10,740 research outputs found

    Quantum walks with memory provided by recycled coins and a memory of the coin-flip history

    Full text link
    Quantum walks have emerged as an interesting approach to quantum information processing, exhibiting many unique properties compared to the analogous classical random walk. Here we introduce a model for a discrete-time quantum walk with memory by endowing the walker with multiple recycled coins and using a physical memory function via a history dependent coin flip. By numerical simulation we observe several phenomena. First in one dimension, walkers with memory have persistent quantum ballistic speed up over classical walks just as found in previous studies of multicoined walks with trivial memory function. However, measurement of the multicoin state can dramatically shift the mean of the spatial distribution. Second, we consider spatial entanglement in a two-dimensional quantum walk with memory and find that memory destroys entanglement between the spatial dimensions, even when entangling coins are employed. Finally, we explore behavior in the presence of spatial randomness and find that in the time regime where single-coined walks localize, multicoined walks do not and in fact a memory function can speed up the walk relative to a multicoin walker with no memory. We explicitly show how to construct linear optics circuits implementing the walks, and discuss prospects for classical simulation. © 2013 American Physical Society

    The Elephant Quantum Walk

    Full text link
    We explore the impact of long-range memory on the properties of a family of quantum walks in a one-dimensional lattice and discrete time, which can be understood as the quantum version of the classical "Elephant Random Walk" non-Markovian process. This Elephant Quantum Walk is robustly superballistic with the standard deviation showing a constant exponent, σt3/2\sigma \propto t^{3/ 2} , whatever the quantum coin operator, on which the diffusion coefficient is dependent. On the one hand, this result indicates that contrarily to the classical case, the degree of superdiffusivity in quantum non- Markovian processes of this kind is mainly ruled by the extension of memory rather than other microscopic parameters that explicitly define the process. On the other hand, these parameters reflect on the diffusion coefficient.Comment: 4 figures, any comments is welcome. Accepted in PR

    Non-Markovian continuous-time quantum walks on lattices with dynamical noise

    Get PDF
    We address the dynamics of continuous-time quantum walks on one-dimensional disordered lattices inducing dynamical noise in the system. Noise is described as time-dependent fluctuations of the tunneling amplitudes between adjacent sites, and attention is focused on non-Gaussian telegraph noise, going beyond the usual assumption of fast Gaussian noise. We observe the emergence of two different dynamical behaviors for the walker, corresponding to two opposite noise regimes: slow noise (i.e. strong coupling with the environment) confines the walker into few lattice nodes, while fast noise (weak coupling) induces a transition between quantum and classical diffusion over the lattice. A phase transition between the two dynamical regimes may be observed by tuning the ratio between the autocorrelation time of the noise and the coupling between the walker and the external environment generating the noise. We also address the non-Markovianity of the quantum map by assessing its memory effects, as well as evaluating the information backflow to the system. Our results suggest that the non-Markovian character of the evolution is linked to the dynamical behavior in the slow noise regime, and that fast noise induces a Markovian dynamics for the walker.Comment: 10 pages, 8 figure

    The QWalk Simulator of Quantum Walks

    Full text link
    Several research groups are giving special attention to quantum walks recently, because this research area have been used with success in the development of new efficient quantum algorithms. A general simulator of quantum walks is very important for the development of this area, since it allows the researchers to focus on the mathematical and physical aspects of the research instead of deviating the efforts to the implementation of specific numerical simulations. In this paper we present QWalk, a quantum walk simulator for one- and two-dimensional lattices. Finite two-dimensional lattices with generic topologies can be used. Decoherence can be simulated by performing measurements or by breaking links of the lattice. We use examples to explain the usage of the software and to show some recent results of the literature that are easily reproduced by the simulator.Comment: 21 pages, 11 figures. Accepted in Computer Physics Communications. Simulator can be downloaded from http://qubit.lncc.br/qwal

    Quantum walks with random phase shifts

    Get PDF
    We investigate quantum walks in multiple dimensions with different quantum coins. We augment the model by assuming that at each step the amplitudes of the coin state are multiplied by random phases. This model enables us to study in detail the role of decoherence in quantum walks and to investigate the quantum-to-classical transition. We also provide classical analogues of the quantum random walks studied. Interestingly enough, it turns out that the classical counterparts of some quantum random walks are classical random walks with a memory and biased coin. In addition random phase shifts "simplify" the dynamics (the cross interference terms of different paths vanish on average) and enable us to give a compact formula for the dispersion of such walks.Comment: to appear in Phys. Rev. A (10 pages, 5 figures
    corecore