full derivations. . . but why not reuse the results
on decidability of SUB from Chapter 4?

Recall substitution ς from Definition 4.6.8 that maps possibly open terms to
closed terms (depending on atoms and freshness information in the context). Also
recall the notation t

7→

for the translation of a closed term t to a ground term (a term
that does not mention unknowns or explicit substitutions) from Definition 4.4.4.
By Corollary 4.6.20, checking derivability of ∆ `

SUB
t = u is equivalent to checking

derivability of ∆ `
CORE

tς

7→

= uς

7→

, which we can easily do using the syntactic criteria
of CORE-equality (Corollary 2.5.4).

As an example we show derivability of a side-condition of Figure 5.4. All the
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(Ax)
P [b 7→ c][a 7→ c] `c#P P [b 7→ c][a 7→ c]

(∀L)
∀[a](P [b 7→ c]) `c#P P [b 7→ c][a 7→ c]

(StructL) (1.)
(∀[a]P )[b 7→ c] `c#P P [b 7→ c][a 7→ c]

(∀L)
∀[b]∀[a]P `c#P P [b 7→ c][a 7→ c]

(∀R) (2.)
∀[b]∀[a]P `c#P ∀[c](P [b 7→ c][a 7→ c])

(StructR) (3.)
∀[b]∀[a]P `c#P ∀[a](P [b 7→ a])

(Fr) (4.)
∀[b]∀[a]P `∅ ∀[a](P [b 7→ a])

Side-conditions:

(1.) (c#P `SUB ∀[a](P [b 7→ c]) = (∀[a]P )[b 7→ c])
(2.) (c#P ` c#∀[b]∀[a]P )
(3.) (c#P `SUB ∀[c](P [b 7→ c][a 7→ c]) = ∀[a](P [b 7→ a]))
(4.) (c 6∈ ∀[b]∀[a]P, ∀[a](P [b 7→ a]))

Figure 5.4 Another example derivation in one-and-a-halfth-order logic

other cases are similar.

Example 5.3.4. Suppose we need to show

c#P `
SUB

∀[c](P [b 7→ c][a 7→ c]) = ∀[a](P [b 7→ a]).

By Corollary 4.6.20, it suffices to show

`
CORE

(∀[c](P [b 7→ c][a 7→ c]))ς

7→

= (∀[a](P [b 7→ a]))ς

7→

.

Here ς maps the unknown P to the term dP (a, b), since a and b are all atoms
mentioned in the proof obligation that might not be fresh for P . Then:

(∀[c](P [b 7→ c][a 7→ c]))ς

7→

≡ ∀[c](dP (a, b)[c/b][c/a]) ≡ ∀[c]dP (c, c)
(∀[a](P [b 7→ a]))ς

7→

≡ ∀[a](dP (a, b)[a/b]) ≡ ∀[a]dP (a, a)

So we must show
`

CORE
∀[c]dP (c, c) = ∀[a]dP (a, a),

which is easy using the syntactic criteria of CORE-equality (Corollary 2.5.4).

5.4 Proof-Theoretical Results

This section shows two important properties of the sequent calculus for one-and-
a-halfth order logic:
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• In derivations, atoms may be permuted and unknowns may be instantiated.
We will call these properties equivariance and substitution.

• The cut-elimination property of first-order predicate logic is preserved by
the extension to one-and-a-halfth-order logic.

5.4.1 Equivariance and Substitution

Definition 5.4.1. We extend notation for permutation and substitution actions
tπ, π · t and tσ to formula contexts Φ, writing Φπ, π · Φ and Φσ for the result of
applying the actions to the terms in the syntax of Φ.

Write Ππ for the derivation obtained from a sequent derivation Π by replacing
every sequent Φ `∆ Ψ by Φπ `∆π Ψπ.

Theorem 5.4.2 (Meta-level equivariance). Suppose that Π is a valid derivation
of Φ `∆ Ψ. Then Ππ is a valid derivation of Φπ `∆π Ψπ.

Proof. Recall that Π is a tree labelled with (nominal algebra) syntax, ∆ is a set
of syntax, and Φ, and Ψ are syntax. These may all mention atoms. Recall also
that the notion of ‘valid derivation’ depends on a nominal algebra theory SUB,
and that SUB is syntax too (a set of axioms) which mention two atoms a and b.
The statement

‘Π is a valid derivation of Φ `∆ Ψ’

can be expressed by a ZFA predicate (Appendix A) with parameters ∆, Π, Φ, Ψ,
and the axioms in SUB.1

By ZFA equivariance (Theorem A.2.5) validity is invariant under permuting
atoms in the parameters. By a remarkable coincidence we have characterised this
permutation action inductively for the data we care about; this is exactly -π. So
if the statement above is true, then so is

‘Ππ is a valid derivation of Φπ `∆π Ψπ’,

where we use SUBπ to check side-conditions.
By Lemma 2.4.4 derivability in SUB is identical to derivability in SUBπ. The

result follows.

Some terminology is useful for Theorems 5.4.5 and 5.4.7.

Definition 5.4.3. Suppose Π is a derivation. It may use the rule (Fr), which
introduces fresh atoms into the derivation (if we read the derivation bottom-up),
or which garbage-collects fresh atoms in the derivation (if we read the derivation
top-down). Call these the fresh atoms of Π.

We will use the notion of fresh atoms to avoid accidental name clashes in the
next theorems.

1It can be expressed by other ZFA predicates; we can choose whichever suits us best.
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Definition 5.4.4. Write π ·Π for the derivation obtained from Π by replacing
each sequent Φ `∆ Ψ by π · Φ `∆ π ·Ψ.

Theorem 5.4.5 (Object-level equivariance). Suppose that π is a permutation and
suppose that Π is a valid derivation of Φ `∆ Ψ whose fresh atoms are disjoint from
the atoms in π.

Then π ·Π is a valid derivation of π · Φ `∆ π ·Ψ.

Proof. By induction on Π. Base cases (Ax) and (⊥L) are direct. We consider the
inductive cases in turn:

• The case of (⊃R): Suppose Φ `∆ Ψ, φ ⊃ ψ is derived using (⊃R). Then
there exists a derivation Π′ of φ,Φ `∆ Ψ, ψ, and by the inductive hypothesis
π ·Π′ is a derivation of π · φ, π · Φ `∆ π ·Ψ, π · ψ. Then

··· π ·Π
′

π · φ, π · Φ `∆ π ·Ψ, π · ψ
(⊃R)

π · Φ `∆ π ·Ψ, π · φ ⊃ π · ψ

is the required derivation π ·Π of π · Φ `∆ π ·Ψ, π · φ ⊃ π · ψ.
The cases (⊃L), (∀L), (≈L) and (≈R) are similar.

• The case of (∀R): Suppose Φ `∆ Ψ, ∀[a]ψ is derived using (∀R). Then
∆ ` a#Φ,Ψ holds and Π′ is a derivation of Φ `∆ Ψ, ψ. By object-level
equivariance (Theorem 2.4.6) ∆ ` π(a)#π · Φ, π ·Ψ holds, and by induc-
tive hypothesis π ·Π′ is a derivation of π · Φ `∆ π ·Ψ, π · ψ. We conclude
that π · Φ `∆ π ·Ψ, ∀[π(a)]π · ψ is derivable by extending π ·Π′ with (∀R),
as required.
The cases (StructL), (StructR) and (Cut) are similar.

• The case of (Fr): Suppose Φ `∆ Ψ is derived using (Fr). Then there exists
a derivation Π′ of Φ `∆,a#X1,...,a#Xn

Ψ where a 6∈ Φ,Ψ,∆. By the inductive
hypothesis π ·Π′ is a derivation of π · Φ `∆,a#X1,...,a#Xn

π ·Ψ. By assumption
a is disjoint from the atoms in π, so π(a) = a. Then a 6∈ π · Φ, π ·Ψ,∆ and
we conclude π · Φ `∆ π ·Ψ using (Fr).

The assumption on fresh atoms in Theorem 5.4.5 to avoid accidental clashes is
not a real restriction. When this assumption cannot be satisfied directly, we can
apply meta-level equivariance (Theorem 5.4.2) to rename the fresh atoms to avoid
the unfortunate clash, while retaining all structural properties including inductive
hypotheses.

Definition 5.4.6. Write Π(σ,∆′) for the derivation obtained from Π bottom-up
in the syntax as follows:
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• If Π concludes with an instance of a rule (R) different from (Fr), replace
its conclusion Φ `∆ Ψ by Φσ `

∆′ Ψσ, and replace the derivation Π′ of each
premise with Π′(σ,∆′).

• If Π concludes with an instance of (Fr), let Π′ be a derivation of its premise
Φ `∆,a#X1,...,a#Xn

Ψ, let Y1, . . . , Ym be all unknowns mentioned in σ(Xi) for
1 ≤ i ≤ n, and let ∆′′ = ∆′, a#Y1, . . . , a#Ym. Then:

– ifm ≥ 1, replace the conclusion Φ `∆ Ψ of Π by Φσ `
∆′ Ψσ, and replace

Π′ with Π′(σ,∆′′).
– if m = 0, replace Π with Π′(σ,∆′′) (or Π′(σ,∆′), since ∆′′ = ∆′).

So σ is consistently applied throughout the formula contexts occurring in Π, ∆′

replaces ∆, and (Fr) may generate slightly different freshness assumptions (when
the new set of freshness assumptions is empty, (Fr) is removed).

Theorem 5.4.7 (Meta-level substitution). Suppose that ∆′ ` ∆σ, that Π is a
valid derivation of Φ `∆ Ψ, and that the fresh atoms in Π are disjoint from the
atoms in σ and ∆′.

Then Π(σ,∆′) is a valid derivation of Φσ `
∆′ Ψσ.

Proof. By induction on Π. The proof is similar to the proof of object-level equiv-
ariance (Theorem 5.4.5).

The cases (∀R), (StructL), (StructR) and (Cut) use meta-level substitution
on freshness and equality (Theorem 2.4.10).

We treat the case of (Fr) in more detail. Suppose Φ `∆ Ψ is derived using (Fr).
Then Π′ is a derivation of Φ `∆,a#X1,...,a#Xn

Ψ where a 6∈ Φ,Ψ,∆.
Let Y1, . . . , Ym be all the unknowns mentioned in σ(Xi), 1 ≤ i ≤ n, and let

∆′′ = ∆′, a#Y1, . . . , a#Ym.
It is not hard to verify that ∆′′ ` (∆, a#X1, . . . , a#Xn)σ, so by the inductive

hypothesis Π′(σ,∆′′) is a valid derivation of Φσ `
∆′′ Ψσ.

We proceed by case distinction on m:

• Suppose m ≥ 1. By assumption, a is disjoint from the atoms mentioned in
σ,∆′. Then a 6∈ Φσ,Ψσ,∆′ and we may extend Π′(σ,∆′′) with (Fr) to obtain
our required derivation Π(σ,∆′) of Φσ `

∆′ Ψσ.
• Suppose m = 0. By definition Π(σ,∆′′) is Π′(σ,∆′). Since ∆′′ = ∆′, it is a

derivation of Φσ `
∆′ Ψσ, as required.

A useful corollary of Theorem 5.4.7 is the following:

Corollary 5.4.8. If Φ `∅ Ψ is derivable for closed Φ and Ψ, then there is a
derivation of Φ `∅ Ψ that does not mention unknowns.

Proof. Suppose Π is a derivation of Φ `∅ Ψ, which possibly mentions unknowns.
Let σ be the substitution that maps all unknowns in the derivation to closed terms
as follows:
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• each unknown P of sort F is mapped to ⊥;
• each unknown T of sort T is mapped to c, where c is an atom that does not

occur anywhere in Π.

By Theorem 5.4.7, Π(σ, ∅) is a valid derivation of Φ `∅ Ψ. This derivation does
not mention unknowns, as can be verified by an easy induction on the structure
of Definition 5.4.6.

5.4.2 Cut-Elimination

Definition 5.4.9. Call the depth of a derivation the greatest number of deriva-
tion steps not counting rules (Fr), (StructL) and (StructR) between its conclu-
sion and its leaves, over all paths. We do not count nominal algebra derivations
of freshnesses and equalities that occur as side-conditions.

For example, the last derivation of Figure 5.3 and the derivation of Figure 5.4
both have depth 4.

The following results are not normally problematic but we have internalised both
α-equivalence and being fresh — so renaming and freshening must be represented
in the derivation.

Lemma 5.4.10 (Freshness weakening). If Φ `∆ Ψ and ∆ ⊆ ∆′ then Φ `
∆′ Ψ.

The derivation has the same depth as the original one, and no more instances of
cut.

Proof. By induction on the structure of the derivation. For the cases of (∀R),
(StructL), (StructR) and (Cut) we use weakening (Corollary 2.4.12) on the
side-conditions. For the case of (Fr) we use ZFA equivariance.

Lemma 5.4.11. If a 6∈ u and a#X ⊆ ∆ for each X ∈ u, then ∆ ` a#u.

Lemma 5.4.12 (Formula weakening). If Φ `∆ Ψ and Φ ⊆ Φ′ and Ψ ⊆ Ψ′ then
Φ′ `∆ Ψ′. The new derivation has the same depth as the original one, and no
more instances of cut.

Proof. We work by strong induction on the pair of the depth of the derivation and
its structure, lexicographically ordered. The conditions on preserving depth and
number of cuts can easily be verified from the structure of the reasoning which
follows, and we do not mention them further.

• The case of (StructL): Suppose φ,Φ `∆ Ψ is derived using (StructL),
and assume the inductive hypothesis on all strictly lesser derivations. So
φ′,Φ `∆ Ψ and ∆ `

SUB
φ′ = φ are derivable for some φ′. This derivation has

the same depth as, and a lesser structure than that of φ,Φ `∆ Ψ, so we may
use the inductive hypothesis to derive φ′,Φ′ `∆ Ψ′. By (StructL) we obtain
φ,Φ′ `∆ Ψ′ as required.
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• The case of (∀R): Suppose Φ `∆ Ψ, ∀[a]ψ is derived using (∀R) and sup-
pose the inductive hypothesis of all strictly lesser derivations.
By assumption Φ `∆ Ψ, ψ has a derivation Π of strictly lesser depth, and also
∆ ` a#Φ,Ψ holds. Choose a′ fresh (so a′ 6∈ a,Φ′,Ψ′,Π) and ∆′ = ∆, a′#X
where X are the unknowns mentioned in Φ′,Ψ′,∆ and ψ. Then ∆′ ` a#Φ,Ψ
by weakening (Corollary 2.4.12), and Φ `

∆′ Ψ, ψ by freshness weakening
(Lemma 5.4.10).2

a′ is not in Π by assumption, so in particular a′ is not a fresh atom of Π. We
may also assume that a is not a fresh atom in Π — if a is generated by (Fr)
somewhere in Π then we easily build another derivation where the instance
of (Fr) in question generates a different (and ‘fresher’) atom. This affects
neither depth nor structure so we retain the inductive hypothesis.
Then by object-level equivariance (Theorem 5.4.5) also

(a′ a) · Φ `
∆′ (a′ a) ·Ψ, (a′ a) · ψ.

Using (perm) in (StructL) and (StructR) we obtain Φ `
∆′ Ψ, (a′ a) · ψ.

By inductive hypothesis (the derivation still has strictly lesser depth) there
exists a derivation Π′ of Φ′ `

∆′ Ψ′, (a′ a) · ψ. Furthermore, ∆′ ` a′#Φ′,Ψ′

by Lemma 5.4.11, and we observe ∆′ `
SUB

∀[a′](a′ a) · ψ = ∀[a]ψ by simple
calculations (we use (perm), and the freshness information of a′).
Now we can conclude Φ′ `∆ Ψ′, ∀[a]ψ as follows:

··· Π
′

Φ′ `
∆′ Ψ′, (a′ a) · ψ

(∀R)
Φ′ `

∆′ Ψ′, ∀[a′](a′ a) · ψ
(StructR)

Φ′ `
∆′ Ψ′, ∀[a]ψ

(Fr)
Φ′ `∆ Ψ′, ∀[a]ψ

• The case of (Fr): Suppose Φ `∆,a#X1,...,a#Xn
Ψ where a 6∈ Φ,Ψ,∆. We use

ZFA equivariance (Theorem A.2.5) to rename a to some a′ 6∈ Φ′,Ψ′,∆ in the
whole derivation to obtain one of Φ `

∆,a′#X1,...,a′#Xn
Ψ. We can now apply

the inductive hypothesis (which, as discussed above, by ZFA equivariance is
preserved by the permutative renaming) to weaken to Φ′ and Ψ′, and finish
off with (Fr).

The other cases are easy or similar.

Recall the classical logic sugar from Definition 5.2.7.

Corollary 5.4.13 (Admissible rules). The rules of Figure 5.5 are admissible.

2It appears convenient to prove freshness weakening first separately; we do not want to weaken
Φ and Ψ to Φ′ and Ψ′ until we have renamed a to a′, in a moment.
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(>R)
Φ `∆ Ψ,>

Φ `∆ Ψ, φ
(¬L)

¬φ, Φ `∆ Ψ

ψ, Φ `∆ Ψ
(¬R)

Φ `∆ Ψ, ¬ψ

φ, φ′, Φ `∆ Ψ
(∧L)

φ ∧ φ′, Φ `∆ Ψ

Φ `∆ Ψ, ψ Φ `∆ Ψ, ψ′

(∧R)
Φ `∆ Ψ, ψ ∧ ψ′

φ, Φ `∆ Ψ φ′, Φ `∆ Ψ
(∨L)

φ ∨ φ′, Φ `∆ Ψ

Φ `∆ Ψ, ψ, ψ′

(∨R)
Φ `∆ Ψ, ψ ∨ ψ′

Φ ` Ψ, φ, φ′ φ, φ′, Φ `∆ Ψ
(⇔L)

φ⇔ φ′, Φ `∆ Ψ

ψ, Φ `∆ Ψ, ψ′ ψ′, Φ `∆ Ψ, ψ
(⇔R)

Φ ` Ψ, ψ ⇔ ψ′

φ, Φ `∆ Ψ
(∃L) (∆ ` a#Φ,Ψ)

∃[a]φ, Φ `∆ Ψ

Φ `∆ Ψ, φ[a 7→ t]
(∃R)

Φ `∆ Ψ, ∃[a]φ

Figure 5.5 Admissible sequent rules for one-and-a-halfth-order logic

Proof. We consider just the case of (¬R). Suppose we have derived ψ, Φ `∆ Ψ.
Then by formula weakening (Lemma 5.4.12) there also exists a derivation of
ψ, Φ `∆ Ψ, ⊥. Extending that derivation with (⊃R) we obtain a derivation of
Φ `∆ Ψ, ¬ψ as required.

The cases (∧R), (∨L), (⇔L), (⇔R) and (∃L), are similar. Remaining cases
are by directly extending derivations. In the case of (∃R), we use (StructL) to
replace the (¬φ)[a 7→ t] by ¬(φ[a 7→ t]).

Some of the admissible rules will turn out useful in Chapter 6 (Section 6.3).

Definition 5.4.14. Write Φ[a 7→ t] for the elementwise application of the substi-
tution to the elements of formula context Φ.

Lemma 5.4.15 (Object-level substitution). For any a and t, if Φ `∆ Ψ then
Φ[a 7→ t] `∆ Ψ[a 7→ t]. The depth of the derivation does not increase, and neither
does the number of cuts it contains.

Proof. Analogous to the proof of formula weakening (Lemma 5.4.12).

Lemma 5.4.16. (Fr) may be commuted down through all other rules. This does
not increase the depth of a derivation or its number of cuts.
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Proof. We consider one typical case. Suppose (Fr) is followed by (⊃L) as follows:

··· Π1

Φ `∆,a#X1,...,a#Xn
Ψ, φ

(Fr)
Φ `∆ Ψ, φ

··· Π2

ψ, Φ `∆ Ψ
(⊃L)

φ ⊃ ψ, Φ `∆ Ψ

Here a 6∈ Φ,∆,Ψ, φ.
Suppose we are unlucky and a is mentioned in ψ. Choose a fresh atom a′

(i.e. a′ 6∈ Φ,∆, a,Ψ, φ, ψ). By meta-level equivariance (Theorem 5.4.2), Π(a′ a)
1

is a valid derivation of Φ `
∆,a′#X1,...,a′#Xn

Ψ, φ. Also, by freshness weakening
(Lemma 5.4.10), there is a derivation Π′2 of ψ, Φ `

∆,a′#X1,...,a′#Xn
Ψ.

We can now put our derivation together:

··· Π
(a′ a)
1

Φ `
∆,a′#X1,...,a′#Xn

Ψ, φ

··· Π
′
2

ψ, Φ `
∆,a′#X1,...,a′#Xn

Ψ
(⊃L)

φ ⊃ ψ, Φ `
∆,a′#X1,...,a′#Xn

Ψ
(Fr)

φ ⊃ ψ, Φ `∆ Ψ

The new derivation preserves the depth and number of cuts of the original deriva-
tion, since Π(a′ a)

1 does so by definition and Π′2 does so by Lemma 5.4.10.
All other cases are similar or simpler.

Theorem 5.4.17 (Cut-elimination). If Φ `∆ Ψ is derivable in the sequent calculus
for one-and-a-halfth-order logic then there exists a derivation of Φ `∆ Ψ which does
not mention (Cut).

Proof. The commutation cases and essential cases are standard [Gen35, Pra65];
we use formula weakening (Lemma 5.4.12) for the essential case for ⊃; the non-
standard case of (Fr) is handled by Lemma 5.4.16. The essential case for ∀ is
handled by object-level substitution (Lemma 5.4.15).

Corollary 5.4.18 (Consistency). The sequent calculus of one-and-a-halfth-order
logic is consistent, i.e. `∆ can never be derived.

Proof. By contradiction. Suppose `∆ is derivable, then by Theorem 5.4.17 a cut-
free derivation exists. Let Π be the shortest derivation of `∆ for all possible ∆. We
check through all possible derivation rules and see by their syntax-directed nature
that the derivation must conclude in (Fr). But then we have a shorter derivation
of some `

∆′ , which is a contradiction.
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(Ax)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

Φ ` Ψ, φ ψ, Φ ` Ψ
(⊃L)

φ ⊃ ψ, Φ ` Ψ

φ, Φ ` Ψ, ψ
(⊃R)

Φ ` Ψ, φ ⊃ ψ

φ[t/a], Φ ` Ψ
(∀L)

∀a.φ, Φ ` Ψ

Φ ` Ψ, φ
(∀R)

Φ ` Ψ, ∀a.φ
(a 6∈ fa(Φ,Ψ))

φ[t′/a], Φ ` Ψ
(≈L)

t′ ≈ t, φ[t/a], Φ ` Ψ
(≈R)

Φ ` Ψ, t ≈ t

Figure 5.6 Gentzen’s sequent calculus for first-order logic

5.5 Relation to First-Order Logic with Equality

Recall from Definition 4.3.1 that we call a term ground when it does not mention
unknowns or explicit substitutions. In this section we show how first-order logic
can be considered as the fragment of one-and-a-halfth-order logic on ground terms.

Definition 5.5.1. A Gentzen sequent is a pair Φ ` Ψ of finite sets of ground
formulae Φ and Ψ. The derivable sequents of Gentzen’s sequent calculus for
first-order logic are the Gentzen sequents inductively specified by the rules in
Figure 5.6.

Here φ[t/a] is the ground substitution action (see Definition 4.3.5), fa(Φ,Ψ)
stands for the union of all fa(φ), φ ∈ Φ,Ψ, and we write ∀[a]φ as ∀a.φ. Further-
more, we take formulae up to α-equivalence relation =α (see Definition 4.3.10).

Taking formulae up to α-equivalence means for example that if p : (T)F is a
predicate term-former (such as issocrates) then ∀a.p(a) ` ∀b.p(b) follows directly
by (Ax) since ∀a.p(a) =α ∀b.p(b).

Note that typically Gentzen’s sequent calculus is taken to have a first-order
term-language, so it doesn’t contain binders. We do not (need to) make this
choice here; see Subsection 5.6.1 for a more detailed exposition.

Lemma 5.5.2. For ground Φ,Ψ, if Φ ` Ψ is derivable in Gentzen’s sequent cal-
culus then Φ `∅ Ψ is derivable in the sequent calculus for one-and-a-halfth-order
logic.

Proof. The statement of this lemma is a little bit vague, since we take formulae
up to α-equivalence when we define Gentzen style derivability, but we do not take
formulae up to α-equivalence in one-and-a-halfth-order logic (we have structural
rules (StructL) and (StructR) instead). We ignore this issue, and suppose that
some arbitrary choice of representative closed nominal terms is made for us.
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Suppose Φ ` Ψ is derivable in Genzten’s sequent calculus. By induction on
derivations of Φ ` Ψ we construct a derivation of Φ `∅ Ψ. Each rule translates to
its one-and-a-halfth-order counterpart, where we note the following:

• If at the meta-level in the Gentzen system we used α-conversion, or just
if we wish to change representatives, then we can ‘patch’ the derivation in
one-and-a-halfth-order logic with structural rules (StructL) and (StructR).
The side-conditions follow by Theorem 4.3.13 (on ground terms t =α u if and
only if `

CORE
t = u), and the fact that derivability in CORE implies derivability

in SUB.
• For the case of (∀L) we need an extra use of (StructL) to manage the

substitution. The side-condition `
SUB

φ[a 7→ t] = φ[t/a] follows directly from
Corollary 4.4.3.
The case of (≈L) is similar.

• For the case of (∀R) the side-conditions ` a#Φ,Ψ follow from the assumption
a 6∈ fa(Φ,Ψ) by Lemma 4.3.3.

Recall the notation t
7→

from Definition 4.4.4.

Definition 5.5.3. If Φ is a closed formula context, write Φ

7→

for the ground formula
context {φ

7→

| φ ∈ Φ}.

Theorem 5.5.4. For closed Φ,Ψ, Φ `∅ Ψ is derivable in one-and-a-halfth-order
logic if and only if Φ

7→

` Ψ

7→

is derivable in Gentzen’s sequent calculus.

Proof. For the right-to-left direction, suppose Φ

7→

` Ψ

7→

is derivable in Gentzen’s
sequent calculus. By Lemma 5.5.2, Φ

7→

`∅ Ψ

7→

is derivable in one-and-a-halfth-order
logic. By Theorem 4.4.6 and Lemma 4.6.4 we also know that `

SUB
φ

7→

= φ for
each φ ∈ Φ,Ψ. We use this to extend the derivation of Φ

7→

`∅ Ψ

7→

with instances of
(StructL) or (StructR) for each φ

7→

∈ Φ

7→

,Ψ

7→

to obtain one of Φ `∅ Ψ, as required.
The left-to-right direction is by induction on derivations of Φ `∅ Ψ. By Corol-

lary 5.4.8 we assume that these derivations do not mention unknowns, and by
Theorem 5.4.17 we assume that they do not mention (Cut).

We consider the rules in turn:

• (StructL) and (StructR) are facts: the side conditions are of the form
`

SUB
φ = ψ. By decidability of SUB (Corollary 4.6.20) `

SUB
φ = ψ is equiva-

lent to `
CORE

φ

7→

= ψ

7→

, which is equivalent to φ

7→

=α ψ

7→

by Theorem 4.3.13.
• (Fr) is impossible since the derivation does not mention unknowns.
• The other rules translate directly to their first-order counterparts. For the

case of (∀R) we use the fact that ` a#Φ,Ψ implies a 6∈ fa(Φ

7→

,Ψ

7→

) (by Lem-
mas 4.4.5 and 4.3.3).
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Corollary 5.5.5 (Equivalence of `∅ and `). For ground Φ,Ψ, Φ `∅ Ψ is deriv-
able in one-and-a-halfth-order logic, if and only if Φ ` Ψ is derivable in Gentzen’s
sequent calculus.

Proof. This is a direct instance of Theorem 5.5.4, since Φ

7→

≡ Φ and Ψ

7→

≡ Ψ when
Φ and Ψ are ground.

5.6 Conclusions

One-and-a-halfth-order logic generalises first-order logic by internalising meta-level
variables that range over syntax. Thanks to the use of nominal techniques, the
sequent rules from Figure 5.2 accurately reflect common practice in the handling
of these meta-variables (compare for instance the examples in the Introduction to
the formal derivations in Figures 5.3 and 5.4). As a result, we have been able to
import first-order proof theory quite directly into our augmented setting.

5.6.1 Related Work

We discuss first-order logic with binders, second-order and higher-order logics, and
deep and shallow embeddings.

First-order logic with binders

Typically Gentzen’s sequent calculus is taken to have a first-order term-language.
Logics exist in the style of first-order logic, but whose terms include binding. One
of them is binding logic of Dowek et al. [DHK02], which was intended as a general-
purpose first-order logic for studying term-languages with binding. Another one
is Beeson’s lambda logic [Bee04], which was intended for the specific application
of manipulating λ-terms in a first-order logic.

The term-language of one-and-a-halfth-order logic natively supports binders:
the sorting arities of the object-level term-formers and predicate term-formers al-
low for abstractions [a]t and [a]φ as their arguments (see Definition 5.2.3). There-
fore the results on Gentzen’s sequent calculus we have stated in Section 5.5 can,
we think, be extended naturally to many of the ‘first-order flavoured’ logics with
term-formers enriched with binders; the machinery is already there.

Note that one-and-a-halfth-order logic is different from lambda logic and binding
logic. For example the syntax used in this chapter includes explicit meta-variables.

Second-order and higher-order logics

Monadic second-order logic enriches first-order logic with variables ranging over
sets of elements [Cou97]; these can be identified with function variables of type
i→ o where i is a type of individuals and o a type of truth-values. Second-order
logic enriches first-order logic with variables ranging over n-ary relations; these can
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be identified with function variables of type i→ . . .→ i→ o. Higher-order logic
enriches first-order logic with variables ranging over a full type-hierarchy, induc-
tively definable by τ ::= i | o | τ → τ [vB01, Sha01, Far06]. Such function variables
can be used to represent meta-variables. This representation has some distinctive
features inherited from their intended functional semantics, as is explained in the
Conclusions of Chapter 2.

A direct comparison between one-and-a-halfth-order logic and second-order logic
is not possible. The second-order theorem ∀P.((∀P.P ) ⊃ P ) cannot be expressed
in one-and-a-halfth-order logic, because one-and-a-halfth-order logic has no quan-
tification over predicates; this gives it a first-order flavour. On the other hand the
one-and-a-halfth-order logic theorem ∀[a]P `

a#P
P cannot be expressed in second-

order logic, because that logic cannot directly express freshness conditions. We are
not aware of any truly satisfactory account of the precise relation of nominal-style
unknowns and higher-order variables.

Deep and shallow embeddings

We can represent the syntax of first-order logic in a so-called framework logical
system, at ‘object-level’, i.e. as an inductive datatype — the so-called deep embed-
ding. Then meta-variables can be represented as meta-variables of the framework.
This path is taken by higher-order abstract syntax [PE88], Fraenkel-Mostowski
syntax [GP02], the theory of contexts [Mic01] and much other research. This enter-
prise is quite different from that undertaken in this chapter; one-and-a-halfth-order
logic is about extending the syntax of the logic itself so it contains something which
behaves very much like a meta-variable ranging over unknown formulae, without
losing logical properties such as cut-elimination.

It is also possible to represent the semantics of first-order logic as a theory in
a framework, for example as a pair of types i and o along with functions between
them like ⊃ : o→ o→ o or ∀ : (i→ o) → o. This is called a shallow embedding.

In [Pau90] the case is made for Isabelle and for its higher-order logic framework
as an efficient basis for shallow embeddings, and for conducting mathematics in
these embeddings. For example, a shallow embedding of first-order logic called
Isabelle/FOL exists in Isabelle’s higher-order logic framework Isabelle/Pure. In
Chapter 6 we will give a shallow embedding of one-and-a-halfth-order logic in
nominal algebra by means of a set of axioms.

5.6.2 Future Work

We believe that there is no technical barrier to creating a variant of one-and-
a-halfth-order logic that corresponds to intuitionistic logic [vD02] with meta-
variables; it can be defined in the usual way by restricting the sequents in Figure 5.2
to have a single conclusion. Also developing a formal semantics should not pose
many problems: evaluate unknowns X to terms and then evaluate atoms a to
elements of a set underlying domain.
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The following describes some more challenging future work.

Incomplete proofs

We have internalised meta-variables that range over terms and formulae. We can
also consider meta-variables ranging over incomplete proofs. Incomplete proofs
arise naturally in proof-search in a human-assisted theorem-prover such as Is-
abelle [Pau89] or Coq [HKPM]; see also [Joj04] for a detailed exposition. Here the
theorem-prover acts as a program to manipulate proofs which are incomplete both
in the sense of having holes, and in the sense of occurring in an unknown context,
and the human assistant guides the system to fill in these holes until a complete
proof emerges. A quantifier introduction rule binds the quantified variable in the
derivation above it (this is usually expressed by a freshness condition). In the
presence of incomplete proofs it is necessary to somehow represent this binding
over an as yet unknown derivation.

We believe that nominal terms with their unknowns and abstractions are a good
match for the incomplete proofs and quantifiers binding in it. As the incomplete
proof is ‘filled in’ by the human assistant and the system, a capturing substitution
should be made for the unknown. An exciting application of our technology would
be an investigation of how well (if at all) a system related to one-and-a-halfth-order
logic but with proof-terms can represent this process. This would also provide us
with a basis for the implementation of a theorem-prover with some of the generality
of second-order logic, but with the flavour of familiar pencil-and-paper schematic
derivations in first-order logic.

Hierarchies of variables

We see one-and-a-halfth-order logic as the first of a family of two-level logics as
yet to be created. For example we would like to be able to quantify over unknowns
anywhere in a formula, which allows us to write an expressions like

∀[X]∀[a]
(
a#X ⊃ (X ⇔ ∀[a]X)

)
.

This is current research.
In previous Conclusions (Chapters 2 and 4) we mentioned that we are also

interested in logics with infinite hierarchies of meta-variables, such that at each
level a meta-variable of higher level behaves to the lower level as an unknown X
behaves to an atom a. This might recover some or all of the power which one-and-
a-halfth-order logic lacks compared to higher-order logic, but in a different way.
In short, we envisage two- three- four- and ω-and-a-halfth-order logic.
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Chapter 6

An Axiomatisation of
One-and-a-halfth-Order
Logic

6.1 Introduction

In Chapter 2 we introduced nominal algebra and in Chapter 5 we introduced
one-and-a-halfth-order logic. In this chapter we show how we can easily give one-
and-a-halfth-order logic a semantics in nominal algebra.

We will show that theory FOL from Example 2.2.17 is an equational axiomati-
sation of one-and-a-halfth-order logic when cast in the signature and sort system
as described in Section 5.2.

Definition 6.1.1. Let theory FOL have the signature from Definition 5.2.3, and
the axioms of Figure 6.1 plus the axioms of theory SUB for one-and-a-halfth-order
logic (Figure 5.1).

We discuss the axioms in Figure 6.1:

• We read (MP) as ‘Modus Ponens’. Modus Ponens is the principle

“if ‘P ’ is true and ‘P implies Q’ is true, then ‘Q’ is true”.

In our algebraic setting the judgement ‘is true’ is rendered as ‘= >’.

Lemma 6.1.2. If we read ‘is true’ as ‘= >’ then (MP) implies Modus
Ponens.

Proof. Suppose that P = > and that P ⊃ Q = >. Then > ⊃ Q = > by the
rules for equality. We conclude Q = > by (MP).

109
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(MP) > ⊃ Q = Q

(Mer) ((((P ⊃ Q) ⊃ (¬R ⊃ ¬N)) ⊃ R) ⊃M)
⊃ ((M ⊃ P ) ⊃ (N ⊃ P )) = >

(Qinst) ∀[a]P ⊃ P [a 7→ T ] = >
(Qdist) ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >
(Qextr) a#P ` ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >

(Esubst) U ≈ T ∧ P [a 7→ T ] ⊃ P [a 7→ U ] = >
(Erefl) T ≈ T = >

Figure 6.1 Axioms of theory FOL

In (Mer) recall that ¬φ is sugar for φ ⊃ ⊥. This axiom by Meredith [Mer53],
along with Modus Ponens, is sufficient to derive all rules of classical propo-
sitional logic. Expressed as an algebra as above, the two axioms yield an
implication-only version of boolean algebra [BS81].1

• Axioms (Qinst), (Qdist) and (Qextr) add quantifiers; (Qextr) exploits
freshness conditions.

These axioms appear in the literature (see e.g. [GM02, (2a) and (2b) on
page 33]). What is new here is that our axioms are not axiom-schemes;
they are individual axioms (three, to be precise). Note how these axioms
are faithful to the usual syntactic form of the axiom-schemes found in the
literature.

• Axioms (Esubst) and (Erefl) add object-level equality.

Again, we are able to represent by two axioms what might otherwise be two
infinite axiom-schemes.

Overview The rest of the chapter makes the connection between the axioms in
Figure 6.1 in the context of nominal algebra, and the sequent rules in Figure 5.2.
Sections 6.2 and 6.3 each establish one side of the connection. Section 6.4 glues
these parts together and shows a number of useful corollaries of this connection,
including consistency of FOL. We conclude in Section 6.5.

6.2 Sequent Derivability Implies FOL Derivability

Definition 6.2.1. Let classical propositional logic be the notion of valid se-
quents inductively defined by the rules (Ax), (⊥L), (⊃L), and (⊃R) from Fig-
ure 5.2, and removing ∆.

1Succinct axioms for propositional logic continue to provide fun; e.g. see [MVF+02, GP06].
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Theorem 6.2.2. For any φ, ψ, if φ⇔ ψ is derivable in classical propositional
logic, then ∆ `

FOL
φ = ψ in nominal algebra.

Proof. By machine-checked proofs online [Met], (MP) and (Mer) suffice to derive
all the logical identities of classical propositional logic.

Corollary 6.2.3. The following equalities are all derivable in FOL:

∆ `FOL φ ∨ (ψ ∨ ξ) = (φ ∨ ψ) ∨ ξ ∆ `FOL φ ∧ (ψ ∧ ξ) = (φ ∧ ψ) ∧ ξ
∆ `FOL φ ∨ ψ = ψ ∨ φ ∆ `FOL φ ∧ ψ = ψ ∧ φ
∆ `FOL φ ∨ (ψ ∧ φ) = φ ∆ `FOL φ ∧ (ψ ∨ φ) = φ
∆ `FOL φ ∨ (ψ ∧ ξ) = (φ ∨ ψ) ∧ (φ ∨ ξ) ∆ `FOL φ ∧ (ψ ∨ ξ) = (φ ∧ ψ) ∨ (φ ∧ ξ)
∆ `FOL φ ∨ ¬φ = > ∆ `FOL φ ∧ ¬φ = ⊥

Proof. The reader will recognise these as the equalities of boolean algebra. It
is known that equality in boolean algebra characterises precisely logical equiva-
lence in classical propositional logic [BS81]. By Theorem 6.2.2 the equality of
FOL includes equalities between all formulae that are provably logically equivalent
in classical propositional logic (it suffices to use (MP) and (Mer)). The result
follows.

Definition 6.2.4. We say we work by elementary calculations (in propo-
sitional logic) when we use Corollary 6.2.3 to transform formulae according to
standard identities in classical propositional logic.

Lemma 6.2.5. `
FOL

∀[a]⊥ = ⊥ is derivable.

Proof. We first derive ¬∀[a]⊥ = >:

(#f)
a#⊥

(ax#7→)
⊥[a 7→ a] = ⊥

(symm)
⊥ = ⊥[a 7→ a]

(congf)
(∀[a]⊥) ⊃ ⊥ = (∀[a]⊥) ⊃ ⊥[a 7→ a]

(axQinst)
(∀[a]⊥) ⊃ ⊥[a 7→ a] = >

(tran)
(∀[a]⊥) ⊃ ⊥ = >

It follows that `
FOL

¬¬∀[a]⊥ = ¬> by (congf) and so by elementary calculations
in propositional logic we obtain `

FOL
∀[a]⊥ = ⊥.

An informal reading of Lemma 6.2.5 is that any semantics for T in FOL should
be non-empty, for if T were empty then (intuitively) ∀[a]⊥ = >, so ∀[a]⊥ = ⊥
should not be derivable.

T is non-empty because it is populated by atoms (in the derivation above, we
use the fact that it is populated by a). Thanks to the substitution action, atoms
behave like ‘object-level variable symbols’. Normally sorts of terms are populated
by variable symbols, but this feature of the syntax does not show in the semantics,
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and that affects the notion of derivability: (∀x.⊥) ⇔ > may be derivable. We see
that in one-and-a-halfth-order logic terms are populated by unknowns and atoms.
Although atoms represent variable symbols, the derivation above suggests that any
semantics for one-and-a-halfth-order logic must differ from a ‘standard’ semantics,
and give atoms denotational reality. One such semantics is given by a standard
semantics for nominal algebra in nominal sets (see Chapter 3); developing other
denotations-containing-variables is very much of current research interest.

We need some meta-level properties.

Lemma 6.2.6. For any formulae φ, ψ:

1. ∆ `
FOL

φ ∧ ψ = > if and only if ∆ `
FOL

φ = > and ∆ `
FOL

ψ = >.
2. ∆ `

FOL
φ⇔ ψ = > if and only if ∆ `

FOL
φ = ψ.

Proof. By elementary calculations in propositional logic.

We also need some scope extrusion properties.

Lemma 6.2.7. The following are derivable:

1. a#P `
FOL

∀[a](P ⊃ Q) = P ⊃ ∀[a]Q.
2. a#P `

FOL
∀[a](¬P ) = ¬P .

3. a#P `
FOL

∀[a]P = P .
4. a#P `

FOL
∀[a](P ∨Q) = P ∨ ∀[a]Q.

5. a#P `
FOL

∀[a](P ∧Q) = P ∧ ∀[a]Q.

Proof. The first part is an an instance or axiom (Qextr), by part 2 of Lemma 6.2.6.
The second part follows by the first part and Lemma 6.2.5, since ¬P ≡ P ⊃ ⊥.
The third and fourth part are corollaries of the first two parts, since `

FOL
P = ¬¬P

and P ∨Q ≡ ¬P ⊃ Q. The last part is a corollary of axiom (Qdist) and part 3
of this lemma.

We are now in a position to derive the following ‘sequent-like’ properties of FOL:

Lemma 6.2.8. For all formulae φ, φ′, ψ, ψ′, θ, ε, atoms a, terms t, t′ : T, and
unknowns X1, . . . , Xn:

1. ∆ `
FOL

φ ∧ θ ⊃ ε ∨ φ = >
2. ∆ `

FOL
⊥ ∧ θ ⊃ ε = >

3. if ∆ `
FOL

θ ⊃ ε ∨ φ = > and ∆ `
FOL

ψ ∧ θ ⊃ ε = >
then ∆ `

FOL
(φ ⊃ ψ) ∧ θ ⊃ ε = >

4. if ∆ `
FOL

φ ∧ θ ⊃ ε ∨ ψ = >
then ∆ `

FOL
θ ⊃ ε ∨ (φ ⊃ ψ) = >

5. if ∆ `
FOL

φ[a 7→ t] ∧ θ ⊃ ε = >
then ∆ `

FOL
∀[a]φ ∧ θ ⊃ ε = >
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6. if ∆ `
FOL

θ ⊃ ε ∨ ψ = > and ∆ ` a#θ, ε
then ∆ `

FOL
θ ⊃ ε ∨ ∀[a]ψ = >

7. if ∆ `
FOL

φ[a 7→ t′] ∧ θ ⊃ ε = >
then ∆ `

FOL
(t′ ≈ t) ∧ φ[a 7→ t] ∧ θ ⊃ ε = >

8. ∆ `
FOL

θ ⊃ ε ∨ (t ≈ t) = >
9. if ∆ `

FOL
φ′ ∧ θ ⊃ ε = > and ∆ `

SUB
φ′ = φ

then ∆ `
FOL

φ ∧ θ ⊃ ε = >
10. if ∆ `

FOL
θ ⊃ ε ∨ ψ′ = > and ∆ `

SUB
ψ′ = ψ

then ∆ `
FOL

θ ⊃ ε ∨ ψ = >
11. if ∆, a#X1, . . . , a#Xn `FOL

θ ⊃ ε = > and a 6∈ θ, ε,∆
then ∆ `

FOL
θ ⊃ ε = >

12. if ∆ `
FOL

θ ⊃ ε ∨ φ = >, ∆ `
FOL

φ′ ∧ θ ⊃ ε = >
and ∆ `

SUB
φ = φ′ then ∆ `

FOL
θ ⊃ ε = >

Proof. The first four parts follow by elementary calculations in propositional logic.
For part 5, suppose that ∆ `

FOL
φ[a 7→ t] ∧ θ ⊃ ε = >. By axiom (Qinst) we

know ∆ `
FOL

∀[a]φ ⊃ φ[a 7→ t] = >. By Lemma 6.2.6 we obtain

∆ `
FOL

(∀[a]φ ⊃ φ[a 7→ t]) ∧ (φ[a 7→ t] ∧ θ ⊃ ε) = >.

Using further elementary calculations we conclude ∆ `
FOL

∀[a]φ ∧ θ ⊃ ε = > as
required.

For part 6, suppose that ∆ ` a#θ, ε and ∆ `
FOL

θ ⊃ ε ∨ ψ = >. Using (cong[])
and (congf) we obtain ∆ `

FOL
∀[a](θ ⊃ ε ∨ ψ) = ∀[a]>. We use Lemma 6.2.7 and

(tran) to conclude ∆ `
FOL

θ ⊃ ε ∨ ∀[a]ψ = >.
Parts 7 and 8 use axioms (Esubst) and (Erefl), respectively. Parts 9 and 10

follow by (tran) and (congf), since ∆ `
SUB

φ′ = φ implies ∆ `
FOL

φ′ = φ. Part 11
is immediate using (fr).

Part 12: Since ∆ `
SUB

φ = φ′ implies ∆ `
FOL

φ = φ′, we may suppose

∆ `
FOL

θ ⊃ ε ∨ φ = > and ∆ `
FOL

φ ∧ θ ⊃ ε = >.

By Lemma 6.2.6 we obtain ∆ `
FOL

(θ ⊃ ε ∨ φ) ∧ (φ ∧ θ ⊃ ε) = >. By elementary
calculations in propositional logic ∆ `

FOL
φ ∧ θ ⊃ ε = θ ⊃ ε ∨ ¬φ, so we conclude

∆ `
FOL

(θ ⊃ ε ∨ φ) ∧ (θ ⊃ ε ∨ ¬φ) = >. By further calculations we reduce this to
∆ `

FOL
θ ⊃ ε = >.

Definition 6.2.9. For any one-and-a-halfth-order logic context Φ = {φ1, . . . , φn},
define its conjunctive form Φ∧ and disjunctive form Φ∨ as follows:

• Φ∧ ≡ > when n = 0, and Φ∧ ≡ φ1 ∧ · · · ∧ φn when n > 0.
• Φ∨ ≡ ⊥ when n = 0, and Φ∨ ≡ φ1 ∨ · · · ∨ φn when n > 0.

The order of the φi is irrelevant; we promise never to do anything such that it
matters.
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Theorem 6.2.10. If Φ `∆ Ψ is derivable in one-and-a-halfth-order logic then
∆ `

FOL
Φ∧ ⊃ Ψ∨ = >.

Proof. By induction on the structure of the derivation of Φ `∆ Ψ. For every rule
(R), the derivation has the following format:

Π1 · · · Πk
(R) (cond)

Φ `∆ Ψ

Here k ∈ {0, 1, 2}, Πi are derivations of Φi `∆i
Ψi, 1 ≤ i ≤ k, and cond is a

possibly trivial side-condition (the non-trivial cases are (Fr), (Cut), (StructL),
(StructR), and (∀R)).

So Φi `∆i
Ψi are derivable. Then ∆i `FOL

Φi∧ ⊃ Ψi
∨ = > holds by the induc-

tive hypothesis. We use this together with cond to prove ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.
For each inference rule (R), this is an instance of a part of Lemma 6.2.8.

For example, if (R) is (Cut) then ∆ `
FOL

Φ∧ ⊃ Ψ∨ = > should follow from

∆ `
FOL

Φ∧ ⊃ Ψ∨ ∨ φ = >, ∆ `
FOL

φ′ ∧ Φ∧ ⊃ Ψ∨ = >, and ∆ `
SUB

φ = φ′.

This is an instance of part 12 of Lemma 6.2.8, using θ ≡ Φ∧ and ε ≡ Ψ∨.
And if (R) is (∀R) then ∆ `

FOL
Φ∧ ⊃ Ψ∨ ∨ ∀[a]ψ = > should follow from

∆ `
FOL

Φ∧ ⊃ Ψ∨ ∨ ψ = > and ∆ ` a#Φ∧,Ψ∨.

This is an instance of part 6, again using θ ≡ Φ∧ and ε ≡ Ψ∨.

6.3 FOL Derivability Implies Sequent Derivability

We now show that the sequent calculus of one-and-a-halfth-order logic (Figure 5.2)
can mimic the axioms of nominal algebra theory FOL (Figures 5.1 and 6.1). In some
proofs in this section, we will use the admissible sequent rules from Corollary 5.4.13
(Figure 5.5).

Lemma 6.3.1. For all formulae φ, ψ, ρ, θ, ε, terms t, u : T, atoms a and freshness
contexts ∆, the following are derivable in one-and-a-halfth-order logic:

1. `∆ (> ⊃ φ) ⇔ φ

2. `∆ ((((φ ⊃ ψ) ⊃ (¬ρ ⊃ ¬θ)) ⊃ ρ) ⊃ ε) ⊃ ((ε ⊃ φ) ⊃ (θ ⊃ φ))
3. `∆ ∀[a]φ ⊃ φ[a 7→ t]
4. `∆ ∀[a](φ ∧ ψ) ⇔ ∀[a]φ ∧ ∀[a]ψ
5. if ∆ ` a#φ then `∆ ∀[a](φ ⊃ ψ) ⇔ φ ⊃ ∀[a]ψ
6. `∆ u ≈ t ∧ φ[a 7→ t] ⊃ φ[a 7→ u]
7. `∆ t ≈ t
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Proof. We give details of parts 5 and 6. The derivation of part 6 is completely
syntax-directed:

(Ax)
φ[a 7→ u] `∆ φ[a 7→ u]

(≈L)
u ≈ t, φ[a 7→ t] `∆ φ[a 7→ u]

(∧L)
u ≈ t ∧ φ[a 7→ t] `∆ φ[a 7→ u]

(⊃R)
`∆ u ≈ t ∧ φ[a 7→ t] ⊃ φ[a 7→ u]

For part 5, we assume ∆ ` a#φ. By (⇔R), it suffices to derive

(a) φ,∀[a](φ ⊃ ψ) `∆ ∀[a]ψ, and
(b) φ ⊃ ∀[a]ψ `∆ ∀[a](φ ⊃ ψ).

We conclude (a) by Theorem 5.4.7 and the last derivation of Figure 5.3. We derive
(b) as follows:

(Ax)
φ `∆ ψ, φ

(Ax)
φ, ψ `∆ ψ

(StructL) (∆ `
SUB

ψ = ψ[a 7→ a])
φ, ψ[a 7→ a] `∆ ψ

(∀L)
φ,∀[a]ψ `∆ ψ

(⊃L)
φ, φ ⊃ ∀[a]ψ `∆ ψ

(⊃R)
φ ⊃ ∀[a]ψ `∆ φ ⊃ ψ

(∀R) (∆ ` a#φ ⊃ ∀[a]ψ)
φ ⊃ ∀[a]ψ `∆ ∀[a](φ ⊃ ψ)

Lemma 6.3.2. In the sequent calculus of one-and-a-halfth-order logic:

• bi-implication ⇔ is an equivalence relation (a reflexive symmetric transitive
relation), i.e. the following rules are admissible:

Φ `∆ Ψ, φ⇔ φ

Φ `∆ Ψ, φ⇔ ψ

Φ `∆ Ψ, ψ ⇔ φ

Φ `∆ Ψ, φ⇔ ψ Φ `∆ Ψ, ψ ⇔ ξ

Φ `∆ Ψ, φ⇔ ξ

• bi-implication is a congruence:

Φ `∆ Ψ, φ⇔ ψ

Φ `∆ Ψ, ξ[φ/P ] ⇔ ξ[ψ/P ]

• > is the left and right identity of bi-implication:

Φ `∆ Ψ, φ

Φ `∆ Ψ,> ⇔ φ

Φ `∆ Ψ,> ⇔ φ

Φ `∆ Ψ, φ

Φ `∆ Ψ, φ

Φ `∆ Ψ, φ⇔ >

Φ `∆ Ψ, φ⇔ >

Φ `∆ Ψ, φ
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Proof. By straightforward calculations using the derivation rules in Figure 5.2
(and the admissible rules in Figure 5.5). In the congruence case we use induction
on the structure of ξ.

We use Lemmas 6.3.1 and 6.3.2 to show that if the equality t = u is derivable in
FOL then bi-implications φ[t/X] ⇔ φ[u/X] are derivable in the sequent calculus
for any φ and X.

Theorem 6.3.3. For all sorts τ , terms t, u : τ , unknowns X : τ , formulae φ, and
freshness contexts ∆:

if ∆ `
FOL

t = u then `∆ φ[t/X] ⇔ φ[u/X]

Proof. By induction on the structure of FOL derivations of t = u from ∆.
(refl): `∆ φ[t/X] ⇔ φ[t/X] follows by reflexivity of ⇔.
(symm): `∆ φ[u/X] ⇔ φ[t/X] follows from `∆ φ[t/X] ⇔ φ[u/X] by symmetry of
⇔. By inductive hypothesis this follows from the assumption.
(tran): Similarly, `∆ φ[t/X] ⇔ φ[v/X] follows from `∆ φ[t/X] ⇔ φ[u/X] and
`∆ φ[u/X] ⇔ φ[v/X] by transitivity of ⇔. By the inductive hypothesis these
follow from the assumptions.
(cong[]): By the inductive hypothesis `∆ ψ[t/Y ] ⇔ ψ[u/Y ] for any Y and ψ. We
must show `∆ φ[[a]t/X] ⇔ φ[[a]u/X], which is syntactically equivalent to

`∆ φ[[a]Z/X][t/Z] ⇔ φ[[a]Z/X][u/Z],

where Z is an unknown (of appropriate sort) that does not occur in φ. This follows
directly from the inductive hypothesis, taking ψ ≡ φ[[a]Z/X] and Y ≡ Z.
(congf): Analogous to the previous case.
(perm): We show `∆ φ[(a b) · t/X] ⇔ φ[t/X] as follows:

(Ax)
`∆ φ[(a b) · t/X] ⇔ φ[(a b) · t/X]

(StructR)
`∆ φ[(a b) · t/X] ⇔ φ[t/X]

where ∆ `
SUB

φ[(a b) · t/X] ⇔ φ[(a b) · t/X] = φ[(a b) · t/X] ⇔ φ[t/X] is the side-
condition of (StructR). By (congf) and congruence Lemma 2.4.9, this follows
from the assumption ∆ `

SUB
(a b) · t = t.

(fr): So ∆ `
FOL

t = u follows from ∆, a#X1, . . . , a#Xn `FOL
t = u where a 6∈ t, u,∆.

We must show `∆ φ[t/X] ⇔ φ[u/X]. We cannot apply (Fr) directly, since φ might
mention a. Using ZFA equivariance (Theorem A.2.5) we rename a to a fresh a′

(i.e. a′ 6∈ t, u, φ,∆) while preserving the inductive hypothesis, to obtain

`
∆,a′#X1,...,a′#Xn

φ[t/X] ⇔ φ[u/X].

We conclude `∆ φ[t/X] ⇔ φ[u/X] by (Fr), since a′ 6∈ φ[t/X] ⇔ φ[u/X],∆.
(axA): We work by cases:
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• If A is an axiom of SUB (from Figure 5.1) then we have derived ∆ `
SUB

t = u.
By congruence Lemma 2.4.9 we know ∆ `

SUB
φ[t/X] = φ[u/X]. We must

show `∆ φ[t/X] ⇔ φ[u/X]. By (⇔R), this follows from φ[t/X] `∆ φ[u/X]
and φ[u/X] `∆ φ[t/X]. The former can be derived:

(Ax)
φ[t/X] `∆ φ[t/X]

(StructR) (∆ `
SUB

φ[t/X] = φ[u/X])
φ[t/X] `∆ φ[u/X]

The latter derivation is analogous, using (StructL).
• If A is an axiom from Figure 6.1 then the derivation is of the form

Π
(ax∇`φ=ψ)

φπσ = ψπσ

where Π is a derivation of ∇πσ. We must show `∆ ξ[φπσ/P ] ⇔ ξ[ψπσ/P ].
By congruence of⇔ (Lemma 6.3.2) this follows from `∆ φπσ ⇔ ψπσ. In case
ψ ≡ >, this follows from `∆ φπσ by right identity of ⇔. For each axiom the
remaining proof obligation is an instance of a part of Lemma 6.3.1, using the
assumption ∆ ` ∇πσ.

6.4 Equivalence of the Sequent Calculus and FOL

In Sections 6.2 and 6.3 we have established the essential properties to show that
derivability in the sequent calculus and derivability in theory FOL is equivalent.

Lemma 6.4.1. If `∆ Φ∧ ⊃ Ψ∨ then Φ `∆ Ψ.

Proof. By (Cut) Φ `∆ Ψ follows from Φ `∆ Ψ, Φ∧ ⊃ Ψ∨ and Φ∧ ⊃ Ψ∨, Φ `∆ Ψ.
Then Φ `∆ Ψ, Φ∧ ⊃ Ψ∨ follows from the assumption `∆ Φ∧ ⊃ Ψ∨ using formula
weakening (Lemma 5.4.12). The remaining proof obligation Φ∧ ⊃ Ψ∨, Φ `∆ Ψ
follows from Φ `∆ Ψ, Φ∧ and Ψ∨, Φ `∆ Ψ by (⊃L). The result follows by an
induction on the size of Φ and Ψ.

Theorem 6.4.2 (Equivalence of `∆ and FOL). For any ∆,Φ,Ψ:

Φ `∆ Ψ if and only if ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

Proof. The left-to-right part is Theorem 6.2.10.
For the right-to-left part, assume ∆ `

FOL
Φ∧ ⊃ Ψ∨ = >. Then by Theorem 6.3.3

(taking φ to be X), `∆ Φ∧ ⊃ Ψ∨ ⇔ > is derivable. By right identity of ⇔, also
`∆ Φ∧ ⊃ Ψ∨. By Lemma 6.4.1 we obtain Φ `∆ Ψ, as required.
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Since Theorem 6.4.2 is stated using formula contexts Φ and Ψ, the reader might
get the impression that we have only shown that we can represent derivability of
arbitrary sequents by derivable equations from theory FOL, but not the other way
round. However, the following corollary shows that we can also represent derivable
equations on arbitrary formulae in FOL by derivable sequents.

Corollary 6.4.3. For any ∆, φ, ψ:

∆ `
FOL

φ = ψ if and only if φ `∆ ψ and ψ `∆ φ.

Proof. By Theorem 6.4.2 φ `∆ ψ and ψ `∆ φ are equivalent to ∆ `
FOL

φ ⊃ ψ = >
and ∆ `

FOL
ψ ⊃ φ = >. This is equivalent to ∆ `

FOL
φ⇔ ψ = >, by part 1 of

Lemma 6.2.6. Finally, by part 2 of that lemma, this is equivalent to ∆ `
FOL

φ = ψ.

Now that we have established a formal connection between the sequent calculus
and FOL in Theorem 6.4.2, a number of properties on the sequent calculus easily
carry over to FOL.

Corollary 6.4.4 (Consistency of FOL). FOL is consistent. That is:

∆ 0
FOL

> = ⊥ for any ∆.

Proof. By contradiction. Suppose ∆ `
FOL

> = ⊥. Using elementary calculations in
propositional logic, also ∆ `

FOL
> ⊃ ⊥ = >. Note that > ≡ ∅∧ and ⊥ ≡ ∅∨, so by

Theorem 6.4.2 `∆ is derivable, which contradicts consistency of one-and-a-halfth-
order logic (Corollary 5.4.18).

Corollary 6.4.5 (Equivalence of FOL and `). For ground φ, ψ, `
FOL

φ = ψ in
nominal algebra if and only if φ ` ψ and ψ ` φ are derivable in Gentzen’s sequent
calculus.

Proof. By Corollaries 6.4.3 and 5.5.5.

6.5 Conclusions

One-and-a-halfth-order logic can be axiomatised in nominal algebra and the treat-
ment of quantification is smooth. Since the sequent calculus of one-and-a-halfth-
order logic (Figure 5.2) and the axioms of theory FOL (Figures 5.1 and 6.1) use
the same notions of terms and freshness, we obtain a proof theory that is both
syntax-directed and algebraic.

The axiomatisation presented in this chapter is one (more) element in a long
line of investigations into algebraic logic [ANS01]; for example cylindric [HMT85],
polyadic [Hal56], and quantifier [Pin73] algebra. There too, meta-variables are
made explicit. However, as mentioned before (the Conclusions of Chapter 2), we
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claim that these approaches do not provide a natural representation of object-
variables and binding.

We see no difficulties in principle with axiomatising substructural logics such
as linear logic [Gir87], bunched implications [OP99], relevance logics [DR02], and
so on; if the logic is susceptible to a (nominal) algebraic treatment then it can be
axiomatised in nominal algebra. This is not necessarily so in a higher-order setting
because structural properties of the framework’s connectives may ‘infect’ those of
the logic being axiomatised.
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Chapter 7

Conclusions

In the previous chapters we have presented two logics with explicit meta-variables:
one for equality (Chapter 2) and another one for first-order logic with equality
(Chapter 5). We have argued that these logics accurately and effectively repre-
sent the meta-level of equality and first-order logic, using unknowns and freshness
conditions. Next to studying the proof theory of these logics, we have given a con-
nection between the two (Chapter 6), and we investigated the logic of equality in
the areas of denotational semantics (Chapter 3) and capture-avoiding substitution
(Chapter 4).

For detailed concluding remarks, including related and future work, we refer to
reader to the respective chapters mentioned above. Here we give a some of the
concrete technical challenges we are facing:

• Semantics. We have paid relatively little attention to models. Although we
have specified a sound and complete semantics for nominal algebra theories
in nominal sets, we have not yet proved Birkhoff’s theorem (also known as
the HSP theorem). Since this is one of the basic results of universal alge-
bra, which gives a valuable insight into the structure of models of algebraic
theories, this is important future work.

• Capture-avoiding substitution. We have proved that nominal algebra theory
SUB from Chapter 4 axiomatises capture-avoiding substitution on syntax.
However the λ-calculus provides an alternative model of substitution, via
β-conversion. It remains to relate these two models, e.g. by providing a
formal translation between terms in SUB and a suitable λ-calculus.

• One-and-a-halfth-order logic. We have set up one-and-a-halfth-order logic
such that freshness conditions and (implicit) quantification over unknowns
both occur at top-level. We would like to allow freshness conditions and
quantification anywhere in a formula. The logic we obtain could be called
two-and-a-halfth-order logic: it is related to second-order logic because of
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the quantification over unknowns but also more general since formulas may
be enriched with freshness conditions.

• Implementation. How suited are nominal algebra and one-and-a-halfth-
order logic to complement existing frameworks such as Isabelle [Pau89],
Coq [HKPM] or mCRL2 [GMR+07]? How do they need to be extended?

• Methodology. Can we employ the method we have advocated in this thesis
to formalise reasoning on other systems with binding such as process calculi
and substructural logics?

From a wider perspective, this thesis pursues an overall vision that names are
worth talking about as mathematical entities, both in logic and in denotation.
The use of nominal techniques may be a useful complement to existing methods
predicated on function-spaces.

We have seen this in the fact that we have been able to axiomatise and then study
a representative sample of some of the most influential tools of computer science,
including equational logic, first-order logic and substitution. Furthermore, and
perhaps most promisingly, we have seen how the flavour of current mathematical
systems is maintained in the nominal setting. We are particularly pleased how
successfully nominal algebra and one-and-a-halfth-order logic capture the informal
practice of mathematics, in a completely rigorous setting.



Appendix A

ZFA Equivariance

A.1 Introduction

We use atoms in this thesis — we introduce them when we write ‘Fix a countably
infinite collection of atoms a, b, c, . . .’ in Definition 2.2.1.

We can represent atoms as numbers 0, 1, 2, 3, . . ., or as sets ∅, {∅}, {∅, {∅}}, . . ..
In principle we might ‘accidentally’ use some property of atoms specific to their
implementation, such as a ≤ b or a ∈ b. However, we know we do not do this,
because we consider atoms to be. . . atomic.

By explicitly bearing this in mind, we can rename atoms. This is equivariance,
proved below, which we use freely in this thesis to give structural inductive proofs
(renaming atoms in inductive hypotheses where convenient) while remaining fully
formal.

If we wish to be fully formal but ignore equivariance we must work by induction
on measures such as term length or derivation depth. These are longer, harder to
read, and are rarely given in full detail outside of a theorem-prover.

To give a precise statement and formal proof of equivariance and how it can be
used to rename atoms in proofs by structural induction on the syntax of terms
and derivation-trees we use a foundational theory: Zermelo-Fraenkel set theory
with atoms (ZFA). ZFA has equivariance [Bru96] and because it is known that set
theory can be used to formalise mathematics, equivariance is a meta-mathematical
property which we can use in the proofs in this thesis.

We do not mean that equivariance refers to, using terminology from Chapter 5,
the terms of sort F, nor the formulae of first-order logic, nor sequents of one-and-
a-halfth-order logic. We mean that it refers to the assertions written in English in
this thesis — about one-and-a-halfth-order logic, nominal algebra, and so on.

ZFA features a set A of atoms a, b, c, . . . (originally called Urelemente [Bar75]).
The original motivation of atoms was to address the question ‘what set is equal
to Plato?’. Obviously Plato is not any of the ‘normal’ sets of set theory, such as

123



124 Appendix A. ZFA Equivariance

the empty set ∅ or the set containing just the empty set {∅}, and so on. The
answer was to accommodate ‘the real world’ by introducing it en masse into the
set model, as atoms.

As far as the set theory is concerned atoms are atomic objects with no internal
(set-)structure, so it is quite natural to use these to model variable symbols. This
idea appears already in [Bar75].

A.2 ZFA Set Theory and Equivariance

Definition A.2.1. For the language of ZFA set theory, in addition to the basic
language of first-order logic with equality, we assume:

• A binary predicate symbol ∈ called set inclusion.
• A constant term-former A called the set of atoms.

We use standard sugar of classical logic (similar to the sugar mentioned in
Subsection 5.2).

Definition A.2.2. ZFA set theory has the axioms in Figure A.1.
In Figure A.1, φ ranges over all predicates, φ[y/x] denotes the predicate obtained

by capture-avoiding substitution of x by y, and F (y) represents a function on the
sets universe (strictly speaking, this is itself sugar, which is briefly described in
Corollary A.2.6). We also use the following sugar:

x = {z | z ∈ x} is sugar for ∀y.(∀z.(z ∈ x⇔ z ∈ y) ⊃ x = y)
y = {z ∈ x | φ} is sugar for ∀z.(z ∈ y ⇔ (z ∈ x ∧ φ))
z = {F (y) | y ∈ x} is sugar for ∀u.(u ∈ z ⇔ ∃y.(F (y) = u ∧ y ∈ x))
z = {x, y} is sugar for ∀u.(u ∈ z ⇔ (u = x ∨ u = y))
z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)} is sugar for ∀y.(y ∈ z ⇔ ∃y′.(y ∈ y′ ∧ y′ ∈ x))
z = {y | y ⊆ x} is sugar for ∀y.(y ∈ z ⇔ ∀y′.(y′ ∈ y ⊃ y′ ∈ x))
∅ ∈ x is sugar for ∃z.(z ∈ x ∧ ∀z′.z′ 6∈ z)
y ∪ {z} ∈ x is sugar for ∃u.(u ∈ x ∧ ∀u′.(u′ ∈ u⇔ u ∈ y ∨ u = z))

The syntactic sugar used in set theory is very rich; further details can be found
elsewhere [Joh87].

Definition A.2.3. We define a permutation action on ZFA sets by:

π · a = π(a) π ·X = {π · x | x ∈ X} (X 6∈ A)

This definition is by ε-induction, a standard method in set theory [Joh87]; if it
is true that a property holds of y ∈ A, and if it holds of all x ∈ y then it holds of
all y, then that property holds of all y. Written informally: sets are well-founded
trees with daughter-of given by set inclusion ∈.

Lemma A.2.4. π · (π′ · z) = (π ◦ π′) · z.

Proof. The proof is by ε-induction.
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(Sets) ∀x.((∃y.y ∈ x) ⊃ x 6∈ A)

(Extensionality) ∀x.(x 6∈ A ⊃ x = {z | z ∈ x})
(Comprehension) ∀x.∃y.(y 6∈ A ∧ y = {z ∈ x | φ}) (y not free in φ)

(∈-Induction) ∀x.(∀y.(y ∈ x ⊃ φ[y/x]) ⊃ φ) ⊃ ∀x.φ
(Replacement) ∀x.∃z.(z 6∈ A ∧ z = {F (y) | y ∈ x})
(Pairset) ∀x.∀y.∃z.(z = {x, y})
(Union) ∀x.∃z.(z 6∈ A ∧ z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)})
(Powerset) ∀x.∃z.(z = {y | y ⊆ x})
(Infinity) ∃x.(∅ ∈ x ∧ ∀y.(y ∈ x ⊃ y ∪ {y} ∈ x))

Figure A.1 Axioms of ZFA set theory

• By definition if a ∈ A then π · (π′ · a) = π(π′(a)) = (π ◦ π′) · a.
• Suppose Z 6∈ A. Then by definition of the permutation action and by the

inductive hypothesis

π · (π′ · Z) = {π · (π′ · u) | u ∈ Z} = {(π ◦ π′) · u | u ∈ Z}
= (π ◦ π′) · {u | u ∈ Z} = (π ◦ π′) · Z.

Recall that φ ranges over predicates of ZFA. Write φ(x1, . . . , xn) to range over
predicates which mention at most x1, . . . , xn as free variable symbols.

Theorem A.2.5 (ZFA equivariance). If φ(x1, . . . , xn) is a predicate of ZFA set
theory then

φ(x1, . . . , xn) ⇔ φ(π · x1, . . . , π · xn)

is always provable.
As a corollary, φ(x1, . . . , xn) and φ(π ·x1, . . . , π ·xn) are interchangeable in proof

and in validity on models.

Proof. We work by induction on the syntax of φ.

• By definition, x ∈ y implies π · x ∈ π · y follows directly from the fact that
π · y = {π · y′ | y′ ∈ y}. The reverse implication is easy using π-1.

• Similarly, x = y if and only if π · x = π · y.
• The case of ⊥ is trivial, and the cases of φ1 ⊃ φ2 and ∀z.φ′ follow using the

inductive hypothesis.
• π · A = A is provable, so x ∈ A if and only if π · x ∈ A, and A ∈ y if and only

if A ∈ π · y, and similarly x = A if and only if π · x = A and A = y if and
only if A = π · y.

The result follows.
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Corollary A.2.6. If F (x1, . . . , xn) is function (not a function-set) from the set
universe to itself then

π · (F (x1, . . . , xn)) = F (π · x1, . . . , π · xn)

is always provable.

Proof. In set theory, we specify F using a predicate φ(x1, . . . , xn, z) such that

∀x1, . . . , xn.(∃z.φ(x1, . . . , xn, z) ∧ ∀z, z′.(φ(x1, . . . , xn, z) ∧ φ(x1, . . . , xn, z
′) ⊃ z = z′)).
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[GL07] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context
calculus. In LFMTP’07: International Workshop on Logical Frame-
works and Meta-Languages, to appear in ENTCS, 2007.

[GM02] D.M. Gabbay and G. Malod. Naming worlds in modal and temporal
logic. Journal of Logic, Language and Information, 11(1):29–65, 2002.

[GMR+07] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko,
and Muck van Weerdenburg. The formal specification language
mCRL2. In Methods for Modelling Software Systems (MMOSS),
number 06351 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[GP02] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to ab-
stract syntax with variable binding. Formal Aspects of Computing,
13(3–5):341–363, 2002.



130 Bibliography

[GP06] A. Gareau and R. Padmanabhan. Two axioms for implication alge-
bras. Notre Dame Journal of Formal Logic, 2006.

[Gro97] Jan Friso Groote. The syntax and semantics of timed µCRL. Tech-
nical Report SEN-R9709, CWI, Amsterdam, 1997.

[Hal56] P. Halmos. Algebraic logic, ii. homogeneous locally finite polyadic
boolean algebras of infinite degree. Fundamenta Mathematicae,
43:255–325, 1956.

[HKPM] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq
proof assistant, a tutorial.
http://coq.inria.fr/V8.1/tutorial.html.

[HMT85] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. North
Holland, 1971 and 1985. Parts I and II.

[Joh87] P.T. Johnstone. Notes on logic and set theory. Cambridge University
Press, 1987.

[Joj04] Gueorgui I. Jojgov. Incomplete Proofs and Terms and Their Use
in Interactive Theorem Proving. PhD thesis, Technische Universiteit
Eindhoven, 2004.

[KD02] Joost-Pieter Katoen and Pedro R. D’Argenio. General distributions
in process algebra. In Lectures on formal methods and performance
analysis: first EEF/Euro summer school on trends in computer sci-
ence, pages 375–429. Springer, 2002.

[KKSdV97] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary
lambda calculus. Theoretical Computer Science, 175:93–125, 1997.

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk.
Combinatory reduction systems, introduction and survey. Theoretical
Computer Science, 121:279–308, 1993.

[Les94] Pierre Lescanne. From lambda-sigma to lambda-upsilon a journey
through calculi of explicit substitutions. In POPL ’94: Proc. 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 60–69. ACM Press, 1994.

[LS04] Stefania Lusin and Antonino Salibra. The lattice of lambda theories.
Journal of Logic and Computation, 14(3):373–394, 2004.

[Lut02] Bas Luttik. Choice Quantification in Process Algebra. PhD thesis,
University of Amsterdam, 2002.

[Mei92] Karl Meinke. Universal algebra in higher types. Theoretical Computer
Science, 100(2):385–417, 1992.



Bibliography 131

[Mer53] C.A. Meredith. Single axioms for the systems (C,N), (C,O) and
(A,N) of the two-valued propositional calculus. The Journal of Com-
puting Systems, 3:155–164, 1953.

[Met] Metamath.org. Derivation of classical propositional logic from Mered-
ith’s axiom.
http://us.metamath.org/mpegif/meredith.html.

[Mic01] Marino Miculan. Developing (meta)theory of lambda-calculus in the
theory of contexts. ENTCS, 58(1), 2001.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Extensions of Logic Pro-
gramming, 475:253–281, 1991.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and
their confluence. Theoretical Computer Science, 192:3–29, 1998.

[MVF+02] William McCune, Robert Veroff, Branden Fitelson, Kenneth Harris,
Andrew Feist, and Larry Wos. Short single axioms for boolean alge-
bra. Journal of Automated Reasoning, 29(1):1–16, 2002.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched implica-
tions. Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Jan Bergstra,
Alban Ponse, and Scott Smolka, editors, Handbook of Process Algebra,
pages 479–543. Elsevier Science, 2001.

[Pau89] Lawrence C. Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5(3):363–397, 1989.

[Pau90] Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361–386.
Academic Press, 1990.

[PE88] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In
PLDI ’88: the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 199–208. ACM Press,
1988.

[Pin73] Charles Pinter. A simple algebra of first-order logic. Notre Dame
Journal of Formal Logic, 14(3):361–366, 1973.

[Pit03] Andrew M. Pitts. Nominal logic, a first order theory of names and
binding. Information and Computation, 186(2):165–193, 2003.

[Pit06] Andrew M. Pitts. Alpha-structural recursion and induction. Journal
of the ACM, 53(3):459–506, 2006.



132 Bibliography

[Pra65] Dag Prawitz. Natural Deduction: A Proof Theoretical Study. Almqvist
and Wiksell, Stockholm, 1965.

[Sal00] Antonino Salibra. On the algebraic models of lambda calculus. The-
oretical Computer Science, 249(1):197–240, 2000.

[Sha01] Stewart Shapiro. Systems between first-order and second-order logics.
In D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, 2nd Edition, volume 1, pages 131–188. Kluwer, 2001.

[Sun99] Yong Sun. An algebraic generalization of Frege structures - binding
algebras. Theoretical Computer Science, 211:189–232, 1999.

[Sza69] M.E. Szabo, editor. Collected Papers of Gerhard Gentzen. North
Holland, 1969.

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal
unification. Theoretical Computer Science, 323(1–3):473–497, 2004.

[vB01] Johan van Benthem. Higher-order logic. In D.M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition,
volume 1, pages 189–244. Kluwer, 2001.

[vD02] Dirk van Dalen. Intuitionistic logic. In D.M. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, 2nd Edition, volume 5,
pages 1–114. Kluwer, 2002.



Logical Calculi for Reasoning with Binding

Summary

In informal mathematical usage we often reason about languages involving binding
of object-variables. We find ourselves writing assertions involving meta-variables
and capture-avoidance constraints on where object-variables can and cannot oc-
cur free. Formalising such assertions is problematic because the standard logical
frameworks cannot express capture-avoidance constraints directly.

In this thesis we make the case for extending logical frameworks with meta-
variables and capture-avoidance constraints. We use nominal techniques that allow
for a direct formalisation of meta-level assertions, while remaining close to informal
practice. Our focus is on derivability and we show that our derivation rules support
the following key features of meta-level reasoning:

• instantiation of meta-variables, by means of capturing substitution of terms
for meta-variables;

• α-renaming of object-variables and capture-avoiding substitution of terms
for object-variables in the presence of meta-variables;

• generation of fresh object-variables inside a derivation.

We apply our nominal techniques to the following two logical frameworks:

• Equational logic. We investigate proof-theoretical properties, give a seman-
tics in nominal sets and compare the notion of α-renaming to existing notions
of α-equivalence with meta-variables. We also provide an axiomatisation of
capture-avoiding substitution, and show that it is sound and complete with
respect to the usual notion of capture-avoiding substitution.

• First-order logic with equality. We provide a sequent calculus with meta-
variables and capture-avoidance constraints, and show that it represents
schemas of derivations in first-order logic. We also show how we can ax-
iomatise this notion of derivability in the calculus for equational logic.
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Samenvatting

In informeel wiskundig gebruik redeneren we vaak over talen met binding van
object-variabelen. Hierbij schrijven we asserties met meta-variabelen en zoge-
naamde capture-avoidance restricties die uitdrukken waar object-variabelen wel
en niet vrij kunnen voorkomen. Het formaliseren van zulke asserties is problema-
tisch omdat de standaard logische raamwerken capture-avoidance restricties niet
rechtstreeks kunnen uitdrukken.

In dit proefschrift pleiten we ervoor om de logische raamwerken uit te brei-
den met meta-variabelen en capture-avoidance restricties. We gebruiken nominale
technieken die ons toelaten om asserties op meta-niveau direct te formaliseren,
terwijl we dicht bij de informele praktijk blijven. We richten ons op afleidbaarheid
en laten zien dat onze afleidingsregels het redeneren op meta-niveau ondersteunen
op de volgende belangrijke punten:

• concretisering van meta-variabelen, door middel van capturing substitutie
van termen voor meta-variabelen;

• α-hernoeming van object-variabelen en capture-avoiding substitutie van ter-
men voor object-variabelen in de aanwezigheid van meta-variabelen;

• het genereren van verse object-variabelen binnen een afleiding.

We passen onze nominale technieken toe op twee logische raamwerken:

• Equationele logica. We bestuderen bewijs-theoretische eigenschappen, we
geven een semantiek in nominale sets en we vergelijken de notie van α-
hernoeming met de bestaande noties van α-gelijkheid met meta-variabelen.
We geven ook een axiomatisering van capture-avoiding substitutie, en to-
nen aan dat deze compleet is met betrekking tot de gebruikelijke notie van
capture-avoiding substitutie.

• Eerste-orde logica met gelijkheid. We presenteren een sequent calculus met
meta-variabelen en capture-avoiding substitutie, en tonen aan dat deze een
schema van afleidingen in eerste-orde logica representeert. We laten ook zien
hoe we deze notie van afleidbaarheid kunnen axiomatiseren in de calculus
voor equationele logica.
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