307 research outputs found

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Model-Based Adaptation of Software Communicating via FIFO Buffers

    Get PDF
    Software Adaptation is a non-intrusive solution for composing black-box components or services (peers) whose individual functionality is as required for the new system, but that present interface mismatch, which leads to deadlock or other undesirable behaviour when combined. Adaptation techniques aim at automatically generating new components called adapters. All the interactions among peers pass through the adapter, which acts as an orchestrator and makes the involved peers work correctly together by compensating for mismatch. Most of the existing solutions in this field assume that peers interact synchronously using rendezvous communication. However, many application areas rely on asynchronous communication models where peers interact exchanging messages via buffers. Generating adapters in this context becomes a difficult problem because peers may exhibit cyclic behaviour, and their composition often results in infinite systems. In this paper, we present a method for automatically generating adapters in asynchronous environments where peers interact using FIFO buffers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Specification and Verification of Synchronous Hardware using LOTOS

    Get PDF
    This paper investigates specification and verification of synchronous circuits using DILL (Digital Logic in LOTOS). After an overview of the DILL approach, the paper focuses on the characteristics of synchronous circuits. A more constrained model is presented for specifying digital components and verifying them. Two standard benchmark circuits are specified using this new model, and analysed by the CADP toolset (Cæsar/Aldébaran Development Package)

    Experiments towards model-based testing using Plan 9: Labelled transition file systems, stacking file systems, on-the-fly coverage measuring

    Get PDF
    We report on experiments that we did on Plan 9/Inferno to gain more experience with the file-system-as-tool-interface approach. We reimplemented functionality that we earlier worked on in Unix, trying to use Plan 9 file system interfaces. The application domain for those experiments was model-based testing.\ud \ud The idea we wanted to experiment with consists of building small, reusable pieces of functionality which are then composed to achieve the intended functionality. In particular we want to experiment with the idea of 'stacking' file servers (fs) on top of each other, where the upper fs acts as a 'filter' on the data and structure provided by the lower fs.\ud \ud For this experiment we designed a file system interface (ltsfs) that gives fine-grained access to a labelled transition system, and made two implementations of it.\ud We developed a small fs that, when 'stacked' on top of the ltsfs, extends it with additional files, and an application that uses the resulting file system.\ud \ud The hope was that an interface like the one offered by ltsfs could be used as a general interface between (specification language specific) programs that give access to state spaces and (specification language independent) programs that use (walk) those state spaces like simulators, model checkers, or test derivation programs.\ud \ud Initial results (obtained on a less-than-modern machine) suggest that, although the approach by itself is definitely feasible in principle, in practice the fine-grained access offered by ltsfs may involve many file (9p) transactions which may seriously affect performance. In Unix we used a more conservative approach where the access was less fine-grained which likely explains why there we did not suffer from this problem.\ud \ud In addition we report on experiments to use acid to obtain coverage information that is updated on-the-fly while the program is running. This worked quite well. The main observation from those experiments is that the basic block notion of this approach, which has a more 'semantical' nature, differs from the more 'syntactical' nature of the basic block notion in Unix coverage measurement tools\ud like tcov or gcov

    GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems

    Get PDF
    International audienceA GALS (Globally Asynchronous, Locally Synchronous) system consists of several synchronous subsystems that evolve concurrently and interact with each other asynchronously. Most formalisms and design tools support either the synchronous paradigm or the asynchronous paradigm but rarely combine both, which requires an intricate modeling of GALS systems. In this paper, we present a new language, called GRL (GALS Representation Language) designed to model GALS systems in an abstract and versatile manner for the purpose of formal verification. GRL has formal semantics combining the synchronous reactive model underlying dataflow languages and the asynchronous concurrent model underlying process algebras. We present the basic concepts and the main constructs of the language, together with an illustrative example

    LTSmin: high-performance language-independent model checking

    Get PDF
    In recent years, the LTSmin model checker has been extended with support for several new modelling languages, including probabilistic (Mapa) and timed systems (Uppaal). Also, connecting additional language front-ends or ad-hoc state-space generators to LTSmin was simplified using custom C-code. From symbolic and distributed reachability analysis and minimisation, LTSmin’s functionality has developed into a model checker with multi-core algorithms for on-the-fly LTL checking with partial-order reduction, and multi-core symbolic checking for the modal μ calculus, based on the multi-core decision diagram package Sylvan.\ud In LTSmin, the modelling languages and the model checking algorithms are connected through a Partitioned Next-State Interface (Pins), that allows to abstract away from language details in the implementation of the analysis algorithms and on-the-fly optimisations. In the current paper, we present an overview of the toolset and its recent changes, and we demonstrate its performance and versatility in two case studies

    Calculating τ-confluence compositionally

    Get PDF
    τ-confluence is a reduction technique used in enumerative model-checking of labeled transition systems to avoid the state explosion problem. In this paper, we propose a new on-the-fly algorithm to calculate partial τ-confluence, and propose new techniques to do so on large systems in a compositional manner. Using information inherent in the way a large system is composed of smaller systems, we show how we can deduce partial τ-confluence in a computationally cheap manner. Finally, these techniques are applied to a number of case studies, including the rel/REL atomic multicast protocol.peer-reviewe

    Formal Modeling and Verification of GALS Systems Using GRL and CADP

    No full text
    The GALS (Globally Asynchronous, Locally Synchronous) paradigm is a prevalent approach to design distributed synchronous subsystems that communicate with each other asynchronously. The design of GALS systems is tedious and error-prone due to the complexity of architectures and high synchronous and asynchronous concurrency involved. This paper proposes a model-based approach to formally verify such systems. Specifications are written in GRL (GALS Representation Language), dedicated to model GALS systems with homogeneous syntax and formal semantics. We present a translation from GRL to LNT, a value-passing process algebra with imperative flavour. The translation is automated by means of the GRL2LNT tool, making possible the analysis of GRL specifications using the CADP toolbox. We illustrate our approach with an access management system for smart parking based on distributed software systems embedded in programmable logic controllers
    corecore