4 research outputs found

    Purwarupa Alat Kalibrasi Kerataan Bidang Kerja menggunakan Laser Sensor

    Get PDF
    ABSTRAK Salah satu elemen teknologi pendukung dari industri manufaktur elektronika adalah mesin Die Attach. Mesin ini digunakan pada proses assembly komponen dengan metode pick and place komponen pada material. Sebagai proses yang penting dalam industri manufaktur, mesin ini memerlukan kalibrasi secara reguler dan tepat yang akan menjadi kunci sukses dari kualitas suatu produksi. Penelitian ini bertujuan membuat suatu purwarupa alat yang digunakan sebagai pengontrol kalibrasi dengan menggunakan laser sensor. Proses kalibrasi dilakukan dengan cara mengukur kerataan titip sisi work holder menggunakan laser sensor. Kerataan didapatkan dengan membandingkan jarak yang terukur oleh laser sensor pada tiap titik uji. Jarak yang sama pada tiap titik uji menunjukkan kerataan dari work holder. Pergerakan laser sensor dikontrol oleh dua buah motor yang bergerak ke arah sumbu X dan Y. Alat ini telah diuji dengan mengkalibrasi pada empat sisi work holder. Hasil pengujian kemudian dibandingkan dengan pengukuran manual dan didapatkan error rata-rata pengukuran sekitar 4%. Kata kunci: Laser sensor, kerataan, kalibrasi, die attach machine   ABSTRACT One of the element technology supporting an industrial manufacturing is Die Attach machine. This machine is used at component assembly using component pick and place. As an important process, this machine requires regular and precise calibration to support quality of the product. This research aims to build a prototype system using laser sensor which can be used as calibration instrument. The callibration proses was done by measuring the flatness of each side of work holder using laser sensor. The flatness was obtained by comparing the distance of each testing point. The same distance on each testing point represented the flatness of the wrok holder. The movement of laser sensor was controlled by two motors which moved to X and Y axis. The system has been tested to calibrate each side of work holder. The experimental results were then compare with manual measurement and showed the measurement error about 4%. Keywords: Laser sensor, flatness, callibration, die attach machine

    On-line Thickness Measurement System for the Metal Spinning Process

    Get PDF
    Spun-part wall thickness is a key output parameter of spinning products. Thickness affects the spun part strength: Low thickness leads to cracks on spinning products. Hence, it is crucial to measure and control wall thickness. However, thickness measurement and a control system for the spinning process are still offline methods. That is, these parameters must be measured after the spinning process is completed. In this method, the cross section of the spun part is cut, and the wall thickness is measured using a measurement tool. Thus, the measurement system is not applicable as online method. Hence, this study proposed the online thickness measurement method for the spun. Here, the mandrel-less spinning machine and a line laser measurement system were developed. The line laser measurement system, including two sets of line lasers and cameras, was attached on the spinning machine. Both sets of line lasers and cameras were used to measure the thickness profile of the spun part. The first set of a line laser and camera was used to capture the surface profile in the front of the spun part, while the other set was used to capture the surface profile behind the part. Then, the digital image processing (DIP) was estimated the spun thickness by using both images. In the experiments, the spun part was formed by the variation of degrees of angle and spinning distance. In each experiment, the spun-part thickness was measured by the cross-section method and line laser measurement method. Both results were compared and discussed. The result revealed that the thickness estimated by the line laser measurement system is similar to that estimated by the cross-section measurement method. An average error of 3.67% was obtained by the line laser measurement system

    Sensors and Technologies in Spain: State-of-the-Art

    Get PDF
    The aim of this special issue was to provide a comprehensive view on the state-of-the-art sensor technology in Spain. Different problems cause the appearance and development of new sensor technologies and vice versa, the emergence of new sensors facilitates the solution of existing real problems. [...

    On-Line Flatness Measurement in the Steelmaking Industry

    Get PDF
    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain
    corecore