19 research outputs found

    Trees whose even-degree vertices induce a path are antimagic

    Get PDF
    An antimagic labeling of a connected graph G is a bijection from the set of edges E(G) to {1, 2, . . . , |E(G)|} such that all vertex sums are pairwise distinct, where the vertex sum at vertex v is the sum of the labels assigned to edges incident to v. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every simple connected graph other than K2 is antimagic; however the conjecture remains open, even for trees. In this note we prove that trees whose vertices of even degree induce a path are antimagic, extending a result given by Liang, Wong, and Zhu [Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14].A. Lozano is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement ERC-2014-CoG 648276 AUTAR); M. Mora is supported by projects Gen. Cat. DGR 2017SGR1336, MINECO MTM2015-63791-R, and H2020-MSCARISE project 734922-CONNECT; and C. Seara is supported by projects Gen. Cat. DGR 2017SGR1640, MINECO MTM2015-63791-R, and H2020-MSCARISE project 734922-CONNECT.Peer ReviewedPostprint (published version

    Group Irregular Labelings of Disconnected Graphs

    Get PDF
    We investigate the \textit{group irregularity strength} (sg(G)s_g(G)) of graphs, i.e. the smallest value of ss such that taking any Abelian group \gr of order ss, there exists a function f:E(G)\rightarrow \gr such that the sums of edge labels at every vertex are distinct. We give the exact values and bounds on sg(G)s_g(G) for chosen families of disconnected graphs. In addition we present some results for the \textit{modular edge gracefulness} k(G)k(G), i.e. the smallest value of ss such that there exists a function f:E(G)\rightarrow \zet_s such that the sums of edge labels at every vertex are distinct

    Antimagic Labeling of Forests

    Get PDF
    An antimagic labeling of a graph G(V,E) is a bijection f mapping from E to the set {1,2,…, |E|}, so that for any two different vertices u and v, the sum of f(e) over all edges e incident to u, and the sum of f(e) over all edges e incident to v, are distinct.  We call G antimagic if it admits an antimagic labeling. A forest is a graph without cycles; equivalently, every component of a forest is a tree. It was proved by Kaplan, Lev, and Roditty in 2009, and by Liang, Wong, and Zhu in 2014 that every tree with at most one vertex of degree two is antimagic. A major tool used in the proof is the zero-sum partition introduced by Kaplan, Lev, and Roditty in 2009. In this article, we provide an algorithmic representation for the zero-sum partition method and apply this method to show that every forest with at most one vertex of degree two is also antimagic
    corecore