184 research outputs found

    The Design and Implementation of a Wireless Video Surveillance System.

    Get PDF
    Internet-enabled cameras pervade daily life, generating a huge amount of data, but most of the video they generate is transmitted over wires and analyzed offline with a human in the loop. The ubiquity of cameras limits the amount of video that can be sent to the cloud, especially on wireless networks where capacity is at a premium. In this paper, we present Vigil, a real-time distributed wireless surveillance system that leverages edge computing to support real-time tracking and surveillance in enterprise campuses, retail stores, and across smart cities. Vigil intelligently partitions video processing between edge computing nodes co-located with cameras and the cloud to save wireless capacity, which can then be dedicated to Wi-Fi hotspots, offsetting their cost. Novel video frame prioritization and traffic scheduling algorithms further optimize Vigil's bandwidth utilization. We have deployed Vigil across three sites in both whitespace and Wi-Fi networks. Depending on the level of activity in the scene, experimental results show that Vigil allows a video surveillance system to support a geographical area of coverage between five and 200 times greater than an approach that simply streams video over the wireless network. For a fixed region of coverage and bandwidth, Vigil outperforms the default equal throughput allocation strategy of Wi-Fi by delivering up to 25% more objects relevant to a user's query

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    On Random Sampling for Compliance Monitoring in Opportunistic Spectrum Access Networks

    Get PDF
    In the expanding spectrum marketplace, there has been a long term evolution towards more market€“oriented mechanisms, such as Opportunistic Spectrum Access (OSA), enabled through Cognitive Radio (CR) technology. However, the potential of CR technologies to revolutionize wireless communications, also introduces challenges based upon the potentially non€“deterministic CR behaviour in the Electrospace. While establishing and enforcing compliance to spectrum etiquette rules are essential to realization of successful OSA networks in the future, there has only been recent increased research activity into enforcement. This dissertation presents novel work on the spectrum monitoring aspect, which is crucial to effective enforcement of OSA. An overview of the challenges faced by current compliance monitoring methods is first presented. A framework is then proposed for the use of random spectral sampling techniques to reduce data collection complexity in wideband sensing scenarios. This approach is recommended as an alternative to Compressed Sensing (CS) techniques for wideband spectral occupancy estimation, which may be difficult to utilize in many practical congested scenarios where compliance monitoring is required. Next, a low€“cost computational approach to online randomized temporal sensing deployment is presented for characterization of temporal spectrum occupancy in cognitive radio scenarios. The random sensing approach is demonstrated and its performance is compared to CS€“based approach for occupancy estimation. A novel frame€“based sampling inversion technique is then presented for cases when it is necessary to track the temporal behaviour of individual CRs or CR networks. Parameters from randomly sampled Physical Layer Convergence Protocol (PLCP) data frames are used to reconstruct occupancy statistics, taking account of missed frames due to sampling design, sensor limitations and frame errors. Finally, investigations into the use of distributed and mobile spectrum sensing to collect spatial diversity to improve the above techniques are presented, for several common monitoring tasks in spectrum enforcement. Specifically, focus is upon techniques for achieving consensus in dynamic topologies such as in mobile sensing scenarios

    White Space Network Management: Spectrum Quanti cation, Spectrum Allocation and Network Design

    Get PDF
    Philosophiae Doctor - PhD (Computer Science)The unused spectrum in the television broadcasting frequency bands (so-called TV white spaces) can alleviate the spectrum crunch, and have potential to provide broadband connection to rural areas of countries in the developing world. Current research on TV white spaces focuses on how to detect them accurately, and how they can be shared or allocated to secondary devices. Therefore, the focus of this research is three-fold: to investigate a novel distributed framework, which does not use propagation models in detecting TV white spaces, and suitable for use in countries of the developing world; to investigate a suitable spectrum sharing mechanism for short-time leasing of the TV white spaces to secondary devices; and extend the research to investigate the design of a TV white space-ware network in TV white space frequencies

    ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

    Get PDF
    It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.Comment: Please use MobiSys version when referencing this work: http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob

    Language for programming massively distributed embedded systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (p. 67-69).This thesis presents c@t, a language for programming distributed embedded systems that are composed of thousands (even millions) of interacting computing devices. Due to the improvements in fabricating technologies, it is becoming possible to build tiny single-chip devices equipped with logic circuits, sensors, actuators and communication components. A large number of these devices can be networked together to build Massively Distributed Embedded Systems (MDES). A wide variety of embedded control applications are envisioned for MDES: responsive environments, smart buildings, wildlife monitoring, precision agriculture, inventory tracking, etc. These examples are compelling, however, developing applications for MDES remains complex due to the following issues: MDES consist of large number of resource constrained devices and the number of potential interactions between them can be combinatorially explosive. Systems with the combined issues of such scale complexity, interaction complexity and resource constraints are unprecedented and cannot be programmed using conventional technologies. Accordingly, this thesis presents cut, a language that employs the following techniques to address the issues of MDES: 1. To address the scale complexity, c@t provides tools for programming the system as a unit. 2. c@t offers a declarative style network programming interface so that network interactions can be implemented without writing any low-level networking code. 3. The applications developed using c@t are vertically integrated. That is, the compiler customizes the runtime environment to the suit the application needs. Using this integrated approach, efficient applications can be developed to fit the available resources. This thesis describes the design, features and implementation of c@t in detail. A sample application developed using c@t is also presented.y Devasenapathi P. Seetharamakrishnan.S.M
    corecore