215 research outputs found

    Low Complexity AOFDM System for Time-varying Wireless Channels

    Get PDF
    Signal transmitted through a wireless channel undergoes distortion due to the pres­ ence of reflectors in the environment between a transmitter and a receiver as well as due to the Doppler shift caused by the relative movement of the receiver with respect to the transmitter. Distorted signal is recovered at the receiver side by means of predicting the channel responses and performing inverse operation that the channel introduced on the transmitted signal. Prediction of channel responses becomes more complex when the receiver moves with a varying speed since it directly affects the auto-correlation of the channel responses. First part of this thesis provides a solution for recovering the transmitted data when the receiver is moving with varying speed. The system first tracks the receiver speed variations using the number of deep fadings (nulls) in the received signal enve­ lope of one sub-carrier during a fixed time period. If there is a significant change in receiver speed then the Kalman filter parameters are calculated and updated. Future channel responses are predicted using the updated Kalman filter parameters and used in equalizer to recover the distorted signal. The performance and computational effi­ ciency of the proposed system outperforms the conventional system which calculates predictor parameters at a fixed interval. Second part of the thesis presents an adaptive modulation technique based on the signal-to-noise ratio and the receiver speed. Modulation schemes for different combinations of signal-to-noise ratio and receiver speeds are obtained by selecting the higher modulation scheme with the bit error rate less than target bit error rate. Boundaries of the selected modulation schemes are found using support vector ma­ chine classifiers. The receiver uses the designed system to select appropriate modula­ tion scheme by mapping the current modulation scheme and the channel conditions. The proposed system outperforms conventional adaptive modulation technique that uses instantaneous signa-to-noise ratio by a margin of 5 dB

    Novel multiuser detection and multi-rate schemes for multi-carrier CDMA

    Get PDF
    A large variety of services is [sic] expected for wireless systems, in particular, high data rate services, such as wireless Internet access. Users with different data rates and quality of service (QoS) requirements must be accommodated. A suitable multiple access scheme is key to enabling wireless systems to support both the high data rate and the integrated multiple data rate transmissions with satisfactory performance and flexibility. A multi-carrier code division multiple access (MC-CDMA) scheme is a promising candidate for emerging broadband wireless systems. MC-CDMA is a hybrid of orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA). The most salient feature of MC-CDMA is that the rate of transmission is not limited by the wireless channel\u27s frequency-selective fading effects caused by multipath propagation. In MC-CDMA, each chip of the desired user\u27s spreading code, multiplied by the current data bit, is modulated onto a separate subcarrier. Therefore, each subcarrier has a narrow bandwidth and undergoes frequency-flat fading. Two important issues for an MC-CDMA wireless system, multiuser detection and multi-rate access, are discussed in this dissertation. Several advanced receiver structures capable of suppressing multiuser interference in an uplink MC-CDMA system, operating in a frequency-selective fading channel, are studied in this dissertation. One receiver is based on a so-called multishot structure, in which the interference introduced by the asynchronous reception of different users is successfully suppressed by a receiver based on the minimum mean-square error (MMSE) criterion with a built-in de-biasing feature. Like many other multiuser schemes, this receiver is very sensitive to a delay estimation error. A blind adaptive two-stage decorrelating receiver based on the bootstrap algorithm is developed to combat severe performance degradation due to a delay estimation error. It is observed that in the presence of a delay estimation error the blind adaptive bootstrap receiver is more near-far resistant than the MMSE receiver. Furthermore, a differential bootstrap receiver is proposed to extend the limited operating range of the two-stage bootstrap receiver which suffers from a phase ambiguity problem. Another receiver is based on a partial sampling (PS) demodulation structure, which further reduces the sensitivity to unknown user delays in an uplink scenario. Using this partial sampling structure, it is no longer necessary to synchronize the receiver with the desired user. Following the partial sampling demodulator, a minimum mean-square error combining (MMSEC) detector is applied. The partial sampling MMSEC (PS-MMSEC) receiver is shown to have strong interference suppression and timing acquisition capabilities. The complexity of this receiver can be reduced significantly, with negligible performance loss, by choosing a suitable partial sampling rate and using a structure called reduced complexity PS-MMSEC (RPS-MMSEC). The adaptive implementation of these receivers yields a superior rate of convergence and symbol error rate performance in comparison to a conventional MMSEC receiver with known timing. All the above receiver structures are for a single-rate MC-CDMA. Three novel multi-rate access schemes for multi-rate MC-CDMA, fixed spreading length (FSL), coded FSL (CFSL) and variable spreading length (VSL), have been developed. These multi-rate access schemes enable users to transmit information at different data rates in one MC-CDMA system. Hence, voice, data, image and video can be transmitted seamlessly through a wireless infrastructure. The bit error rate performance of these schemes is investigated for both low-rate and high-rate users

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Novel Estimation and Detection Techniques for 5G Networks

    Get PDF
    The thesis presents several detection and estimation techniques that can be incorporated into the fifth-generation (5G) networks. First, the thesis presents a novel system for orthogonal frequency division multiplexing (OFDM) to estimate the channel blindly. The system is based on modulating particular pairs of subcarriers using amplitude shift keying (ASK) and phase-shift keying (PSK) adjacent in the frequency domain, which enables the realization of a decision-directed (DD) one-shot blind channel estimator (OSBCE). The performance of the proposed estimator is evaluated in terms of the mean squared error (MSE), where an accurate analytical expression is derived and verified using Monte Carlo simulation under various channel conditions. The system has also extended to exploits the channel correlation over consecutive OFDM symbols to estimate the channel parameters blindly. Furthermore, a reliable and accurate approach has been introduced to evaluate the spectral efficiency of various communications systems. The metric takes into consideration the system dynamics, QoS requirements, and design constraints. Next, a novel efficient receiver design for wireless communication systems that incorporate OFDM transmission has been proposed. The proposed receiver does not require channel estimation or equalization to perform coherent data detection. Instead, channel estimation, equalization, and data detection are combined into a single operation, and hence, the detector performs a direct data detector (D3). The performance of the proposed D3 is thoroughly analyzed theoretically in terms of bit error rate (BER), where closed-form accurate approximations are derived for several cases of interest, and validated by Monte Carlo simulations. The computational complexity of D3 depends on the length of the sequence to be detected. Nevertheless, a significant complexity reduction can be achieved using the Viterbi algorithm (VA). Finally, the thesis proposes a low-complexity algorithm for detecting anomalies in industrial steelmaking furnaces operation. The algorithm utilizes the vibration measurements collected from several built-in sensors to compute the temporal correlation using the autocorrelation function (ACF). Furthermore, the proposed model parameters are tuned by solving multi-objective optimization using a genetic algorithm (GA). The proposed algorithm is tested using a practical dataset provided by an industrial steelmaking plant

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.
    • …
    corecore