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ON-LINE ALGORITHMS FOR POLYNOMIALLY 
SOLVABLE SATISFIABILITY PROBLEMS 

GIORGIO AUSIELLO* AND GIUSEPPE F. ITALIANO+ 

D Given a propositional Horn formula, we show how to maintain on-line 
information about its satisfiability during the insertion of new clauses. A 
data structure is presented which answers each satisfiability question in 
O(1) time and inserts a new clause of length q in O(q) amortized time. 
This significantly outperforms previously known solutions of the same 
problem. This result is extended also to a particular class of non-Horn 
formulae already considered in the literature, for which the space bound is 
improved. Other operations are considered, such as testing whether a 
given hypothesis is consistent with a satisfying interpretation of the given 
formula and determining a truth assignment which satisfies a given for- 
mula. The on-line time and space complexity of these operations is also 
analyzed. a 

1. INTRODUCTION 

In several so-called knowledge based applications, knowledge is represented by 
means of logical formulae. In order to allow efficient algorithms for deduction and 
consistency checking in such applications, particular classes of formulae of predi- 
cate calculus have been often considered. Among them, Horn formulae are 
particularly interesting in view of the fact that other knowledge-representation 
formalisms such as and-or graphs and production rules have essentially the same 
syntactic and semantic properties [ 121. 

While designing knowledge based systems (in the sequel referred to as KBSs), 
one perceives the need of performing on line several operations [2, 131, such as to 
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insert a new clause into a formula, to verify whether a formula is satisfiable or 
whether a given interpretation satisfies a formula, etc. In [2] the general problem 
of updating a KBS is considered in a rather general framework. Insertion and 
deletion operations on the knowledge base are defined, but no effort is made to 
provide an evaluation of the time and space required by the proposed management 
procedures. This approach was extended in [ 131, where the concept of stratification 
was applied to disjunctive knowledge bases. This made it possible to define classes 
of algorithms for interactively constructing models of a KBS expressed in logic. 
Due to the general point of view, the computational complexity of such algorithms 
is mostly exponential in the size of the input. 

In this paper, in order to approach efficiency issues in the interactive manage- 
ment of a KBS, we tackle the more precise problem of maintaining simple 
propositional formulae such as Horn formulae and some disjunctive non-Horn 
formulae already studied in the literature, for which the satisfiability problem has 
been shown to be polynomially solvable [6, 9, 11, 191. The approach followed in 
this paper, moving from the previous work in [6, 91, is aimed at considering 
sequences of operations such as those described above, and at designing efficient 
algorithms and data structures for supporting them on line. In this framework, our 
attention will be devoted to analyzing the amortized cost [171 over a whole 
sequence of operations. 

A similar viewpoint has been taken in the study of dynamic graphs [7, 8, 10, 161. 
By representing Horn formulae by means of directed hypergraphs [4], we are able 
to apply the same algorithmic ideas and to provide results which may be useful 
both for application to logic formulae and per se, as an extension to directed 
hypergraphs of the results known for dynamic graphs. 

The main result of the paper is to show how to insert a clause of size 4 into a 
Horn formula in O(s) amortized time in such a way that the satisfiability of the 
whole formula can be checked at any time in O(1). This outperforms by an order 
of magnitude the best known algorithms for the same problem [6, 91, which can 
require even O(n) time for testing the satisfiability of the formula each time a new 
clause is inserted, where n is the total length of the formula. Put in other words, 
we exhibit one algorithm which takes a total of O(n) time in the worst case in 
maintaining information about the satisfiability of a Horn formula of length n 
during the dynamic insertion of m clauses, while the previous known algorithms 
[6, 91 require O(mn) worst-case time for the same problem. 

Besides, it is shown that the same operations may be performed on a particular 
class of non-Horn formulae in such a way that the overall cost of a sequence of 
operations is at most quadratic in the total size of the input. The required amount 
of storage is in both cases linear in the size of the input, which improves the 
previously known results for the class of non-Horn formulae [ll. 

Finally, it may be observed that the proposed representation may efficiently 
support other operations (such as for example implications among propositional 
variables), provided that a suitable amount of extra storage is allowed. 

The remainder of the paper is organized as follows. In Section 2 some basic 
terminology about propositional Horn formulae and directed hypergraphs is intro- 
duced. In Section 3 the hypergraph formalism is used as a powerful tool for 
designing on-line algorithms for the satisfiability of Horn formulae. These results 
are extended in Section 4 to other on-line operations on propositional Horn 
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formulae, and in Section 5 to a class of propositional formulae which properly 
includes Horn formulae. In Section 6 we make some concluding remarks. 

2. HORN FORMULAE AND DIRECTED HYPERGRAPHS 

Directed hypergraphs [4] are a generalization of directed graphs which may be 
useful for representing structures and concepts in several areas of computer 
science such as rewriting systems, problem solving [14], Petri nets [151, and 
functional dependency in relational databases [3, 4, 181. In this section we shall see 
how the hypergraph formalism may be a powerful tool also in dealing with 
propositional Horn formulae. We begin by giving some preliminary definitions 
about both directed hypergraphs and propositional Horn formulae. Next, we show 
that the satisfiability of a Horn proposition is expressible as a hyperpath problem 
on a properly defined directed hypergraph. 

A directed hypergraph H is a pair (N, H ), where N is the set of nodes and H is 
the set of hyperarcs. Each hyperarc is an ordered pair (X, i) such that X is a 
nonempty subset of N and i EN. X is said to be the source set of the hyperarc 
(X, i). Directed hypergraphs are henceforth called hypergraphs. 

Given a hypergraph H = (N, H ), a nonempty subset of nodes X L N, and a 
node i EN, there is- a (directed) hiperpath from X to 
conditions holds: 

(1) i E X (extended reflexiivity), or 

(2) there exists a set of nodes Y = (y,, y,, . . , y,} such 
H and for j = 1,2,..., q there is a hyperpath 
transitiuity). 

i if one of the following 

that (Y, i) is a hyperarc in 
from X to yj (extended 

The rank r of a hyperpath from X to i is defined inductively as follows. If i 
belongs to X, then r = 0. Otherwise, r = 1 + max(r,, r2,. . . , rq), where rj, 1 5 j I q, 
is the rank of the hyperpath from X to yj. 

Example 2.1. The hypergraph H = ({A, B, C, D, E, F, G}, {(ABC + D>, (CD -+ 
E), (A + F), (D + F), (E + G))) is shown in Figure 1. 

In order to approach hypergraph problems, a graphical representation has been 
introduced in [3]. Given a hypergraph H = (N, H), the FD graph of H is the 
labeled graph G(H) = (NH, A,, Ad), where: 

NH = N u N, is the set of nodes, where N is called the set of simple nodes and 
N, = (Xc N 1 X is a source set in H} is called the set of compound nodes; 

Af L NH X N is the set of arcs (referred to as jidl arcs) 

{ (X, i) 1 there exists a hyperarc (X, i) in H) ; 

A, L N, X N is the set of arcs (referred to as dotted arcs) 

{(X,j) 1 XEN, and jEX}. 

The name FD graph stands for functional-dependency graph, since FD graphs 
were first introduced in order to represent functional dependency in database 
schemes [3]. 
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FIGURE 1. The hypergraph given in Example 2.1. 
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FIGURE 2. The FD-graph representation of the hypergraph given in Figure 1. 

Exumpfe 2.2. The FD-graph representation of the hypergraph of Figure 1 is 
given in Figure 2. 

The notion of hyperpath can be reformulated on the corresponding FD graph, 
giving rise to the concept of FD path (see for example [4]). 

Several structures used for modeling problems in computer science may be 
represented by means of directed hypergraphs or (equivalently) by means of FD 
graphs. In particular, this happens with a class of logical formulae known as Horn 
formulae, which may be defined as follows. 

A literal is either a propositional variable P (a positive literal) or the negation 
7 P of a propositional variable P (a negative literal). A Horn clause C; is a 
disjunction of literals with at most one positive literal. A Horn formula A is a 
conjunction of Horn clauses, i.e. A = C, A C, A C * * * A C,. 
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It is easy to see that Horn clauses can be only of three types: 

(1) Q (a propositional variable), or 

(2) -l P, v 7 P, v . . . v 7 P,, q 2 
variables), or 

1 (P1,P*,..., P, are distinct propositional 

q2 1. 

shall denote by k the number of distinct 
formula, by m the number of Horn clauses, 

(3) -, P, v -I P, v . . . v 7 P, v Q, 

In the remainder of the paper we 
propositional variables in a given Horn 
and by n the total length,of the Horn formula (i.e., the total number of occur- 
rences of literals). 

We associate to a propositional Horn formula A a directed hypergraph HA, 
referred to as the hypergraph cmxsponding to A, defined as follows. 

Definition 2.1. Given a Horn formula A = C, A C, A . . . A C,, HA is a directed 
hypergraph whose nodes correspond to each propositional variable occurring in 
A, plus two extra nodes for true and false. The hyperarcs correspond to the 
Horn clauses, according to the following rules: 

(i) for each Horn clause which consists of only a positive literal Q, there is a 
hyperarc from {true) to Q; 

(ii> for each Horn clause of the type 

7P,V 7P,V ... v 7Ps, q2 1, 

there is a hyperarc from the source set X = (P,, P,, . . . , P,) to false; 

(iii) for each Horn clause of the type 

7 P, v 7 P2 v . . ’ v 7 P, v Q, q2 1, 

there is a hyperarc from the source set X = (P,, P,, . . . , P,) to Q. 

Example 2.3. 

H=(B)A(7AV TBvTCVD)A(,AVF) 

r\(~DVk’)r\(~cv ~DvE)r\(~EvG)r\(~G). 

The hypergraph corresponding to the Horn formula H is exhibited in Figure 3. 

Notice that a correspondence may be shown between such hypergraphs and the 
Horn labeled digraphs GA defined in [6]. In particular, they are defined on the 
same set of nodes N, and for each hyperarc (X, Q> of the source set X= 
(P,, PD. *. > P,) in HA corresponding to the ith clause in A, there are q arcs 
labeled with i from Pj, 1 I j I q, to Q in GA. This gives rise to the following 
theorem. 

Theorem 2.1. Given a Horn formula A, let HA = ( N, H ) be its corresponding 
hypergraph . Then : 

(9 A is satisfiable if and only if there is no hyperpath from true to false in HA. 

(ii) Zf for some propositional variable Q there is a hyperpath from true to Q in HA, 
then Q must have truth value true in any satisfying interpretation of A. 
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TRUE 

FALSE 

FIGURE 3. The hypergraph corresponding to the Horn formula given in Example 2.3. 

PROOF. It is a straightforward consequence of Theorems 2 and 3 in [6]. q 

If we think of (j&e,true) as a boolean algebra in which false < true, then also 
the Cartesian product (false,true)k is a boolean algebra. Then we have the following 
corollary, whose simple proof has been omitted. 

Corollary 2.1. GiLlen a satisfiable Horn formula A, let HA be its corresponding 
hypetgraph. The truth assignment LY such that LI( Pi> = true if and only if there is a 
hyperpath from the node true to Pi, and false otherwise, is the least truth assignment 
in the boolean algebra { false,true}k satisfying A. 

We are now able to characterize in graph-theoretical terms the satisfying truth 
assignments of a given Horn formula. First, we need some preliminary results. 

Lemma 2.1. Let A be a satisfiable Horn formula, HA its corresponding hypergraph, 
and X any set of par-tables. If there is a satisfying interpretation 11 of A in which the 
L)ariables in X get truth value true, then there will be no hyperpath from any subset of 
X U (true) to a node Q for which n(Q) = false. 

PROOF. We proceed by induction on the rank d of hyperpaths (d > 0, since the 
case d = 0 cannot happen). 
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No hyperpaths of rank d = 1 can exist, since the presence of a hyperarc from 
S LX u {true) to false would imply a clause 

7 P, v 7 P, v * * * v 7 P, 

with Pi E X (1 I i I q>, which would not be satisfied in the interpretation U. 
Suppose now that no hyperpaths of rank less than 1 exist from X u he} to 

nodes which get truth value false in the interpretation U, and assume by contradic- 
tion that there is a hyperpath of rank 1 from X u {me) to a node Q such that 
u(Q) =fufse. Then, by definition of hyperpath, there will be a hyperarc from 
p,,pz,-.-, P, to Q and q hyperpaths of rank less than I from X u Itme) to Pi 
(1 5 i 5 q). The hyperarc from P,, P2,. . . , Pq to Q implies a clause 

TP,V 7Pzv ..a v TP,vQ, 

which has to be satisfied by the interpretation U. Since U(Q) = false, there will be 
an integer j (1 lj I q> such that u<Pj) = f 1 a se, thus contradicting the inductive 
hypothesis. 

This completes the induction step and gives the lemma. q 

Theorem 2.2. Let A be a Horn formula and HA be its corresponding hypergraph. 
Given a set of variables X, there exists a satis-ing interpretation u of A in which the 
variables in X get truth value true if and only if there is no hyperpath in HA from 
X U (true} to false. 

PROOF. “Zf” part: A hyperpath from X U {he) to false would imply a clause 

c = 7 P, v 7 P2 v *. . v 7 P, 

and q hyperpaths from XU (true} to Pr (1 I i I q). According to Lemma 2.2, 
o(P,) = true (1 I i 5 q), which would contradict the satisfiability of the interpreta- 
tion 0. 

“Only if” part: If there is no hyperpath from XU (true) to false, then consider 
the following set: 

Y = {Q f I/ 1 there is a hyperpath from X U {true} to Q} . 

Let us define the following interpretation: 

L!(P) = 
( 

;lze, 
if and only if P E Y, 
otherwise. 

Since XC Y, the variables in X get truth value in U. Futthermore, we can have 
three types of clauses: 

(9 Q, 

(ii) TP,V 7P,V **- v -P,, 

(iii) 1 P, v 7 P2 V -. . v 7 P, v Q. 

Type 6) clauses are satisfied by u, since for such a clause there is a hyperarc 
from the node true to Q and thus u(Q) = true. 

Also type (ii> clauses are satisfied by U, since for such a clause there is a 
hyperarc from (P,, P,, . . . , P,} to false and we cannot have Pi E Y for each i 
(otherwise we would have a hyperpath from X u (true} to false). 
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Type (iii) clauses imply a hyperarc from {Pr , Pz, . . . , PJ to Q. If Q E Y, then it 
makes the clause satisfied. Otherwise, at least one variable in {P,, P,, . . . , PJ must 
not belong to Y (otherwise also Q E Y), thus again satisfying the clause. 0 

As a straightforward consequence, we state the following corollary, which will 
be useful in the sequel. 

Corollary 2.2. Given a satisfiable Horn formula A, let HA be its corresponding 
hypergraph. For any variable P, there exists a satisfying intepretation of A in which 
P gets truth value true if and only if there is no hyperpath in HA from { P,true} to 
false. 

3. ON-LINE ALGORITHMS FOR THE SATISFIABILITY OF PROPOSITIONAL 
HORN FORMULAE 

Algorithms for testing the satisfiability of Horn formulae have been developed by 
several researchers in recent years [6, 9, 111. A common feature of the above 
algorithms is that they are all off-line, i.e., they require that complete information 
about the Horn formula be available in advance. 

In some applications, however, it is desirable to develop algorithms which 
receive one Horn clause at a time and allow fast queries about the satisfiability of 
the whole formula so far received. Such algorithms, which are required to com- 
plete each operation before the next one is known, are called on-line. This 
situation arises for example when a rule based system is being built and the 
corresponding set of rules dynamically changes by means of either the insertion of 
new rules or the elimination of rules which caused inconsistency [2, 131. In many 
cases, on-line algorithms are less efficient on the whole sequence of operations 
than the corresponding off-line algorithms, since some price must generally be paid 
to acquire the on-line property. 

In what follows, we shall see how the on-line satisfiability problem for Horn 
formulae can be efficiently solved. In more detail, we define the following two 
operations on Horn formulae: 

sati& A): check the satisfiability of the Horn formula A; 

insert(c, A): add the Horn clause c to the Horn formula A, giving rise to the 
new Horn formula A A c. 

We describe now a data structure in which each satisfy is performed in O(1) 
worst-case time and which is able to insert a clause of size 9 in O(q) amortized 
time. As a result, the total time involved in maintaining the data structure on line 
during the insertions of m clauses is O(n). This bound improves by an order of 
magnitude the O(mn> time required by the best known algorithms [6, 91 for the 
same problem. 

The idea underlying the data structure is to deal with the hypergraph HA 
corresponding to the Horn formula A. To be more precise, G(H,), the FD graph 
of HA, is maintained. Simple nodes correspond to the variables of the formula A, 
while for each clause in A a compound node is introduced as shown in Figure 4, 
according to Definition 2.1. 
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TRUE P-Q 
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:- FALSE 
0 

/ 
/ 

/ 

pq ’ FIGURE 4. The correspondence be- 
tween Horn clauses and hyperarcs. 

Note that in such a representation only full arcs can enter a simple node, while 
compound nodes are accessed by means of dotted arcs. Moreover, there is only 
one (full) arc leaving each compound node. 

Owing to Theorem 2.1, queries about the satisfiability of a Horn formula A can 
be answered by simply checking the presence of an FD path (from the node true to 
the node false) in the FD graph G(H,). In order to speed up such satisfiability 
queries, we maintain the closure of the node flue by associating to each simple 
node i EN an integer, referred to as status(i), defined as follows: 

status(i) = 
0 if there is an FD path in G( HA) from frue to i, 

1 otherwise. 

With this additional information, the satisfiability of a Horn formula A can be 
checked by examining the status of the node false in the corresponding FD graph. 
More precisely, A is satisfiable if and only if srutus(fulse> = 1. If constant access to 
each simple node is possible, each satisfy(A) can be performed in O(1) time. 
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We shall see now how to maintain the closure of the node true during the 
insertion of new clauses into a formula. 

First of all, we extend the notion of status to compound nodes by defining 

stutus( X) = c status(i) VXE NC. 
isX 

That is, the status of a compound node X is equal to the number of simple nodes 
in X which are not reachable from the node true; hence status(X) = 0 if and only 
if all the nodes in X are reachable from true. In order to implement the function 
status, we associate to each (simple and compound) node i an entry referred to as 
sTATUS[i]. 

At the beginning, when no clause has yet been inserted, our hypergraph consists 
of k simple nodes, and their STATUS entry is initialized by simply setting 

STATUS[ true] = 0, 

STATUS[ x] = 1 VXEN-(true}. 

When a new clause has to be introduced, according to Definition 2.1 we have to 
insert a new hyperarc from a properly defined source set to a given simple node in 
G(H,). If all the (dotted or full) arcs leaving a (simple or compound1 node w are 
organized in an adjacency list named L(w), the following algorithm maintains the 
closure of the node true while inserting a hyperarc from a source set X to a 
node Q: 

procedure insert (X : source-set, Q : node); 
var w : compound_node; 
begin 

if [XI= 1 then 
insert Q into L(X) 

else 
begin 

create a new compound node X; 
for each simple node i in X do insert X into L(i); 
L(X) := IQ,; 
STATUS[ X] := 

end; 
c I E ,STATUS[i] 

closure(Q) if STATUS[Xl = 0 then 
end; 

The aim of the procedure closure is to update the STATUS entry of the nodes 
by means of a true-propagation mechanism: 

procedure closure(Q : node); 
var w : node; 
begin 

if STATUS[Q] # 0 then 
begin 

end; 

STATUS[ Q] := STATUS[ Q] - 1; 
if STATUS[Q] = 0 then 

for each w in L(Q) do closure(w) 
end 
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The correctness of the approach, that is, the fact that the STATUS entry 
correctly implements the status function, hinges on the following theorem. 

Theorem 3.1. After any insert operation, the following proposition (referred to as status 
correctness j holds: a simple node i is reachable from the node true if and only if 
STATUS[i] = 0. 

PROOF. “Zf” part: We prove that any time the following properties hold for the 
data structure. 

(Plj 

(P2j 

If i is a simple node and STATUS[i] = 0, then there is a hyperpath from 
true to i. 

If w is a compound node representing a source set X, then the number of 
nodes in X not reachable from true does not exceed STATUS[w]. 

We proceed by induction on the number of (full or dotted) arcs examined 
during the execution of the procedure closure. 

At the beginning (when the Horn formula is empty), properties (Plj and (P2j 
trivially hold, since only STATUS[true] is initialized to 0 and no compound node 
exists. On the other hand, every compound node introduced trivially satisfies 
property (P2j. 

Let us assume now that properties (Plj and (P2j hold before examining an arc 
(x, y j during the execution of the procedure closure. Since (x, y j can be examined 
if and 

(ij 

(ii) 

only if STATUS[x] has been set to 0, then: 

If (x, yj is full, STATUS[ y] will be set to 0 and there will be a hyperpath 
from true to x (and hence also from true to yj for the inductive hypothesis. 
Thus, properties (Plj and (P2j still hold. 

If (x, yj is dotted, then STATUS[y] is decremented by 1 but is still greater 
than or equal to the number of simple nodes in y not reachable from true, 
since for the inductive hypothesis x was reachable from true. Thus, proper- 
ties (Plj and (P2j again hold. 

“Only if” part: We shall prove: 

(P3j If there is a hyperpath from true to a simple node i, then STATUS[i] = 0 
by induction on the number of clause insertions performed. 

At the beginning (when the Horn formula is empty), no node is reachable from 
the node true except the node true itself. Since STATUS[true] is initialized to 0, 
the base of the induction holds. 

Assume now that property (P3j holds before inserting a clause 

c= ~P,v TP,v ... v 7P,vQ, q2l 

(i.e., a hyperarc from a source set X = {P,, P2,. . . , P,] to Qj. Note that there is no 
loss of generality, since every clause can be expressed as c, provided that also 
nodes tnre and false are taken into account. We have the following two possibili- 
ties: 

(ij If xi= i,... ,STATUS[ Pi] is greater than 0 before the insertion of the clause 
c, then neither the nodes reachable from true nor the nodes whose STATUS 
is 0 can change after the insertion of the clause c. 
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(ii) Consider now the case where Xl=, ,,,4 STATUS[P,] = 0 before the insertion 
of the clause c, and assume by contradiction that after inserting c there is a 
simple node y reachable from true but whose STATUS is greater than 0. 
Let us denote by T the hyperpath from true to y. Clearly T must include 
the hyperarc corresponding to the clause c, because otherwise the inductive 
hypothesis would be violated. Two cases may arise: 

(a) y coincides with Q; 
(b) y is different from Q. 

Case (a> is not possible, because STATUS[QI is set to 0 at the first step of 
the procedure closure. In case (b) there must be a hyperarc from 

Ix,, x2,. *. 7 xp) (p 2 1) and p hyperpaths from true to x,, x2,. ..,xp, de- 
noted respectively by H,, H,, . . . , Hr. I&= ,,,,,, ,STATUS[x,l must be greater 
than 0; otherwise either Zi=l,,,,,q STATUS[xi] was equal to 0 before the 
insertion of the clause c (clearly contradicting the inductive hypothesis) or 
the nodes xi with nonnull STATUS were forced to 0 after the insertion of c 
(and thus also y must have been forced to a null status). Hence, there must 
be a node xi reachable from true by means of a hyperpath Hi but with 
STATUS greater than 0. Also in this case, Hi must include the hyperarc 
corresponding to the clause c (otherwise the inductive hypothesis would be 
violated). Since rank(H,) < rank(T), by repeating this argument we should 
eventually find that node Q itself should have STATUS greater than 0, 
which is clearly a contradiction as stated in case (a) above. 

This completes the induction step and gives the theorem. q 

We are now able to state the following lemma which characterizes the overall 
time complexity of our on-line algorithm and provides the basis for the subsequent 
results. 

Lemma 3.1. The closure of the node true can be maintained in at most O(n) time 
upon the insertion of any number of new clauses, where n is the total length of the 
formula. 

PROOF. A (full or dotted) arc (x, y) may be scanned immediately after the 
insertion of a new clause only if STATUS[ ] x was greater than 0. Once scanned, 

STATUS[x] is set to 0 and henceforth the arc (x, y) cannot be scanned again 
during subsequent calls of the procedure closure. Since the total number of arcs in 
the FD graph is equal to the length of the formula, the theorem is proved. 0 

The main result of the paper can now be stated, as the following theorem 
shows. 

Theorem 3.2. Given a Horn formula A, there exists a data structure which allows one 
to check on line in O(1) time whether a formula is satisfiable. The amortized cost of 
inserting a new clause is O(q), where q is the length of the clause. The space 
required is O(n). 

PROOF. Due to Theorem 2.1, our algorithm takes O(1) time to answer each 
satisfiability question. As a consequence of Lemma 3.1, the total time involved in 
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maintaining the data structure while new clauses are inserted is O(n), where n is 
the length of the formula. Using the credit technique of Tarjan [17], it is immediate 
to see that the insertion of a clause of length q requires exactly q credits and 
therefore can be performed in O(q) amortized time. 0 

This outperforms the best previously known algorithms for the same problem 
[6, 93, which can require even O(n) time for testing the satisfiability of the formula 
each time a new clause is inserted. Lemma 3.1 can be easily generalized, as the 
following corollary shows. 

Corollary 3.1. The closure of any node in a hypergraph corresponding to a Horn 
formula can be maintained in at most O(n) time and space during the insertion of 
new clauses, where n is the total length of the formula. 

Notice that from the point of view of the off-line computation the method that 
we have shown has the same efficiency of the one used in [6], but our data 
structure seems to be crucial for operating on line without loss of efficiency. Also, 
our data structure allows us to support other operations on line, as we shall see in 
the next section. 

4. ON-LINE ALGORITHMS FOR MAINTAINING TRUTH VALUES AND 
IMPLICATIONS AMONG PROPOSITIONAL VARIABLES 

In this section we extend the previous results to other operations which may be 
efficiently supported by the same data structure described above. Consider the 
case in which one would like to check on line whether any variable P can get a 
given truth value (true or false) in a satisfying interpretation of a Horn formula A. 
As an immediate consequence of Corollary 2.2, a variable P can get a truth value 
true [false] if and only if there is no hyperpath in HA (the hypergraph correspond- 
ing to A) from (P, true} to false [respectively, from true to PI. Hence, one can 
check whether a variable may have truth value false in constant time by using the 
data structure described in the previous section. In order to check that a variable 
may assume truth value true, we can use the same data structure provided that the 
definition of status is generalized as follows: 

status,(Q) = 
0 if there is a hyperpath from {P, true) to Q, 

1 otherwise 

for each P, Q E N (i.e., simple nodes); 

status,(X) = C status,(i) 
iEX 

for each P E N (i.e., simple node) and X E N, (i.e., compound node). 
With this generalization, a propositional variable P can get a truth value true in 

a satisfying interpretation of a Horn formula A if and only if status,(false) = 1. By 
generalizing also the STATUS entries of our data structure, this test can be 
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accomplished in constant time. Furthermore, the truth assignment 

c(Q) = 
i 

;1;e 
if and only if starus,( Q) = 0, 

otherwise 

is the least truth assignment in the boolean algebra {false,true}k satisfying A in 
which P gets truth value true. As a consequence, the generalized data structure 
allows one to find a truth assignment satisfying A in which a given propositional 
variable gets truth value true in O(k) time. 

The total time involved in maintaining the data structure during the insertion of 
new clauses is O(kn), since the closure of at most k nodes has to be maintained on 
line (see Corollary 3.1). 

The space complexity of the generalized data structure can be analyzed as 
follows. The STATUS entries need now O(lNI(INI + IN,./)) storage. Furthermore, 
the hypergraph corresponding to A can be maintained in O(n) space. Since 
INI = k, IN,/ =m, and IE ~mk, the overall space is O((m + k)k). The above 
argument leads to the following theorem. 

Theorem 4.1. Given a Horn formula A containing at most k different propositional 
variables and m clauses, there exists a data structure which allows one 

(i) to check on line in O(1) time whether the formula is satisfiable; 

(ii) to check on line in O(1) time whether a propositional t’ariable can get truth 
value true (or false) in a satisfying interpretation of A; 

(iii) to find in O(k) t’ tme the least truth assignment in the boolean algebra 
(false,truejk satisfying A in which a giLlen propositional rlariable gets truth 
Llalue true (or false). 

The total time involved in maintaining the data structure while new clauses are 
inserted is O(kn), where n is the length of the formula. The space required is 
O((m + k)k). 

Note that, if no additional structure were maintained, performing every time 
from scratch the operations in (i>, (ii), and (iii) could require even O(n) time, 
where n is the total length of the formula. If we now compare this bound with the 
performance of the data structure, we may observe that over a sequence of any 
number of insertions of clauses and q tests of type (i>, (ii), and (iii) our data 
structure requires an overall time of O(k(n + q)), which compares jfavorably with 
O(qn> when q > k [k < n, and q might be as large as mk, since after any insertion, 
k type-(n) tests could be performed]. 

Example 4.1. Consider the following Horn formula: 

BAEA(TAV -,Bv ~CvD)r\(~AvH)r\(~Dv 7EvF) 

A(~Dv~FvG)A(~HvI)A(~GV~I)A(~F). 

In Figure 5 is shown its corresponding hypergraph. The variable C can get a truth 
value true in a satisfying interpretation of the formula, since there is no hyperpath 
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TRUE 

FIGURE 5. The hypergraph correspond- 
ing to the formula given in Example 4.1. 

\/ 

FALSE 

from {C,true) to false. In fact 

o(P) = 
1 
;ge 

if P=B or P=C or P=E, 
otherwise 

satisfies the formula. On the other hand, the variable E cannot assume truth value 
false in any satisfying interpretation of the formula, since there is a hyperpath from 
true to E. 

Operation (ii) in Theorem 4.1 corresponds to checking whether an implication 
between two variables P and Q in the formula holds, i.e. to checking whether a 
variable Q must have truth value true once another variable P has been given 
truth value true. Since this may be seen as a first step toward maintaining 
information about implications or deductions within a given set of rules, we may 
extend it to the set of variables which appear negated in a clause (in the following 
referred to as a premise of a clause). Hence, we consider the situation in which, 
besides checking the satisfiability of a formula, we would like to maintain informa- 
tion about the consequences of assuming that all facts which constitute the premise 
of a particular clause are assumed to be true. This gives rise to the following 
theorem, whose proof recalls completely Theorem 4.1 and thus has been omitted. 



84 GIORGIO AUSIELLO AND GIUSEPPE F. ITALIAN0 

Theorem 4.2. Given a Horn formula A containing at most k different propositional 
variables and m clauses, there exists a data structure which allows one 

(iI to check on line in O(1) time whether the formula is satisfiable; 

(ii) to check on line in O(1) time whether either any propositional variable or all 
the variables of a given premise can get truth value true (or false) in a 
satisfying interpretation of A; 

(iii) to find in O(k) time the least truth assignment in the boolean algebra 
{ false,truejk satisfying A in which either a given propositional variable or all 
the tjariables of a given premise get truth value true (or false). 

The total time involved in maintaining the data structure while new clauses are 
inserted is O(( k + mm), where n is the length of the formula. The space required is 
O((m + k12>. 

5. ON-LINE SATISFIABILITY OF A CLASS OF NON-HORN FORMULAE 

Yamasaki and Doshita studied in [19] the satisfiability problem for a class S,, of 
propositional formulae in CNF which properly contains all Horn formulae. A 
formula S is in such a class if there is an ordering of the clauses c,, c2,. . . , c,, such 
that 

(1) ci = H, V Pj, where each Hi is a Horn clause and each P, is a disjunction of 
positive literals; 

(2) P,,, CP,, i= 1,2 ,..., m. 

Motivations for studying such a class arise from considering classes which 
include Horn formulae and whose satisfiability problem remains polynomial. In 
[19] an O(n’) algorithm for this satisfiability problem has been given, where n is 
the length of the input. Recently, in [l] Arvind and Biswas proposed a more 
efficient algorithm which requires O(kn) time and O(mk) space, where k is the 
number of propositional variables and m the number of clauses in the formula. 
Actually, an extra cost of O(m log m) time is required for sorting the clauses (if 
they are not sorted in a preprocessing step). 

In this section we shall provide an on-line Arvind-Biswas algorithm for the 
satisfiability problem in S,,, based on the same data structures considered in the 
previous sections. Each question about satisfiability is answered in constant time, 
while the total time involved in maintaining the formula during the insertion of 
new clauses is O(kn + m log m), as in the best known off-line algorithms [l]. The 
space required by our algorithm is O(n). Since n <km, this result not only reduces 
the on-line complexity of this problem, but also optimally improves the space 
complexity given in [Il. 

Assume now that we are given a formula S = c, A c2 A . . . A c,,, in S,,, where 
c, = Hi v P ,, whose satisfiability must be analyzed. It can be proved (see [ll for 
further details) that S is satisfiable if and only if one of the following conditions 
holds: 

( 1) r-satisfiability : There exists a propositional variable p E P,-, r 2 1, which 
gets truth value true in a satisfying interpretation of the Horn formula 
A,.=H,.+, AH,,,A ... AH,,,. p will be referred in the sequel as the 
witness of the r-satisfiability. 
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TRUE 

YY 
C D 

FIGURE 6. The hypergraph corresponding 
to a Horn part of the formula given in 
Example 5.1. 

FALSE 

(2) 0-suti.$ubifily: The Horn formula A,, = H, A H, A . . . A H,,, is satisfiable 
(without witnesses). 

Example 5.2. The formula consisting of the clauses 

C,: (,Av -IBV -,C)v(EvFvGvH) 
Cq: (,HvB)v(EvF) 

c3: (-TGv ,FvC)v(E) 
Cd: (TEvTGvD) 
C+ CC) 
Cg: (1D) 

is in S,,. In Figure 6 is shown the hypergraph corresponding to H, A H4 A H, A Hh. 
Since there is a hyperpath from (frue,E) to false, owing to Corollary 2.2. E cannot 
get truth value true in a satisfying interpretation of H4 A H, A Hh. As a conse- 
quence, E cannot be a witness for the satisfiability of S. However, a 2-satisfiability 
witness can be found in F. 

Consider now the insertion of a new clause c = H V P into S, which gives rise to 
a new formula S’ = s A c still in s,,. 

If S was unsatisfiable, S’ will also be unsatisfiable, and thus the clause c does 
not add any further information to our problem. 

In the opposite case (S was satisfiable), we maintain the greatest integer r in 
[0, m] such that S is r-satisfiable together with the witness p of this r-satisfiability 
(if r 2 1). First of all, the position s in which the clause c must be inserted, given 
by P, cPcP,+,, must be individuated. Furthermore, three cases must be discrimi- 
nated depending on s and r. 

If s <r, then S’ is still satisfiable, since the witness p also makes the clause c 
satisfied. Moreover, the Horn formula A, = H,, , A * * * A H,,, has not been af- 
fected by c. 
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If s > r, we must check whether the witness p gets still truth value true in a 
satisfying interpretation of the modified Horn formula 

A,=H,+, A ... AH, AHAH,+, A ... AH ,,,, 

In the affirmative case, S’ is still r-satisfiable. Otherwise, the other propositional 
variables not yet examined in P,, P,_ ,, . . . , P, must be scanned in order to get 
either a new witness for f-satisliability (0 I IS r) or an unsatisliability answer in 
case of failure. 

Finally, if s = r, two cases are possible. If p E P, then S’ is still satisfiable. In the 
other case, the variables not yet examined in P, P,., . . . , P, must be scanned in 
order to get either a new witness for an I-satisfiability (0 I 1~ r + 1) or an 
unsatisliability answer. 

We now give a brief description of the data structure used for dealing with a 
formula S in S,,. Next, an algorithm for the on-line satisfiability of formulae in S,, 
will be presented. 

If S is r-satisfiable (r 2 01, we maintain the hypergraph H corresponding to the 
Horn formula A, = H,, , A . . . A H,, subject to the operations insert (insertion of 
a Horn clause into a Horn formula) and satisfy (check for deciding whether the 
Horn formula so far achieved is satisfiable) defined in the previous sections. 
Furthermore, the clauses c, (1 5 i 2 r) are maintained in a heap, where each item 
points to a list containing the subclause H, and to a list containing the subclause 
P,. If r 2 1, the witness of the r-satishability is the head (i.e., the first item) of the 
list P,. On the other hand, if S is unsatisfiable, only the hypergraph corresponding 
to the Horn formula A,, = H, A . . . A H,, is maintained. 

When a variable p E P, is discarded as a witness due to the insertion of a new 
clause in position s > r, p could be eliminated from the lists P, (1 I i 5 r), since it 
will no longer be a witness of satisfiability in the future. In order to save time 
during these operations, we simply mark the variable p as dead, by means of a 
suitable marking system. While looking for a new witness in a list P,, the scanned 
variables which are marked as dead will be removed. Furthermore, the maximum 
integer r which gives r-satisfiability is maintained. If the formula is unsatisfiable, r 
is undefined. 

Having filled in all the details of the data structure, we show how to insert a new 
clause mto a formula m S,,: 

procedure S,,_insert(c = H V P : cluuse); 
begin 

“locate the position s in which the clause c has to be inserted”; 
case s of 

s > r: begin 
insert( H, H ); 
if not satisfy( H 1 then 

begin 
“mark head as dead”; 
new witness - 

end 
end; 

s <r: “insert the clause c = H V P into the heap with key IPI”; 
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s = r: begin 
“insert the clause c = H V P into the heap with key IPI”; 

r:=r+ 1; 

if p EP then 
“move p at the head of the list I’,.” 

else 
new-witness 

endcase 
end; 

end 

The procedure new_witness, called when the current witness of r-satisfiability 
fails, tries to find a new witness which can ensure the satisfiability again. The idea 

is to scan the lists Pi, i = r, r - 1,. . . , I, from left to right in a bottom-up fashion 

(i.e., starting with P,). If a nondead variable p E Pk, k I r, is encountered, then it 
must be verified whether p can get a truth value true in a satisfying interpretation 

of the Horn formula A, = Hk+, A . . . A H,,, in order to witness the satisfiability of 

the whole formula. 
According to Corollary 2.2, this can happen if and only if there is no hyperpath 

from (true,p} to false in the hypergraph If, corresponding to the Horn formula 
A,. This task can be accomplished by adding the Horn clauses H,, ,, . . . , H,. to the 
hypergraph H, corresponding to the Horn formula A,. = H,., , A . . . A H,,,. During 
these operations, the closure of the node true is maintained as described in the 
previous sections. Furthermore, the closure of (true,p} is computed and maintained 
on line as long as p is useful as a witness. 

The above argument gives rise to the following procedure: 

procedure new_witness; 
begin 

if Pr + 0 then 
begin 

p := head I:.); 
if “p is marked dead” then 

begin 
remove head I’,. ); 
new-witness 

end 
else 

begin 
“compute the closure of {true,p) in H”; 
if not satisjjd H ) then 

begin 
“mark p as dead”; 
new-witness 

end 
end 

end 
else 

begin 
if r > 0 then 
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begin 

end; 

( H,. , P,) := deletemin( heap); 
(return the clause H, v P,. whose P, is of minimum size) 

insert ( H, , H ); 
r:=r- 1; 

new-witness 
end 

end 

The correctness of the algorithm is the consequence of both Corollary 2.2 and 
Theorem 3.1 together with the fact that it is an adaptation of the algorithm 
proposed in [ll. With regard to its complexity, we prove the following result. 

Theorem 5.1. The algorithm for the on-line satisfiability of formulae in S, requires a 
total of O(kn + m log m) time and O(n) space, where k is the number of distinct 
propositional variables, m the total number of clauses to deal with, and n the length 
of the formula. 

PROOF. The data structure consists of one heap, one hypergraph, and at most 2m 
lists (Hi and P,). 

While maintaining the heap, we are interested both in removing the clause of 
minimum key in the heap, and in inserting a clause with respect to its key. Since, 
once removed, a clause can never be reinserted into the heap, the total time 
involved in maintaining the heap is O(m log m). 

As far as the hypergraph is concerned, we have to insert new hyperarcs (i.e., 
new Horn clauses) while maintaining information about hyperpaths. In more 
detail, given a witness p, Corollary 2.2 suggests maintaining the closure of (true,p} 
while new hyperarcs are inserted. This task can be accomplished by introducing 
one dummy node w and two dummy hyperarcs (w + true) and (w + p) and by 
maintaining (with the algorithm previously described) the closure of w instead of 
(true,p}. Corollary 3.1 will then assure that maintaining information about the 
satisfiability with a given witness will cost O(n) time and space. Since, once 
eliminated, a witness cannot any longer be taken into account, this implies a total 
of O(l P, In) = O(kn) worst-case time for maintaining the hypergraph. 

With regard to the lists P, and Hi, their scanning will require a total of O(n) 
time. If the marks of the witnesses considered are organized as a balanced search 
tree [.5] containing as items the propositional variables with the information 
whether they are marked dead or not, the scanning process during the subsequent 
calls of the procedure new-witness can be performed in a total of O(n logIP,I) = 
O(n log k) time, while the deletion of the examined witnesses from the lists yields 
to a total of O(n) time. 

As a consequence, the total time involved in maintaining the data structure is 
O(nk + m log m). 

The space required by the heap, the hypergraph, the lists, and the marking 
search tree is clearly O(n). •I 

Clearly, the results stated in Theorems 4.1 and 4.2 might also be extended to the 
new class of non-Horn formulae within substantially the same time and space 
bounds. 
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6. CONCLUSION 

The development of applications of logic programming and the use of rule based 
systems in knowledge representation has brought the need for data structures and 
algorithms for efficiently maintaining sets of logical formulae. In this paper, the 
problem of performing on-line sequences of operations such as insertions of new 
clauses and tests for satisfiability has been investigated. 

Due to the time complexity and intractability of the general case [2, 131, only 
Horn formulae have been considered, and the results have been extended to a 
particular class of non-Horn formulae already considered in the literature. For 
both classes it is shown how the given operations may be performed on line 
efficiently. We have presented techniques which significantly outperform previously 
known solutions of the same problems. Also, new on-line operations such as 
checking the consistency of a truth assignment and deriving implications of given 
hypotheses have been considered and their overall cost analyzed. 

In order to satisfy the needs of a real environment for the design of rule based 
systems [2, 131, the time and space complexity of other operations should be 
analyzed, such as deletion of clauses, backtracking, etc. Research in these direc- 
tions is currently being developed. 

We would like to thank the referees for their helpful comments and valuable suggestions, which 
improved the presentation of the paper. 
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