1,364 research outputs found

    On-line monitoring of VoIP quality using IPFIX

    Get PDF
    The main goal of VoIP services is to provide a reliable and high-quality voice transmission over packet networks. In order to prove the quality of VoIP transmission, several approaches were designed. In our approach, we are concerned about on-line monitoring of RTP and RTCP traffic. Based on these data, we are able to compute main VoIP quality metrics including jitter, delay, packet loss, and finally R-factor and MOS values. This technique of VoIP quality measuring can be directly incorporated into IPFIX monitoring framework where an IPFIX probe analyses RTP/RTCP packets, computes VoIP quality metrics, and adds these metrics into extended IPFIX flow records. Then, these extended data are stored in a central IPFIX monitoring system called collector where can be used for monitoring purposes. This paper presents a functional implementation of IPFIX plugin for VoIP quality measurement and compares the results with results obtained by other tools

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    ADAPTIVE SPEECH QUALITY IN VOICE-OVER-IP COMMUNICATIONS

    Get PDF
    The quality of VoIP communication relies significantly on the network that transports the voice packets because this network does not usually guarantee the available bandwidth, delay, and loss that are critical for real-time voice traffic. The solution proposed here is to manage the voice-over-IP stream dynamically, changing parameters as needed to assure quality. The main objective of this dissertation is to develop an adaptive speech encoding system that can be applied to conventional (telephony-grade) and wideband voice communications. This comprehensive study includes the investigation and development of three key components of the system. First, to manage VoIP quality dynamically, a tool is needed to measure real-time changes in quality. The E-model, which exists for narrowband communication, is extended to a single computational technique that measures speech quality for narrowband and wideband VoIP codecs. This part of the dissertation also develops important theoretical work in the area of wideband telephony. The second system component is a variable speech-encoding algorithm. Although VoIP performance is affected by multiple codecs and network-based factors, only three factors can be managed dynamically: voice payload size, speech compression and jitter buffer management. Using an existing adaptive jitter-buffer algorithm, voice packet-size and compression variation are studied as they affect speech quality under different network conditions. This study explains the relationships among multiple parameters as they affect speech transmission and its resulting quality. Then, based on these two components, the third system component is a novel adaptive-rate control algorithm that establishes the interaction between a VoIP sender and receiver, and manages voice quality in real-time. Simulations demonstrate that the system provides better average voice quality than traditional VoIP

    Towards improving ViSQOL (Virtual Speech Quality Objective Listener) Using Machine Learning Techniques

    Get PDF
    Vast amounts of sound data are transmitted every second over digital networks. VoIP services and cellular networks transmit speech data in increasingly greater volumes. Objective sound quality models provide an essential function to measure the quality of this data in real-time. However, these models can suffer from a lack of accuracy with various degradations over networks. This research uses machine learning techniques to create one support vector regression and three neural network mapping models for use with ViSQOLAudio. Each of the mapping models (including ViSQOL and ViSQOLAudio) are tested against two separate speech datasets in order to comparatively study accuracy results. Despite the slight cost in positive linear correlation and slight increase in error rate, the study finds that a neural network mapping model with ViSQOLAudio provides the highest levels of accuracy in objective speech quality measurement. In some cases, the accuracy levels can be over double that of ViSQOL. The research demonstrates that ViSQOLAudio can be altered to provide an objective speech quality metric greater than that of ViSQOL

    Clustering VoIP caller for SPIT identification

    Get PDF
    The number of unsolicited and advertisement telephony calls over traditional and Internet telephony has rapidly increased over recent few years. Every year, the telecommunication regulators, law enforcement agencies and telecommunication operators receive a very large number of complaints against these unsolicited, unwanted calls. These unwanted calls not only bring financial loss to the users of the telephony but also annoy them with unwanted ringing alerts. Therefore, it is important for the operators to block telephony spammers at the edge of the network so to gain trust of their customers. In this paper, we propose a novel spam detection system by incorporating different social network features for combating unwanted callers at the edge of the network. To this extent the reputation of each caller is computed by processing call detailed records of user using three social network features that are the frequency of the calls between caller and the callee, the duration between caller and the callee and the number of outgoing partners associated with the caller. Once the reputation of the caller is computed, the caller is then places in a spam and non-spam clusters using unsupervised machine learning. The performance of the proposed approach is evaluated using a synthetic dataset generated by simulating the social behaviour of the spammers and the non-spammers. The evaluation results reveal that the proposed approach is highly effective in blocking spammer with 2% false positive rate under a large number of spammers. Moreover, the proposed approach does not require any change in the underlying VoIP network architecture, and also does not introduce any additional signalling delay in a call set-up phase

    Enhanced transport protocols for real time and streaming applications on wireless links

    Full text link
    Real time communications have, in the last decade, become a highly relevant component of Internet applications and services, with both interactive communications and streamed content being used in developed and developing countries alike. Due to the proliferation of mobile devices, wireless media is becoming the means of transmitting a large part of this increasingly important real time communications traffic. Wireless has also become an important technology in developing countries, with satellite communications being increasingly deployed for traffic backhaul and ubiquitous connection to the Internet. A number of issues need to be addressed in order to have an acceptable service quality for real time communications in wireless environments. In addition to this, the availability of multiple wireless interfaces on mobile devices presents an opportunity to improve and further exacerbates the issues already present on single wireless links. Therefore in this thesis, we consider improvements to transport protocols for real time communications and streaming services to address these problems and we provide the following contributions. To deal with wireless link issues of errors and delay, we propose two enhancements. First, an improvement technique for Datagram Congestion Control Protocol CCID4 for long delay wireless (e.g. satellite) links, demonstrating significant performance improvements for Voice over IP applications. To deal with link errors, we have proposed, implemented and evaluated an erasure coding based packet error correction approach for Concurrent Multipath Transfer extension of Stream Control Transport Protocol data transport over multiple wireless paths. We have identified packet reordering as a major cause of performance degradation in both single and multi-path transport protocols for real time communications and media streaming. We have proposed a dynamically resizable buffer based solution to mitigate this problem within the DCCP protocol. For improving the performance of multi-path transport protocols over dissimilar network paths, we have proposed a delay aware packet scheduling scheme, which significantly improves the performance of multimedia and bulk data transfer with CMT-SCTP in heterogeneous multi-path network scenarios. Finally, we have developed a tool for online streaming video quality evaluation experiments, comprising a real-time cross-layer video streaming technique implemented within an open-source H.264 video encoder tool called x264
    corecore