2,305 research outputs found

    Adaptive Analysis of On-line Algorithms

    Get PDF
    On-line algorithms are usually analyzed using competitive analysis, in which the performance of on-line algorithm on a sequence is normalized by the performance of the optimal on-line algorithm on that sequence. In this paper we introduce adaptive/cooperative analysis as an alternative general framework for the analysis of on-line algorithms. This model gives promising results when applied to two well known on-line problems, paging and list update. The idea is to normalize the performance of an on-line algorithm by a measure other than the performance of the on-line optimal algorithm OPT. We show that in many instances the perform of OPT on a sequence is a coarse approximation of the difficulty or complexity of a given input. Using a finer, more natural measure we can separate paging and list update algorithms which were otherwise undistinguishable under the classical model. This createas a performance hierarchy of algorithms which better reflects the intuitive relative strengths between them. Lastly, we show that, surprisingly, certain randomized algorithms which are superior to MTF in the classical model are not so in the adaptive case. This confirms that the ability of the on-line adaptive algorithm to ignore pathological worst cases can lead to algorithms that are more efficient in practice

    Throughput Optimal On-Line Algorithms for Advanced Resource Reservation in Ultra High-Speed Networks

    Full text link
    Advanced channel reservation is emerging as an important feature of ultra high-speed networks requiring the transfer of large files. Applications include scientific data transfers and database backup. In this paper, we present two new, on-line algorithms for advanced reservation, called BatchAll and BatchLim, that are guaranteed to achieve optimal throughput performance, based on multi-commodity flow arguments. Both algorithms are shown to have polynomial-time complexity and provable bounds on the maximum delay for 1+epsilon bandwidth augmented networks. The BatchLim algorithm returns the completion time of a connection immediately as a request is placed, but at the expense of a slightly looser competitive ratio than that of BatchAll. We also present a simple approach that limits the number of parallel paths used by the algorithms while provably bounding the maximum reduction factor in the transmission throughput. We show that, although the number of different paths can be exponentially large, the actual number of paths needed to approximate the flow is quite small and proportional to the number of edges in the network. Simulations for a number of topologies show that, in practice, 3 to 5 parallel paths are sufficient to achieve close to optimal performance. The performance of the competitive algorithms are also compared to a greedy benchmark, both through analysis and simulation.Comment: 9 pages, 8 figure

    On-line algorithms for polynomially solvable satisfiability problems

    Get PDF
    AbstractGiven a propositional Horn formula, we show how to maintain on-line information about its satisfiability during the insertion of new clauses. A data structure is presented which answers each satisfiability question in O(1) time and inserts a new clause of length q in O(q) amortized time. This significantly outperforms previously known solutions of the same problem. This result is extended also to a particular class of non-Horn formulae already considered in the literature, for which the space bound is improved. Other operations are considered, such as testing whether a given hypothesis is consistent with a satisfying interpretation of the given formula and determining a truth assignment which satisfies a given formula. The on-line time and space complexity of these operations is also analyzed

    Some recent results in the analysis of greedy algorithms for assignment problems

    Get PDF
    We survey some recent developments in the analysis of greedy algorithms for assignment and transportation problems. We focus on the linear programming model for matroids and linear assignment problems with Monge property, on general linear programs, probabilistic analysis for linear assignment and makespan minimization, and on-line algorithms for linear and non-linear assignment problems

    Algorithms for Computing Abelian Periods of Words

    Full text link
    Constantinescu and Ilie (Bulletin EATCS 89, 167--170, 2006) introduced the notion of an \emph{Abelian period} of a word. A word of length nn over an alphabet of size σ\sigma can have Θ(n2)\Theta(n^{2}) distinct Abelian periods. The Brute-Force algorithm computes all the Abelian periods of a word in time O(n2×σ)O(n^2 \times \sigma) using O(n×σ)O(n \times \sigma) space. We present an off-line algorithm based on a \sel function having the same worst-case theoretical complexity as the Brute-Force one, but outperforming it in practice. We then present on-line algorithms that also enable to compute all the Abelian periods of all the prefixes of ww.Comment: Accepted for publication in Discrete Applied Mathematic
    corecore