42 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    ICI-aware parameter estimation for MIMO-OFDM radar via APES spatial filtering

    Get PDF
    We propose a novel three-stage delay-Doppler-angle estimation algorithm for a MIMO-OFDM radar in the presence of inter-carrier interference (ICI). First, leveraging the observation that spatial covariance matrix is independent of target delays and Dopplers, we perform angle estimation via the MUSIC algorithm. For each estimated angle, we next formulate the radar delay-Doppler estimation as a joint carrier frequency offset (CFO) and channel estimation problem via an APES (amplitude and phase estimation) spatial filtering approach by transforming the delay-Doppler parameterized radar channel into an unstructured form. In the final stage, delay and Doppler of each target can be recovered from target-specific channel estimates over time and frequency. Simulation results illustrate the superior performance of the proposed algorithm in high-mobility scenarios

    Receiver design for nonlinearly distorted OFDM : signals applications in radio-over-fiber systems

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Blind Frequency Synchronization in OFDM via Diagonality Criterion

    Full text link
    corecore