
Ct: A Language for Programming

Massively Distributed Embedded Systems
by

Devasenapathi P. Seetharamakrishnan

Bachelor of Engineering in Electronics & Communication
Government College of Technology, Coimbatore

June 1991

Submitted to the Program in Media Arts & Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science in Media Technology

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2002 ROTCH

@ 2002 Massachusetts Institute of Technology.
All rights reserved.

AASSACHVSETT-S INSTITU E -- '
OF TECHNOLOGY

OCT 2 5 2002

LIBRARIES

Author..........

Program in Media Arts & Sciences
August 31, 2002

Certified by O-.:

V. Michael Bove, Jr.
Principal Research Scientist, Media Arts and Sciences

Thesis Supervisor

A ccepted by
Andrew B. Lippman

Chairman, Department Committee on Graduate Students

C~t: A Language for Programming
Massively Distributed Embedded Systems

by

Devasenapathi P. Seetharamakrishnan

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on August 31, 2002, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Technology

Abstract

This thesis presents ct, a language for programming distributed embedded systems
that are composed of thousands (even millions) of interacting computing devices.

Due to the improvements in fabricating technologies, it is becoming possible to
build tiny single-chip devices equipped with logic circuits, sensors, actuators and
communication components. A large number of these devices can be networked to-
gether to build Massively Distributed Embedded Systems (MDES). A wide variety
of embedded control applications are envisioned for MDES: responsive environments,
smart buildings, wildlife monitoring, precision agriculture, inventory tracking, etc.

These examples are compelling, however, developing applications for MDES re-
mains complex due to the following issues: MDES consist of large number of resource
constrained devices and the number of potential interactions between them can be
combinatorially explosive.

Systems with the combined issues of such scale complexity, interaction complexity
and resource constraints are unprecedented and cannot be programmed using conven-
tional technologies. Accordingly, this thesis presents cut, a language that employs
the following techniques to address the issues of MDES: 1. To address the scale
complexity, c~t provides tools for programming the system as a unit. 2. cct of-
fers a declarative style network programming interface so that network interactions
can be implemented without writing any low-level networking code. 3. The applica-
tions developed using c@t are vertically integrated. That is, the compiler customizes
the runtime environment to the suit the application needs. Using this integrated
approach, efficient applications can be developed to fit the available resources.

This thesis describes the design, features and implementation of cct in detail. A
sample application developed using c~t is also presented.

Thesis Supervisor: V. Michael Bove, Jr.
Principal Research Scientist, Media Arts and Sciences

Ct: A Language for Programming
Massively Distributed Embedded Systems

by

Devasenapathi P. Seetharamakrishnan

T hesis R eader

Joseph A. Paradiso

Associate Professor of Media Arts and Sciences

MIT Media Laboratory

/2

T hesis R eader

Gerald Jay Sussman

Matsushita Professor of Electrical Engineering

MIT Department of Electrical Engineering and Computer Science

Acknowledgments

First and foremost my thanks to my erstwhile advisor H. Shrikumar. He inspired me

to do good research and supported me and my work with sincerity and clarity.

Prof. Mike Bove kindly adopted me as his student, after Shrikumar's departure.

I am grateful to him for his kindness, advice and support.

To my readers, Prof. Joe Paradiso and Prof. Gerry Sussman, I offer my sincere

thanks; you have done me a great honor. I am very grateful to Prof. Gerry Sussman

for valuable pointers and insightful advice. He made time for (even encouraged) a

number of meetings to discuss the issues and crystallize the ideas.

My special thanks to Prof. Neil Gershenfeld for admitting me to the Physics and

Media Group. I am indebted to Prof. Whitman Richards for inspiring me to see the

regularities in myriad details.

Bill Butera was my zen master. I am indebted to him for providing me intellectual

and emotional support.

Stefan Marti was my unofficial "big brother". He has helped me in many possible

ways - making posters, reviewing my drafts, teaching the ways of the lab, chocolates,..

an endless list.

Josh Lifton and Radhika Nagpal offered immeasurable help and insight.

I am also grateful to many students for their help and support. Thanks to Marco

Escobedo, Rich Fletcher, Ashish Kapoor, Natalia Marmasse, James McBride, TJ

Mcleish, Surj Patel, Ali Rehimi, Ramesh Srinivasan, Sunil Vemuri, Ben Vigoda, and

Jim Youll.

I was also fortunate to receive valuable hints and notes from researchers through

newsgroups and mailing lists. Thanks to Prof. Steven Johnson of Indiana University

and Dr. Aubrey Jaffer of the scheme community.

This thesis is developed entirely using the software that is freely available. I thank

the following organizations for distributing valuable software resources freely: GNU

(Debian Linux, XEmacs, GCC, Latex, Simulpic, etc), Hi-Tech (PICC Lite compiler),

Javasoft (Java 2), and PLT Schemers (MZScheme).

Linda Peterson safely carried me through various obstacles. I can't thank her

enough.

I am thankful to Satish Raj, my friend, philosopher and guide for inspiring me to

seek quality in everything I do.

Finally, thanks and love to my family and in particular to my wife, Sonal Shastri

for her unfaltering love and support.

Contents

1 Introduction

1.1 System Characteristics and Issues

1.1.1 Scale Complexity

1.1.2 Interaction Complexity

1.1.3 Spatial Relations Between Devices

1.1.4 Minimal Resources

1.2 c~t Overview

1.2.1 Collective Programming

1.2.2 Associative Naming Scheme (ANS)

1.2.3 Declarative Network Programming

1.3 Outline of Thesis

2 Related Work

2.1 Programming Models

2.1.1 Amorphous Computing

2.1.2 Paintable Computing

2.2 Programming Languages

2.3 Network Architectures

3 The cQt Language

3.1 Lexical Conventions

3.1.1 Identifiers

3.1.2 Whitespace and Comments

3.1.3 Other Notations

3.2 Basic Concepts

3.2.1 Variables

3.2.2 Regions

20

20

21

22

22

23

25

26

26

26

27

27

27

. 27

3.3 Compiler Directives

3.3.1 Device Declarations

3.3.2 Device Set Specifications (DSS) . . .

3.4 Expressions

3.4.1 Primitive Expression Types

3.4.2 Derived Expression Types

3.5 Support for Low-level Programming

3.5.1 Special Function Registers and Ports

3.5.2 Including Assembly Language Code

3.5.3 Interrupt Handling

4 Runtime Environment

4.1 Runtime Design

4.1.1 Remote Symbol Reference Subsystem

4.1.2 Message Interpreter

4.2 Runtime Implementation

4.2.1 Remote Symbol Reference Subsystem

4.2.2 Message Interpreter

5 Application Example

5.1 Simulation Environment .

5.2 Get-Set-Go: A Self-organizing Building Control System

6 Conclusions and Future Work

A Formal Syntax

B Source Code

R eferences

. 28

. 29

. 29

. 31

. 31

. 35

. 37

. 37

. 38

. 38

39

. 40

. 40

. 44

. 45

. 45

. 46

49

49

51

55

List of Figures

1-1 Sample Application 14

1-2 Functioning of the c~t Compiler. 16

3-1 Program Regions. 28

4-1 The Code Components Generated by the c~t Compiler. 39

4-2 The RSR Components and Their Interactions for a Simple Call. . . . 42

4-3 The Sequence of Events in Invoking a Remote Function. 43

5-1 Simulator Architecture. .

5-2 Simulator Screen Shot. .

. . . 50

. . . 52

6-1 An Embedded Device Network.

List of Tables

2.1 Comparisons with Parallel and Distributed Programming Languages. 24

3.1 Metacharacters of Count Expression. 31

4.1 A Message Example. 46

4.2 The Message Structure in the Runtime Environment for Microchip PIC

16F84........ 48

5.1 Memory Usage Statistics . 53

Chapter 1

Introduction

D UE to advances in fabrication technologies, it is becoming possible to fab-

ricate single-chip devices that contain logic circuits, sensors, actuators and

communication components. These devices are simple and tiny, and yet they can be

networked together to build Massively Distributed Embedded Systems (abbreviated

as MDES). These systems can enable a wide variety of distributed embedded con-

trol systems: responsive environments, environmental monitoring, inventory tracking,

precision agriculture, wildlife tracking, etc.

These applications are compelling, but, due to some unique issues of MDES, there

are several challenges to programming and networking them. This thesis presents a

language, named c~t1 , that attempts to address these challenges and to facilitate

programming MDES.

This chapter discusses the challenges of MDES and presents a conceptual overview

of c~t.

1.1 System Characteristics and Issues

The unique characteristics of MDES are illustrated through a sample application -

distributed building networks.

Researchers [18] are developing concepts for creating reconfigurable buildings from

an integrated chassis that can be rapidly and precisely installed with minimal field la-

'The name is derived from Computation at a point in space (@) and Time.

bor. In one integrated assembly, pultrusion glass fiber composite beams and columns

provide structure, insulation, sensor arrays, lighting, signal and power cable raceways,

and ductwork. The chassis provides the necessary physical, power, and signal con-

nections for mass customized infill components to be quickly installed, replaced and

upgraded without disruption. Infill components may include integrated wall/floor as-

semblies, specialty millwork with transformable elements, display systems, networked

appliances and devices, etc.

Dynamically reconfigurable buildings can lead to substantial reductions in building

costs and to efficient space utilizations.

However, if buildings are to be reconfigurable, the electric networks must be re-

configurable too. That is, it must be possible to modify electrical networks according

to the changes in building/room structures. For instance, if a single big room Ro

is divided into two small rooms R1 and R 2 , the electrical appliances have to behave

accordingly; a switch in R1 should control only the lights in R1 and not the ones in

R 2 (even though that might have been correct in the old configuration).

A novel building network [27] to support reconfigurable buildings is being devel-

oped. In this network, associations are in software instead of the usual hardwire

connections. That is, every electrical component is connected (directly or indirectly)

to every other component and the semantic associations are created and deleted if

when and necessary.

Every electrical component, beam, column and infill panel is equipped with em-

bedded computing devices. These computing devices self-configure into electrical

networks that reflect the building structure.

The unique characteristics of MDES that can be observed from this example are:

* Scale complexity - Extremely large number of devices.

" Interaction complexity - Potentially combinatorially explosive number of inter-

actions between those devices.

" Spatial relations - Spatial and structural relations between devices form a sig-

nificant part of the computations.

* Resource constraints - Devices are usually designed with minimal resources to

reduce cost and size of devices.

These characteristics pose some unique challenges and issues and they are dis-

cussed next in detail.

1.1.1 Scale Complexity

MDES consist of extremely large number of nodes. For instance, a building network

that supports a large building would be composed of hundreds of thousands of em-

bedded devices. In fact, building control systems with tens of thousands of nodes

already exist [12]. Shrikumar [28] and Takada et al [30] predict that the next wave

of distributed embedded systems will be composed of thousands to billions of tiny

devices.

Conventional distributed computing technologies involve several manual opera-

tions - configurations, topology design, maintenance, etc. As D.Tennenhouse [31]

remarks, these technologies are not suitable for MDES, as the ratio of number of

devices to number of humans would be too large for human-centric solutions.

1.1.2 Interaction Complexity

In MDES, it would be necessary for many devices to cooperate to complete an ap-

plication task. The computations performed by individual devices might be simple

but the tasks completed collectively could be substantial. For example, in building

networks, neither temperature sensors nor fan controllers can complete any significant

application tasks on their own. But, by cooperating, they can maintain the desired

temperatures in the building.

Coordination and cooperation between a large number of devices would require

a large number of network communications. This is unlike conventional computers

where individual nodes perform sizeable tasks and coordinate with other computers

when there is a need.

Moreover, since MDES might be deployed in unconventional environments, they

may not have any network infrastructure elements such as nameservers and routers.

As a result, the devices would need to perform both the application and the network-

ing tasks such as routing, naming services, etc.

Given the large number of interactions and the lack of network infrastructure,

developing distributed applications for MDES using conventional programming lan-

guages (usually, embedded applications are written in C, Forth, Assembly, Java Mi-

croedition, etc) would be complex and tedious.

1.1.3 Spatial Relations Between Devices

Embedded devices are tightly coupled to the physical world and the principal role of

embedded software is not the transformation of data, but rather the interaction with

the physical world. As a result, the spatial relations between devices becomes an

important factor. For example, in building networks, embedded computing devices

need to self-configure into building control systems. This requires that the devices will

be able to determine the room they are located in, compute the shape of the room they

are in, the wall they are attached to, etc; whereas in current distributed computing

technologies, geometric and spatial relations are considered to be irrelevant.

1.1.4 Minimal Resources

Individual devices are deliberately designed with minimal computational resources,

such as memory, processing power and communication capacity. There are two rea-

sons for minimizing the resources:

e Cost Reduction - Should computers be truly ubiquitous, they must cost almost

nothing. As N. Gershenfeld states [14], a business card that can call up a

business's web page would be convenient, but there wouldn't be a business left

if its cards cost more than a few cents .

o Size Reduction - Devices must be vanishingly small to be literally embedded in

objects. If they are tiny, they will not only occupy less space (and volume), but

they will weave themselves into the fabric of everyday life. Such a disappearance

is a fundamental consequence not of technology, but of human psychology [33].

Since these devices have limited resources, both communications and computa-

tions must be efficient. That is, the code must minimize message complexity, time

complexity and space complexity. Producing such efficient code using conventional

languages is difficult, if not impossible.

1.2 ct Overview

This thesis introduces c~t, a language that attempts to address the above mentioned

challenges and to facilitate developing applications for MDES. This section presents

the fundamental ideas and techniques of this language.

Figure 1-1 gives a simple temperature control system written in c~t. In this appli-

cation, temperature sensors monitor the ambient temperature and if the temperature

is greater than or equal to seventy degrees, they invoke the function activate on all

the fans that have more than 0.5 units of battery power.

(declare-device sensor ((processor ''16F628'')))

(declare-device fan ((processor' '18F2320' ')))

(declare-cluster temp-control ((sensor 160) (fan 90)))

(define (@ (= device sensor)...) float temperature 0)
(define (? (= device sensor) .. .) void (monitor)

(if (>= temperature 70)

(activate (@ (grammar relational)

(filter (and (= type fan) (> battery 0.5)))))))

(define (@ (= device fan)...) void (activate)

(set! RB7 #x80))

Figure 1-1: Sample Application.

A c~t program consists of four parts:

1. Device Declarations - Specifies the devices that are part of the system. The

temperature control system consists of two types of devices - fans and sensors.

2. Cluster Declarations - Specifies the cardinality of every type of device in the

system. In this example, there is one cluster called temp-control and it is

comprised of 160 sensors and 90 fan controllers.

3. Device Set Specifications - An embedded language2 that can be used to select

a subset of devices from the set of declared devices. Device set expressions

start with the 0 operator. For example, the variable temperature is defined on

sensors using the expression (0 (= device sensor)).

4. Variables and Functions - As in the other high-level languages, programs can

be composed using functions and variables. However, they can be defined on

and referenced from multiple devices using device set specifications. For exam-

ple, the function activate that is defined on fans is invoked from monitor, a

function defined on sensors.

c4t employs the following techniques to enable programming MDES easily and

efficiently:

" Collective programming - Multiple devices can be programmed together "Sys-

tem as a unit" approach. The language allows the programmers to view and

program the system as a whole without worrying about the myriad devices and

details.

" Associative Naming - Devices can be addressed based on intentions, functions,

states and roles rather than just upon the numeric identifiers.

" Declarative network programming - Interactions between devices can be imple-

mented without writing low-level network code.

In the next few sections, these techniques are explained in detail.

1.2.1 Collective Programming

Scale complexity of MDES is alleviated using the collective programming approach.

In cOt, users program just a small number of virtual components which get automat-

ically realized into potentially a much larger number of physical components. This is

possible because MDES are usually composed of a small number of equivalent classes

2It is similar to how regular expressions are embedded in languages such as Perl and Awk.

of devices. The equivalence could be in terms of the functions performed or their

properties or their current states. For example, although the temperature control

application consists of 250 individual devices, they can be classified into sensors and

fans based on their roles.

In c~t, devices can also be classified using their dynamic characteristics such as

current states. For instance, the function active is invoked on fans, but only on

those fans that have more than 0.5 units of battery power.

The Figure 1-2 shows the functioning of the c@t compiler. It takes a single

sequential c~t program that describes the system level behavior and produces code

files for each target device that is part of the system. For this temperature control

application, the compiler would produce 250 code files that would execute on 160

sensors and 90 fans.

Figure 1-2: Functioning of the c~t Compiler.

c@t Program A Sequential Program

c@t Compiler

Device nDevice 1 Device k

1.2.2 Associative Naming Scheme (ANS)

Since the systems would be composed of equivalent sets of devices, communication

would be not between individual devices, but between sets of them. It is important

to note that some form of identification is necessary to distinguish between members

of a set of equivalent devices. For example, to communicate with specific sensors,

the individual devices in a sensor network need to be uniquely identified. Unlike

with conventional networks, this identifier can be derived from the device attributes.

For instance, two different sensors could be distinguished based on their physical

locations.

To specify communications between sets of devices, a novel naming scheme called

Associative Naming Scheme (ANS) has been developed. ANS is a naming mechanism

that can be used to name devices based on their static characteristics (type, role,

position etc) or their dynamic characteristics (current state, variable value etc).
Different generative languages are suitable for expressing different types of clas-

sifications. For instance, relational expressions can be used to select devices based

on their attributes. Spatial formalisms such as geometrical equations, Lindenmayer

systems [22] and fractals [23] can be used to select devices based on their spatial and

structural properties. For example, in a wildlife tracking sensor network, a motion

sensor, might need to coordinate with other sensors in a circular space to determine

the direction and speed of animals. The area could be easily expressed using the

geometrical equation of the circle.

The grammar field in the specification is used to choose between different gram-

mars. For example, the expression (0 (grammar relational) (f ilter (and (=

device fan) (< hop 3)))) uses a relational expression to choose devices. In the

current implementation, only relational expressions can be used for specifying device

sets.

The ANS is inspired by the the Intentional Naming System (INS) [3], a resource

discovery and service location system for dynamic and mobile networks of devices

and computers. ANS is more flexible as different types of grammars and the device

count can be used in selecting target devices.

1.2.3 Declarative Network Programming

In cQt, the interactions between devices can be implemented without writing any low-

level networking code. c~t uses the paradigms of function calls and variable references

to represent the interactions between devices. Further more, these transfers of control

and data can be implemented without writing any low-level networking code. For

instance, the function activate defined on fan controllers is invoked by the function

monitor defined on sensors as seamlessly as invoking a local function.

The machine code produced by the c@t compiler is vertically integrated. That is,

the c~t compiler not only produces the application code, but also every single code

component that runs on devices. This integrated approach can lead to efficient code

realizations, as all the components can be tailored to the needs and characteristics of

the application. For instance, the temperature control system can be realized in at

least three of many possible ways:

1. A centralized solution, where a powerful device (if available) is chosen as a

registry and all the other devices register themselves with that registry. When

the sensors need to activate a fan controller, they can search this registry to

choose an appropriate device and send an activation message.

2. A completely decentralized solution, where devices form minimum spanning

trees to communicate and interact. Every time there is a temperature change,

the sensors could search the neighborhood for fans and notify the best one. This

solution is best suited for situations where there is no powerful device to act as

a central registry and the searching for devices would not be expensive.

3. A hybrid solution, where many clusters are formed with one fan, one heater and

multiple sensors. This solution assumes that fans can service multiple sensors

simultaneously.

A solution can be selected based upon the required performance (limit on num-

ber of messages exchanged, reliability, duration of operation etc) and the available

resources (computational resources, interconnection topology etc). Such extensive

analysis is beyond the scope of current implementation. Currently, this work focuses

on language design, development of the c@t compiler, and the implementation of a

runtime environment.

1.3 Outline of Thesis

The rest of thesis is organized as follows. Chapter 2 reviews prior work related

to MDES and c@t. Chapter 3 outlines the basic concepts of the language, then

provides a detailed description of the language constructs. Chapter 4 describes the

design of the runtime environment and its implementation for Microchip midrange

microcontrollers. Chapter 5 presents our experience developing a simple distributed

embedded system using c@t. Chapter 6 discusses several directions for future research

and presents the conclusions.

Chapter 2

Related Work

T HE issues of MDES are not unique in and of themselves. Other areas of com-

puting have worked out solutions for many similar issues. In fact, this work

is inspired by several engineering techniques and tools: Associate Naming Scheme is

inspired by Intentional Naming System [3]; the idea of synthesizing applications from

minimally constrained programs using extensive analysis is borrowed from VHDL

[13]; and, the elements of Device Set Specifications are loosely based on the Perl

regular expressions.

Although some of the issues of MDES are handled by conventional technologies,

the combination of these issues is unprecedented. Existing technologies don't work

for MDES as they make several assumptions - amongst them: that there are central

coordinating entities, that the ratio of number of computers to number of humans is

small, that the computational devices are unique, etc - that are not true for MDES.

This chapter discusses the research works related to this thesis. These related

efforts can be broadly classified into three main topics: programming models, pro-

gramming languages, and network architectures for embedded devices. Each of these

topics are discussed in detail below.

2.1 Programming Models

Researchers have proposed two programming models - Amorphous computing [1] and

Paintable computing [8] for massively distributed embedded systems (MDES).

2.1.1 Amorphous Computing

The amorphous computing model was developed for programming amorphous com-

puters. An amorphous computer consists of myriad computing particles embedded in

physical space. The particles have limited computational resources; they run asyn-

chronously, communicate with each other over a very limited physical distance, and

are placed arbitrarily with respect to each other.

Two application specific programming languages were developed for this comput-

ing model: 1. Growing Point Language (GPL) [11], and 2. Origami Shape Language

(OSL) [25].

Growing Point Language (GPL)

D. Coore has developed GPL using the botanical metaphor of "growing points". A

growing point is a locus of activity in an amorphous computing medium. It can be

propagated to an overlapping neighborhood. Growing points can split, die off, or

merge with other growing points. As a growing point passes through the medium, it

affects the differentiation of the behaviors of the computing elements it visits. The

growing point may be sensitive to particular diffused messages, and in propagating

itself, it may exhibit a tropism toward a source, away from a source or move in other

ways based on concentrations of diffused messages. In this way, GPL can generate

various patterns such as Euclidean constructions, the interconnect topologies of an

electronic circuit, etc.

Origami Shape Language (OSL)

In her Ph.D thesis, R. Nagpal [25] presents OSL, another language for program-

ming amorphous computing devices. OSL is a language for instructing a sheet of

identically-programmed, flexible, autonomous agents ("cells") to assemble themselves

into a predetermined global shape, using local interactions. With this language, a wide

variety of global shapes and patterns can be described at an abstract level, compiled

into cell programs, and then synthesized using only local interactions between iden-

tically programmed cells. Examples include flat layered shapes, all plane Euclidean

constructions, and a variety of tessellation patterns.

Both these languages focus on generating complex collective patterns from the

local interactions of individual devices. They are not geared for general purpose

programming.

2.1.2 Paintable Computing

W. Butera [8] developed paintable computing and the corresponding programming

model. A paintable computer is defined as an agglomerate of numerous, finely dis-

persed, ultra-miniaturized computing particles; each positioned randomly, running

asynchronously and communicating locally. The programming model is based on

mobile processes and environmental support for the process mobility, scheduling and

data exchange.

Although the paintable computing model is an interesting way to program MDES,

no programming language has been developed for implementing this model. For

instance, J. Lifton [21] has implemented this programming model in C on Pushpin

Computers.

2.2 Programming Languages

The area of distributed embedded systems is actually a specialization of both dis-

tributed computing and parallel computing systems. Due to the common character-

istics, several useful techniques can be borrowed from distributed [19, 6] and parallel

computing languages [20]. Despite the similarities, none of these languages have all

the features that are necessary to address the challenges discussed in Section 1.1.

Table 2.1 compares cOt, and parallel and distributed programming languages.

Technically, many languages such as C, Java and processor specific assembly lan-

guages can be used to program MDES. However, the task becomes tedious as these

languages don't have the right tools, abstractions, and constructs. As Abelson et

al [2] remark, a programming language is more than just a means for instructing a

computer to perform tasks. The language also serves as a framework with which we

organize our ideas about systems. That is why some languages with the right set of

abstractions and expressions are more suitable for developing some types of systems

than others.

2.3 Network Architectures

Sun Microsystems Inc. has developed JINI [32] to facilitate programming distributed

embedded systems. JINI is a set of Java APIs and network protocols that can be

used to build and deploy distributed systems that are organized as set of services. A

service is any useful function offered by the devices in the network. For instance, a

JINI-enabled printer could offer a printing service.

JINI defines a runtime environment that provides mechanisms for adding, remov-

ing, locating and accessing services. The devices that provide services add themselves

to service registries. Clients locate these services by querying these registries. Once

they find the required services, the clients can invoke the appropriate methods on the

service provider objects to avail their services.

JINI imposes a centralized architecture on the applications. Centralized solutions

have a few disadvantages:

* The registries have to be powerful enough to coordinate a large number of

devices. Further, those nodes may be single points of failure.

" More importantly, the registries have to be carefully positioned at the appropri-

ate locations to serve the other nodes. That is, if registries are separated from

the other devices, just the management messages such as service discovery and

service registration would far outnumber the application messages.

In cQt, the programs are not bound to any architectures. Since the applications

are vertically integrated, the compiler can produce the most effective implementation

of the application code.

Feature c@t Parallel Lan- Distributed
guages Languages

Example Lan- - Concurrent C, Oc- SR, Ada, Erlang,
guages cam, StarLisp, etc NIL, etc

Primary Objec- A high-level lan- These languages These languages
tive guage that can be aim to exploit aim to pro-

used to collectively the parallelism vide support for
program a very of multiprocessor concurrency, com-
large number of systems to achieve munication and
devices. maximum perfor- failure detection to

mance and reduce build applications
computing time. using multiple

computers.

Primary Target Systems with a Multiprocessor Multicomputer
Architectures very large number systems with a systems; e.g

of tiny computing number of power- telephone
devices; e.g. sen- ful processors; e.g. switches, repli-
sor networks and CM-2 of Thinking cated database
distributed control Machines and servers etc.
system MP-2 of MasPar.

Collective Pro- Yes, a large num- Yes, multiproces- Usually not possi-
gramming ber of devices can sor systems can ble, as there is not

be collectively be programmed much equivalence
programmed using using implicit and between nodes.
predicate and explicit parallel
pattern languages programming

____ ____ ____ ___ ____ ____ ___ languages._ _ _ _ _ _ _ _ _

Spatial relations Can be specified Usually considered Usually considered
between nodes using various pat- to be irrelevant to be irrelevant

tern languages
Networking Integrated net- Not applicable Layered network-

work programming ing and usually ID
and intentional based communica-
communications tions.

Table 2.1: Comparisons with Parallel and Distributed Programming Languages.

Chapter 3

The c~t Language

The goal of c@t is to help manage the scale and interaction complexities of MDES by

preserving the sequential programming paradigms for distributed computations. c@t

satisfies this goal by using the techniques of collective programming and declarative

network programming.

The design of c@t language is heavily influenced by Scheme. cat, like Scheme,

employs a fully parenthesized prefix notation for programs and data. This language

is statically scoped with a block structure established by the enclosing functions.

c@t is a statically typed or a strongly typed language. Types are associated

with variables. Every program statement is checked for the correct type usages and

promotions.

Arguments to cat procedures are always passed by value, which means that the

actual argument expressions are evaluated before the procedure gains control, whether

the procedure needs the result of the evaluation or not.

The cat compiler is written in Scheme (PLT Scheme [26]). As shown in Figure

1-2, the c@t compiler translates the programs to ANSI C and employs a C compiler

to generate processor-specific machine code. The current implementation uses the

Hi-Tech PICC Lite compiler [16] to generate code for midrange PIC processors.

The advantages of the translating to C are:

* The c(t compiler can utilize many of the low-level service routines provided

by the C compiler. For instance, the PICC lite compiler provides memory

initialization routines, interrupt handling routines, power on reset code, floating

point routines etc.

* Since c~t translates programs to ANSI C and C compilers are available for many

commercially available processors, it becomes easy to support a wide range of

processors immediately without writing any processor-specific code generators.

This approach has one disadvantage: since the c~t compiler doesn't have complete

information about the low-level code generated by the C compiler, it could be a barrier

to producing integrated applications. However, the cQt compiler can reasonably

approximate the necessary information and still function adequately.

This chapter presents the concrete syntax and semantics of expressions, programs,

and definitions. The formal syntax is presented in Appendix A.

3.1 Lexical Conventions

This section presents the lexical conventions used in writing cat programs. Upper and

lower case forms of a letter are distinct both within character and string constants,

and the program elements.

3.1.1 Identifiers

An identifier is an unlimited-length sequence of alphabetic characters, underscore and

digits, the first of which must be an alphabetic character. An identifier cannot have

the same spelling as a keyword.

3.1.2 Whitespace and Comments

Whitespace characters are spaces and newlines. Whitespace is used for improved

readability and as necessary to separate tokens from each other, a token being an

indivisible lexical unit such as an identifier or number, but is otherwise insignificant.

Whitespace may occur between any two tokens, but not within a token. Whitespace

may also occur inside a string, where it is significant.

A semicolon(;) indicates the beginning of a comment. The comment continues till

a newline is encountered.

3.1.3 Other Notations

The following notations are important:

* ()- Parentheses are used for grouping and to notate lists.

.' -The single quote character is used to indicate constant data.

" - The double quote character is used to delimit strings.

S\ - Backslash is used in the syntax for character constants and an escape within

string constants.

3.2 Basic Concepts

3.2.1 Variables

An identifier that names a location where a value can be stored is called a variable

and is bound to that location. The set of all visible bindings in effect at some point

in a program is known as the environment in effect at that point. The value stored

in the location to which a variable is bound is called the variable's value.

3.2.2 Regions

Like Scheme, cQt is a statically scoped language with block structure. To each place

where an identifier is bound in a program, corresponds to a region of the program

text within which the binding is visible.

The region is determined by the particular binding construct that establishes the

binding. For example, if the binding is established by a function definition, then its

region is the function definition. Every mention of an identifier refers to the binding

of the identifier that established the innermost of the regions containing the use, then

the use refers to the binding for the variable in the top level environment, if any; if

there is no binding for the identifier, it would lead to a compilation error.

As the compiler translates the programs to C and since C doesn't supported nested

function definitions and variable definitions within expressions, the regions established

by functions can be deepest in the hierarchy of regions. That is, identifiers cannot be

defined within expressions.

Identifiers defined within a function can be referenced only within that function;

the top level identifiers (global symbols) are visible in all the regions defined on that

device. It is important to note that since the symbols can be referenced remotely, top

level identifiers can be accessed from other devices using the device set specifications

mechanism.

Figure 3-1 shows how the program regions are established and referenced. The

functions F11, F12, F13 establish three different regions on device 1. Similarly, the

functions F21, F22 establish two different regions on device 2. Any identifier defined

within these functions would not be available outside their scope, whereas the symbols

defined in either of the top regions would be visible in both the devices.

Top] Tep2

F11 F21

F12

F22

F13

Device I Devke 2

Figure 3-1: Program Regions.

3.3 Compiler Directives

cOt provides two expression types that can be used to modify the behavior of the

compiler:

e Since MDES are usually composed of heterogenous devices that are based on

different processors, devices and their characteristics must be supplied to the

compiler using device declaration expressions.

* Since functions can be defined on a set of devices, the set can be selected from

the declared devices using the Device Set Specification(DSS). DSS is also used

to specify target devices of variable and function references.

These compiler directives are discussed in detail here.

3.3.1 Device Declarations

Device declaration expression can be used to define devices that are part of the system.

The structure of device declaration is presented here:

(declare-device device ((attr1 vall) (attr2 val2) ... (attrN valN)))

(declare-cluster (devicel count) (device2 count) .. . (deviceN count))

Any number of attributes can be specified. The values must be valid literal con-

stants.

The number of devices of each type in the system is specified using declare-cluster

expressions.

(declare-cluster (devicel count) (device2 count) ... (deviceN count))

Device declarations are used for the following purposes:

1. To inform the compiler of the target devices and generate processor-specific

machine code.

2. The cOt compiler can use the information to generate code that is most suitable

for the target processor configuration and resources.

3. Functions and variables can be selectively defined and referenced based on these

attributes.

3.3.2 Device Set Specifications (DSS)

The Device Set Specifications(DSS) are used to select a subset of devices from the

set of declared devices. When a variable or a function is defined or referenced, a set

of devices that are targets of definition or of reference can be specified through the

device set specification expression.

The device set specification has the form:

(0 (grammar g) (count min max)

(filter expression) (results result-count result-set))

In fact, device set specification expression is a separate language that is embedded'

in c@t. It has four components: grammar, count, filter and results. They are discussed

in detail in the next few sections.

Grammar

In MDES, a subset of devices can be selected based on different classifications: re-

sources, roles, locations, structural relations etc.

Fortunately, there are several formalisms for classifying sets of objects. Some

formalisms can express some classifications better than others. For instance, complex

3-D structures can be expressed succinctly using Lindenmayer systems; relational

algebra can be used for attribute based classifications.

The Grammar field gives the flexibility to use various formalisms for selecting

subsets of devices. In the current implementation of cdt, however, only relational

expressions can be used, but future extensions can employ other formalisms.

Count

Count specifies the minimum and maximum number of devices to be selected. Both

the min and max fields must be positive numbers or metacharacters. The metachar-

acters can be used when the exact numbers don't matter or can't be known. The

valid metacharacters and their special meanings are shown in Table 3.1.

Filter

The Filter field is used to specify the criteria for selecting a subset of devices. The

specified filter expression should be valid in the grammar employed. For instance, if

'It is similar to how regular expressions are embedded in languages such as Perl and Awk.

Character Meaning
+ 1 or more
? 0 or 1
* Oor more

Table 3.1: Metacharacters of Count Expression.

the grammar used is relational, then a valid combination of logic operators (and, or,

not), relational operators (=,! =, <, <=, >, >=), attributes and their values can be

used to choose a subset of devices.

The attributes can be any of the properties in the device declaration or any of the

variables in scope.

Results

The results field is ignored when used with definitions. It is useful when invoking a

remote function or referencing a remote variable. If multiple devices satisfy the DSS

and return results, the first of these is returned as the value of that expression and

stored as the first element of the result-set array. The remaining results are stored

in the subsequent positions of the result-set. The number of results in the result-set

is stored in result-count. The application programmer is responsible for defining this

array.

3.4 Expressions

Expression types are categorized as primitive or derived. Primitive expression types

include variables and procedure calls. Derived expression types are not semantically

primitive and can be constructed using the primitive expressions.

3.4.1 Primitive Expression Types

Definitions

A definition should have one of the following forms:

0 (define (device set specification) variable expression)

e (define (device set specification) variable formals body)

Device set specifications are used to select a subset of devices where variables or

functions must be defined.

Variables can be defined either at the top level of a program or at the top level of

a function. Functions must be defined only at the top level of a program and nested

functions are not permitted.

In the function definition, formals should be a sequence of zero or more pairs of

the form (type variable).

A simple function definition is shown here. A function named square that returns

int and takes an int argument is defined on all motorola 68000 processors.

(define (@ (= processor ''motorola 68000' ') .. .) int (square int num))

(* num num))

Every program must define a driver function named main taking no arguments

and returning an integer. Execution of the program would start with this function.

Variable References

An expression consisting of a variable is a variable reference. The value of the variable

reference is the value stored in the location to which the variable is bound. It is an

error to access an unbound variable.

(define (@ ...) int RAMANUJAN-NUMBER 1729)

Array variables are defined similarly, except the size of the array is also included

in the definition. Also, the initial values are specified as a list. If the initialization

list is null, the array elements are assigned appropriate initial values. If the array is

of numeric type, its elements are initialized with zeroes; if the array is of any other

type, the elements are assigned null characters.

(define (@ ...) int[7] primary-primes ' (1 2 3 5 7)

Since the array is defined to be of size 7 and only 5 initial values are specified, the

last two elements of the array will be initialized to Os.

The elements of arrays can be referenced using array-ref expressions. The struc-

ture of array-ref expressions is as follows:

(array-ref array index-expression)

The array elements are numbered sequentially from 0 to the number (array-size -

1). For example, the following expression would return 7.

(array-ref primary-primes 4)

As previously discussed, both the variables that are defined on the same device

and on the other devices can be referenced. However, while referencing the remote

variables, device set specifications must be specified to identify the set of devices from

which the variable must be referenced.

Literal Expressions

The single quote character is used to include literal constants in cat code. Nu-

merical constants, string constants, character constants and boolean constants are

self-evaluating expressions; they need not be quoted. A few examples are given here:

'a

''Media Lab''

124

#t

Procedure Calls

The procedure calls have one of the following forms:

" (operator operands) - For calling functions on the same device.

" (operator (device set) operands) - For calling functions defined on other devices.

The device set specification determines the target devices.

The following example shows the difference between calling the function add de-

fined on the same device and invoking the one defined on devices that are number-

crunchers.

(add 3 4)

(add (@ (filter (= device number-cruncher)) ...) 3 4)

Conditionals

An if expression can have one of the following forms:

(if test consequent alternate)

(if test consequent)

An if expression is evaluated as follows: first, test is evaluated. If it yields a true

value, then consequent is evaluated and its value is returned. Otherwise alternate is

evaluated and its value is returned. If test yields a false value and no alternate is

specified, then the result of the expression is unspecified.

In the example below, if x is greater than y, x would be returned; else, y would

be returned.

(if (> x y) x y

In this example, no alternate clause has been specified. If z is 0, 0 would be

returned.

(if (= z 0) 0

Assignments

(set! variable expression)

Expression is evaluated, and the resulting value is stored in the location to which

variable is bound. The result of the set! is the expression. For example, in the code

below, the variable pi will be assigned the value of 3.142 and 3.142 will be returned

by the expression.

(set! pi 3.142)

Array Assignments

(set-array! array index-expression value-expression)

The index-expression and value-expression are evaluated. The value is stored

in the array at the location pointed to by the index-expression. For example, the

following code would set the fourth element of the array to 11 and return the value

11.

(set-array! primary-primes 4 11)

3.4.2 Derived Expression Types

Conditionals

(cond (clausel) clause2 ...)

Each clause should be of the form:

((test) (expression))

The last clause may be an else clause which has the form:

(else (expression))

A conditional expression is evaluated by evaluating the test expressions of suc-

cessive clauses in order until one of them evaluates to a true value. When a test

evaluates to a true value, then the remaining expressions in its clause are evaluated

in order, and the result of the last expression in the clause is returned as the result

of the entire cond expression. If all tests evaluate to false values, and there is no else

clause, then the result of the conditional expression is unspecified; if there is an else

clause, then its expressions are evaluated, and its value is returned.

(COnd ((> temperature 70) (set! PORTB #xOl))

((< temperature 40) (set! PORTB #x02))

(else (set! PORTB #xOO)))

In this example, if temperature is more than 70, the value 1 will be assigned to

PORTB; if temperature is less than 40, the value 2 will be assigned to PORTB; if both

the above-mentioned conditions are false, PORTB will be initialized to 0.

Binding Constructs

The binding construct let gives c~t a block structure and is used to define local

variables within functions.

(let bindings body)

Bindings should have the form:

(type variable init)

where each init is an expression and body should be a sequence of one or more

expressions. It is an error for a variable to appear more than once in the list of

variables.

The inits are evaluated in the current environment in the sequential order, the

body is evaluated in the extended environment and the value of the last expression

of a body is returned.

(define (@ ...) int (is-circle (int x) (int y) (int r))

(let

((int x.square (* x x))

(int y-square (* x x))

(int r-square (* r r)))

(= (+ x-square y..square) r..square)))

This example defines a function called is-circle that determines whether its

arguments form a circle. The let expression is used to define three local variables:

x-square, y.square and r-square that are used to check the equation.

Sequencing

(begin (expressioni) (expression2)

The expressions are evaluated sequentially from left to right, and the values of the

last expression is returned. In the example below, x will be assigned 6 and the value

7 will be returned.

(begin (set! x 6)

(+ x 1))

Iteration

(do ((variable 1 initi step1)

(variabien initn stepn))

(test expression)

command)

Do is an iteration construct. It specifies a set of variables to be bound, how they

are to be initialized at the start, and how they are to be updated on each iteration.

When a termination condition is met, the loop exits after evaluating the expressions.

Do expressions are evaluated as follows: The init expressions are evaluated in the

specified order, the variables are assigned the results of init expressions and then the

iteration phase begins.

Each iteration begins by evaluating test; if the result is false, then the command

expressions are evaluated in order for effect, the step expressions are evaluated in

the specified order, the results of the step expressions are assigned to corresponding

variables, and the next iteration begins.

If test evaluates to true, then the expressions are evaluated from left to right, and

the value of the last expression is returned.

In the example below, PORTA is assigned the values 0 to 254. When i becomes

255, the loop is terminated and the PORTA is assigned the STOP..BYTE.

(do ((i o (+ i 1)))

((= i 255) (set! PORTA STOP.BYTE))

(set! PORTA i))

3.5 Support for Low-level Programming

When programming the embedded systems, it might sometimes be necessary to access

specific hardware features. c~t provides the following expressions to facilitate such

low-level programming.

3.5.1 Special Function Registers and Ports

Application programs can reference the I/O ports and the special function registers

as variables. These variables are defined in processor-specific files and they can be

included in the program using the require expression. For example, the following

code sets the TRISA register to the value IF.

(set! TRISA #0xlF))

3.5.2 Including Assembly Language Code

Processor-specific assembly language code can be included in the c@t programs using

asm expressions.

(asm ''movlw 0x25'')

It is the responsibility of the programmer to ensure that assembly language code

doesn't interact incorrectly with compiler-generated code.

3.5.3 Interrupt Handling

In cdt, interrupts can be handled without writing any assembler code. If a func-

tion named handler with void return type and no arguments is defined, it will be

called directly from the hardware interrupt. In the current implementation, multiple

hardware interrupts cannot be handled.

The C compiler that is used with c4t will process this function differently and

generates code to save and restore any registers used and exit using the return from

interrupt instruction rather than the usual return instructions

Currently, this feature has been tested only for the Microchip PIC midrange pro-

cessors.

Chapter 4

Runtime Environment

T HE cat runtime environment is designed to ease the process of developing

massively distributed embedded applications. Figure 4-1 shows the structure

of the code produced by the cQt compiler.

User Program

Power Interrupt Memory Library Remote
On Service Initialization Code Symbol
Reset Routines Code Reference
Code

Message Interpreter

Low-level Network Routines

Figure 4-1: The Code Components Generated by the cQt Compiler.

The power on reset code, memory initialization routines, and interrupt service

routines provide the basic runtime services. Functions and variables defined on other

devices can be referenced using the Remote Symbol Reference (RSR) mechanism. The

Associative Naming Scheme (ANS) is supported by the Message Interpreter (MI).

Low-level network routines are responsible for transmission and reception of net-

work messages. They provide the services that are usually offered by the datalink

and the physical layers of the seven-layer ISO reference model [17]. They may also

need to perform some of the tasks of higher layers such as packet fragmentation,

packet assembly, packet sequencing, end-to-end message deliveries, etc. Currently,

these low-level routines are not implemented in c@t. However, we believe that it

should be possible to add these low-level routines to the c@t runtime environment.

Conventional distributed systems are built using a standard layered model. How-

ever, as D. Clark et al [10] remark, although the layered model facilitates modular

development of subsystems, they also impose inessential constraints and lead to in-

efficient implementations. Since MDES have minimal resources, they need to be

programmed using efficient strategies. As Figure 4-1 shows, the code produced by

the c@t compiler is vertically integrated. That is, the c@t compiler not only produces

the application code, but every single code component that runs on that device. This

integrated approach can lead to efficient code realizations, since all the components

can be tailored to the needs and characteristics of the application. Further, since the

application and the supporting network routines are generated together, the com-

piler can choose the best possible solution architecture for the given application as

explained in Section 1.2.3.

This chapter explains design and implementation of runtime in detail.

4.1 Runtime Design

As explained in Section 1.1, developing MDES applications can be difficult due to

the inherent interaction complexity. c~t provides the RSR mechanism and the ANS

to alleviate the interaction complexity. c@t supports the ANS through the Message

Interpreter (MI). The following sections present the design of RSR and MI.

4.1.1 Remote Symbol Reference Subsystem

The idea of RSR is based on the observation that function calls and variable ref-

erences are well-known and well-understood mechanisms for transfer of control and

data within a program running on a single device. Therefore, it is proposed that

this same mechanism be extended to provide for transfer of control and data across

a communication network. There are several alternatives to RSR: message passing

model (employed by SR [5], for example) and the tuple space model (employed by

Linda [9]). I believe that a choice between these alternatives is not significant, as the

problems of reliable and efficient communications are quite similar to the problems

encountered by the Remote Symbol Reference paradigm used by this work. The over-

riding consideration that made me choose the RSR is that many popular languages

use the function calls and variable references as the mechanisms for data and con-

trol transfer mechanisms. So, it could be easy for programmers to learn and use the

language, if necessary.

The RSR is inspired by the Remote Procedure Calls (RPC) mechanism [7]. But,

there are some significant differences between RSR and RPC:

1. RPC implementations require several manual operations such as installing stubs,

registry etc, whereas in c@t, the application programmer is not required to per-

form any such additional tasks. This is not to say that it is an unique feature

of cOt. In fact, even the early distributed programming languages such as NIL

had [29] provided such a convenient interface for remote method invocations;

but, these conventional distributed programming languages don't have all the

features necessary to support MDES programming.

2. In RPC and other conventional distributed programming implementations, it

is usually assumed a remote function invocation would be executed on a single

target device. In c~t, a function could be executed on multiple target devices

with a single request. This is required for programming MDES, due to the

equivalence sets of devices that form the system.

3. While using RPC, syntactically, there is no difference between calling a remote

procedure and a local procedure. In c~t, there is a minor difference - using DSS

the target devices need to be specified while referencing remote symbols. The

following code snippet illustrates this difference:

; calling local function

(square 5)

; calling remote function

(square (@ (= device calculator) ...) 5)

RSR Sequence

When a remote function is invoked or a remote variable is referenced, the calling

environment is suspended, the access request and parameters, if any, are passed across

the network to the environments (which are referred to as callees) where the function

is to be executed or the variable is to be accessed and the desired action is taken

on those devices. When the callees finish and produce their results, those results are

passed back to the calling environment, where execution resumes as if returning from

a single-machine transfer. Figure 4-2 presents these steps.

Calling Device Target Device(s)

call

Return

Figure 4-2: The RSR Components and Their Interactions for a Simple Call.

The actual sequence of events in invoking a remote function is more elaborate

when the required number of target devices is more than one. The number of results

expected is specified in the count part of the DSS. The calling device waits until the

specified number of target devices return results. For instance, while executing the

following code, the caller would wait for at least 5 (since the minimum specified by

the count component is 5) devices to return results before transferring control back

to the function that initiated the remote call.

(set-seed (@ (count 5 15) (filter (= device random-gen)) .. .) 5)

Figure 4-3 shows the sequence of events in referencing a remote symbol on multi-

ple target devices. The process starts with the calling device sending out the "request

for response" message. The devices that match the filter return a "ready to respond"

message back to the calling device. The calling device selects (based on some cost

function) a subset of devices from the ones that responded and sends the "execute"

R SR.
User Program Runtime untime

remote call fa er reQie
YanaJle or mW ge

uninand
args

transmit

wait

remote call u k pp receivereturn reut

R SR.
untime Runtime User Program

receive

Cessage arguments CtO

execute

transmit MaIts - return

message. The selected devices execute the requested action and return results. The

first result that is received is returned as the value of the function call and the re-

maining results are stored in the specified result-set.

If the remote symbol referenced is a variable, the target devices just return the

variable value and skip the "ready to respond" and "execute" message phases.

Ceilng

Request For
Response
Menages

Taret
Devices

Ready To
Respond Messages

Execute
Messages

Selected
Devices

Results

Figure 4-3: The Sequence of Events in Invoking a Remote Function.

There are a few caveats due to the asynchronous nature of execution and the

potential device failures. First, there is the problem of synchronization: a target

device might satisfy the filtering criteria when receiving the "request for response"

message and before it receives the "execute" message, its state could change such

that it fails the DSS filter. When the calling device sends the execute message to the

device with the changed state, that device would send a "refuse to execute" message

to notify the calling device about its state change. Then the calling device would

repeat the entire execution sequence.

Second, there is the problem of device failures; the devices could just stop working

at any time. If a device stops, before it responds to "request for response" message,

there is nothing to be done to handle the failure. However, if it fails after sending

the "ready to respond" message, the calling device would repeat the entire execution

sequence.

It is ensured that while repeating the sequence, the devices that return results in

the first try would be eliminated to avoid redundant actions on those devices.

This execution sequence and fault tolerance model can handle only the stopping

failures and not the Byzantine failures.

4.1.2 Message Interpreter

The Message Interpreter performs the following two functions:

1. Parsing device set specifications - When a remote function is invoked or a remote

variable is accessed, a message with target devices expressed as the Device Set

Specifications (DSS) is transmitted. Every device that receives the packet parses

the DSS expression to determine whether the message is intended for it.

2. Parsing symbols - The calling device also specifies the function to be executed

or the variable value to be returned. MI is responsible for parsing the argu-

ments, if any, and the return type to ensure that specified types and the local

symbol types match1 . For example, in the code below, the integer variable

current-temperature on heater is assigned the value returned by the function

get-current-temperature defined on sensors. The sender would have specified

that an integer return value is expected. But, the return type of the function

get-current-temperature is string. So, the parser on sensor would catch this

mismatch and prevent the sensor from responding to the request initiated by

heaters.

(define (@ (= device heater) ...) int current-temperature 0)

(define (@ (= device sensor) .. .) string temperature '' 60'C' ')

(define (@ (= device sensor) ...) string (get-current-temperature)

temperature)

(define (@ (= device heater) ...) void (check-temperature)

'The c@t compiler includes the symbol table to the generated code for the use of these parsers.

(set! current -temperature

(get-current-temperature (@ (= device sensor) ...))))

This example illustrates an important point - the remote symbol references

cannot be statically type checked as the same symbol can be defined to be of

different datatypes on different devices and the exact target devices on which

the symbol would be referenced are not known at the compile time.

It is important to see that the message interpreter might contain multiple (one

for each grammar used) parsers for evaluating device set specifications.

4.2 Runtime Implementation

The runtime environment has to be developed individually for every target processor.

Currently, the runtime is implemented only for Microchip [24] mid-range processors.

In particular, this implementation has been tested on the microcontroller - Microchip

PIC 16F84. This microcontroller has 1K words of code memory, 68 bytes of RAM,

64 bytes of ROM and a 8-level stack that can store only the program counter.

The primary reason for testing the implementation on PIC 16F84 is that if this

language can be used with such a resource-constrained device, it is probable that it

could be used for programming processors with more memory and processing power.

The next sections present the implementation details of the runtime environment.

4.2.1 Remote Symbol Reference Subsystem

Implementing the RSR described in Section 4-2 requires RAM for buffering the inter-

mediate results and the code memory for processing code. Since PIC microcontrollers

have limited RAM and ROM, the RSR subsystem must be simplified to work on these

devices. The simplifications are:

* While referencing remote-symbols, the count expressions are ignored. That is,

all the devices that satisfy the specification would execute the requested action

and return results.

* If multiple devices return results, a maximum of five results are preserved.

4.2.2 Message Interpreter

The limited computational resources impose some limits on the message interpreter;

it can parse only simple relational expressions and the messages can be a maximum

of 18 bytes long.

The message structure is given in Table 4.2. Consider a specific example: if the

following line of code is defined on a lamp whose ID is 25 and its current running

packet sequence number is 61, the message would be as shown in Table 4.1.

(add-lamp (@ ... (filter (and (= device ''switch'') (< hop 5)))) id)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 5 'c' 'a' '= 'd' 0 1 ' ''h'0 5 'a' '2' '5' 0 6 1

Table 4.1: A Message Example.

The limited computational resources of the microcontroller and the small message

size (18 bytes) impose the following limitations on the applications. It is important

to understand that these are not the limitations of the language or the compiler, but

the runtime environment that is implemented for PIC 16F84.

1. The device set specifications can only be relational expressions. Further, these

expressions can contain at the most two sub-expressions. The following filters

are valid:

(and simple-exp1 simple-exp2)

(or simple-exp1 simple-exp2)

(not simple-exp)

(simple-exp)

The simple expressions can use only the following four operators: ' <',' >','=',

and '!' (represents not equal).

2. Only device types and integer variables can be used as attributes in simple

expressions.

3. Only remote functions that return no values or integers and take no arguments

or one integer argument can be invoked. Similarly, only remote variables that

are of type integers can be accessed.

4. The most constraining restriction is that two different symbols (variables or

functions), which are defined on the same device, cannot have names with the

same initial letter. This is because when these symbols are transmitted by the

RSR, only their first letter is used to represent them (please see Table 4.2). For

example, if a device has a variable named temperature, it would be represented

using the initial letter 't'.

Despite these limitations, useful distributed embedded applications can be devel-

oped, as illustrated by the sample application presented in chapter 5.

Bytes Field Details
0 - 1 Source ID The ID of the message source.
2 Message This byte can contain only two values - 'c' and 'r'.

Type The character 'c' indicates that this is a request mes-
sage and 'r' indicates this is a reply message.

Device Set
Specifica-
tion

The relational expression that specifies the target de-
vices. The individual bytes and their details are:

3 The values can be 'a', 'o', 'n' and '='.
The first three represent the logical op-
erations conjunction, disjunction and
negation. The character '=' represents
a simple expression.

4 The values can be one of the characters:
'', '!', ' <', and ' >'. They repre-

sent the relational operators equal, not
equal, less than and greater than.

5 A single character that represents at-
tributes.

6 - 7 Contains the attribute value.
8 Same as the fourth byte. But, this byte

can be null, if this is a simple expres-
sion.

9 Same as the fifth byte. But, this byte
can be null, if this is a simple expres-
sion.

10 - 11 Same as the sixth and seventh bytes.
But, this byte can be null, if this is a
simple expression.

12 Remote In a request message (byte2 = 'c'), this byte contains
Symbol the variable or function name. In a reply message
or Return (byte2 = 'r'), this byte can contain the values 0 or
Values 1. The value 0 means no return value in the message
Flag and 1 means a value is returned.

13-14 Arguments In a request message, these bytes contain the argu-
or Return ments to the remote function. In a reply message,
Values these bytes contain the return values, if any, or null.

15 Hop Count Number of hops completed by this message. Devices
increment this field every time they forward the mes-
sage.

16-17 Message This field is used by devices to distinguish between
ID different messages they have transmitted.

The Message Structure in the Runtime Environment for Microchip PIC

3 - 11

Table 4.2:
16F84.

Chapter 5

Application Example

T o evaluate the cOt language, a simple self-organizing building control applica-

tion called Get-Set-Go has been developed in c@t. A simulation environment

has also been implemented to run and evaluate such distributed embedded systems.

This chapter presents the details of both the application and the simulation envi-

ronment. It also discusses the lessons learned from developing this application.

5.1 Simulation Environment

The distributed embedded systems simulator is developed using a two-layered archi-

tecture, as shown in Figure 5-1. The two layers are:

1. Microcontroller Layer - The microcontroller layer simulates the functionality

of a Microchip PIC 16F84 microcontroller. It implements the functions and

features provided by the 16F84. This layer takes a Intel hex file as input and

executes the program in that file.

2. Interface Layer - The interface layer performs two functions:

(a) Acts as a conduit between users and the microcontroller layer. It notifies

the microcontroller of all user actions and presents the microcontroller

output to the user. That is, when a user presses the switch button, this

layer notifies the underlying microcontroller by pulling down the input pin

13. When the voltage level of pin 3 changes, it updates the display to

reflect the status (if pin is high, lamp is on and if pin is low, lamp is off).

(b) Provides the low-level message handling services for the devices. This

function is explained in detail below.

Interface Layer

Figure 5-1: Simulator Architecture.

In the initial versions of the simulator, a microcontroller layer unit was realized

as a single simulated PIC 16F84. The program memory (1k words) and the RAM

(68 bytes) available on a PIC 16F84 turned out to be inadequate for the Get-Set-Go

system. So, as shown in Figure 5-1, the microcontroller layer unit was modified'

to be realized using two PIC 16F84's - a master and a slave. The master runs the

application tasks and the slave handles the network messages.

It is important to note that the simulator contains a single interface layer that is

comprised of several instances (one per simulated appliance) of the microcontroller

layer. The Interface layer simulates the low-level network mechanisms: it transfers

'The c@t compiler and the runtime were also modified for this configuration.

Microcontroler LayerNrocontreler Layer

the messages between slave and master, slave and neighboring units, and master and

neighboring units.

When the master and the slave want to communicate with each other, they write

the message to a designated area in RAM and flip a prespecified location in RAM

to inform the interface layer that a message needs to be transmitted. Similarly, if a

master or a slave wants to communicate with other units, they write the message to

a designated area in RAM and flip another prespecified location in RAM to notify

that a message needs to be transmitted to the neighboring (any device at a one hop

distance) devices. The Interface layer reads the message off the designated memory

area and sends it to that unit's neighbors. When the interface layer needs to pass

the message to the microcontroller layer unit, it writes the message in the designated

area and generates an interrupt to let the corresponding microcontroller know that

the data is available.

As illustrated in Figure 5-1, both the slave and the master can send messages,

however only the slave can receive messages from other units. The slave parses the

incoming messages to determine whether that unit satisfies the DSS filter specified in

the messages. If it does, it transfers the message to the master to execute the actions

specified.

A screen shot of the simulator is presented in Figure 5-2. The simulator takes the

number of devices as input and creates a randomly distributed network of devices.

5.2 Get-Set-Go: A Self-organizing Building Con-

trol System

Get-Set-Go is a simple building control application consisting of 50 switches and 100

lamps. In this application, devices organize themselves into a network such that the

following two conditions are met: First, a switch controls exactly one lamp in its

immediate neighborhood. Second, a lamp may be associated with more than one

switch in its immediate neighborhood.

Figure 5-2: Simulator Screen Shot.

This application works in two phases:

1. Initialization phase - Lamps register themselves with the neighboring switches.

If there are no switches in the neighborhood, that lamp is left without any

association. If more than one lamp registers with a switch, the association with

the lamp that registers last will be preserved.

2. Execution phase - Switches respond to user actions; when a switch is pressed,

it toggles the lamp that it controls. If it is not associated with any lamp, it

ignores the user actions.

This application has been implemented in c~t and the source code is given in

Appendix B.

The c~t compiler produces executables that run in the simulator described above.

For each switch and lamp, the compiler produces two executables - one for the master

unit and one for the slave unit. For the given source code, it produces 300 (50 switches

and 100 lamps) executable files.

The memory usage statistics for the code produced by the compiler is given in

Table 5.1. These statistics show that it is possible to use c@t to program resource

constrained devices. More than 1000 words of program memory and 50 bytes of RAM

are available when the resources of master and slave are combined2 (Please refer to the

totals row in the table). We believe that it should be sufficient to add the necessary

low-level networking routines and implement this application in hardware.

Device Program %Program RAM %RAM
Memory Memory _

Switch
Master 576 words 56.2% 50 bytes 73.5%
Slave 336 words 32.8% 33 bytes 48.5%
Total 912 words 44.5% 83 bytes 61.0%
Lamp
Master 369 words 36.0% 35 bytes 51.47%
Slave 336 words 32.8% 33 bytes 48.5%
Total 705 words 34.4% 68 bytes 50.0%

Table 5.1: Memory Usage Statistics.

This Get-Set-Go system works in the simulation environment. The devices are

able to set associations and respond to user events. When the switch button is pressed,

the associated lamp is turned off, if it was on and it is turned on, if it was off.

Although this application is simple, the devices perform a few interesting func-

tions:

" Service discovery - Lamps locate the switches in a completely decentralized

environment.

" Message routing and parsing - Devices parse messages to determine whether

they are intended to be recipients of those messages and perform the specified

actions.

* Event notification - Switches notify the lamps of the events and change their

states.

2Microchip PIC 16F628 has 2048 words of program memory, 136 bytes of RAM and 128 bytes of
RAM. These numbers are exactly equal to the sum of the resources of two PIC 16F84's.

This application demonstrates that the c~t language can be used to build dis-

tributed embedded systems. Further, these applications can be executed on devices

with minimal resources.

Chapter 6

Conclusions and Future Work

T HIS thesis presented cat, a language for programming distributed embedded

systems. The language uses the principles of collective programming, declar-

ative style network programming, associative naming and device set specifications

to address the scale and interaction complexities of massively distributed embedded

systems.

The c@t compiler is written in Scheme and amounts to 3000 lines of code. The

language runtime environment has been implemented on Microchip PIC midrange

microcontrollers. In particular, this language can be used to write applications for

tiny processors like PIC 16F628 which has only 2K of program words, 136 bytes of

RAM, 128 bytes of ROM, and 8-level stack that can store only the program counter

during control transfers. The runtime environment is written in C and PIC assembly

language and has about 250 lines of code.

A software system that can simulate PIC 16F84 based networked embedded sys-

tems has also been completed. This system contains about 3000 lines of C++ code

and 700 lines of Java code.

The completed work focuses on the basic features of the cat language, the com-

piler, and the runtime environment. We are still in the early stages of acquiring

experience with the use of c~t. Although ct was used to write several simple appli-

cations, it has not been used in a full-scale project.

Based on the current experience with c@t, it is clear that the language needs a few

basic improvements: expressions for specifying the network topology and character-

istics, making device set specifications as first class objects in the language, support

for dynamic arrays, better support for string operations, case statements, lambda

abstractions, low-level network libraries, etc.

The most significant feature missing is the offline analysis for producing vertically

integrated systems. Consider a embedded device network presented in Figure 6-1.

As shown, if the processor resource details (the tuple (p, m, b) represents processor

configuration, memory, and battery) and link costs are available, the compiler can

analyze and produce the most efficient implementation.

dI (pt, A*, b) d2(p, 0, b)

c4

p 3, b3) d3(p
7
, m7, b7)

C3d13("2 b2 dg(p1, ml, bl) c

d7 (P2, m2
c3

, hi

-0~. .3b) 1(PO.0 O

O(PSM5, W(pl, ml, bl)

d5(p1,mI, b1 15(p2 "2 b2)

C3 12(p7, M7, b7) ce

c4 c

c d14(p3, M3, b3) d1OP%, m, bW

d4(pl, ml, bl) c2 c3

c3 c4

d11(p 1,M1,b)

d1(p7,m7,Wb)

Figure 6-1: An Embedded Device Network.

We believe that vertical integration is possible. Since all the devices are pro-

grammed together and their interactions are specified in a declarative style, the com-

piler can define computations and network architectures that are most suitable for

the application. For instance, if the device d7 needs to use a function named f 1, the

compiler can define that function on d7 or on any of the other devices. The choice

between local definition and remote definition can be made based on the number of

devices that need to invoke that function, memory available on the devices, message

costs, etc. Fortunately, several network flow analysis algorithms and techniques [4]

that can be applied here are available.

One might object to this vertical integration approach for any of the following

reasons:

" Is it necessary to perform such extensive offline analysis to produce efficient

implementations? As the processor costs are going down, is this approach ben-

eficial?

We believe this approach can be useful. When the compiler tries to optimize, it

is trying to reduce space complexity, time complexity and message complexity.

Due to continuous reduction in memory costs, space complexity may not be of

concern. However, resources such as channel bandwidth and battery power are

valuable and they need to be used efficiently. As demonstrated by Heinzelman

et al [15], there is a need for protocols that are efficient; in terms of energy,

power consumption, etc.

" Is this approach possible? Since the scale complexity is an inherent part of

MDES, would it be possible to perform such extensive analysis? Would there be

sufficient resources on the workstations to run such complex algorithms?

We don't know. Since neither we nor anyone else has implemented such a

system, it is difficult to predict. However, as per Moore's law - the processor

costs are going down with simultaneous increase in processing power. Given

such abundant workstation resources, we can use them to generate efficient

code for resource constrained devices.

Certainly, the language can be enhanced in multiple ways to make it a more

effective tool. However, as the successful implementation of the sample application

Get-Set-Go demonstrates, even the current version can be used to develop meaningful

applications. Although this application is simple, it performs several interesting tasks:

service discovery, network self-configuration, event notification, message parsing and

message routing.

More importantly, since it has been shown that this language can be used to

develop applications for a tiny microcontroller, it will also be useful for developing

applications on processors with better computational resources.

Appendix A

Formal Syntax

This section presents a formal syntax of for cat written in an extended BNF. The

following extensions to BNF are used to make the description more concise: [item]

means zero or one occurrence of < item >, < item >* means zero or more occurrences

of < item >, and < item >+ means at least < item >.

Lexical Structure

<token> -+ <identifier> I <boolean> | <number> |

<character>| <strings> I (I) I '

<comment> -; (all subsequent characters up to line break)

<digit> -4 0 1 2 3 4 | 5 | 6 | 7 | 8 | 9

<letter> - a b c I ... z

<whitespace> -+ space newline

<atmosphere> -4 <whitespace> |<comment>

<delimiter> -+ <atmosphere> I (I) I '

<intertoken space> -4 <atmosphere>*

<identifier> -4 <initial><subsequent>*

<boolean> -+ #t I #f <initial> -+ <letter>

<subsequent> -+ <initial> I <digit> I <special subsequent>

<special subsequent> -+ - (underscore)

<syntactic keyword> -+ <expression keyword>

I else I define I declare-device I declare-cluster
<expression keyword> -+ quote | if set! | begin

I cond I and I or let do

<variable> -+ (any <identifier> that isn't also

a <syntactic keyword>) I (any <identifier> that isn't also

a <syntactic keyword>) <dss>

<dss> -+ (@ (grammar <grammar-type>) (count <min> <max>)

<filter> (results <result-count> <result-set>))

<grammar-type> -+ relational

<min> -4 <digit>+

<max> -+ <digit>+

<filter> -+ <simple filter> | <compound filter>

<simple filter> -+ (<rel-op> <identifier> <simple datum >)

<rel-op> -+ == | = I < I <= I > >=

<compound filter> -+ <conjunction> | <disjunction > I <negation>

<conjunction> -+ (and <filter> <filter>+)

<disjunction> -+ (or <filter> <filter>+)

<negation> -+ (not <filter>)

<result-count> -+ <identifier>+

<result-set> - <identifier>+

<character> -+ #\(any character) I #\ <character name>

<character name> -+ space I newline

<string> -+ '' <string element>* '

<string element> -+ (any character other than '' or \

I \" I \
<number> - <num 10> I <num 16>

The rules for <num R>, <real R>, <ureal R>,

<uninteger R>, and <pref ix R> should be replicated for R = 10, 16.

There are no rules for <decimal 16>, which means that numbers

containing decimal points or exponents must be in decimal radix.

<num R> -+ <radix R> I <real R>

<real R> -+ <sign> I <ureal R>

<ureal R> - <uinteger R> I <decimal R>

<decimal 10> -+ <uinteger 10> I.<digit 10>+

<digit 10>+ . <digitlo>*

<uinteger R> -+ <digit R>+

<radix 10> -4 <empty> | #d

<radix 16> -+ #x

<digit 10> -+ <digit>

<digit 16> -4 <digit> a b | c | d I e I f

Datum

<datum> -+ <simple datum> | <compound datum> |

<simple datum> -+ <boolean> I <number>

I <character> I <string> I <symbol>

<symbol> -4 <identifier>

<compound datum> -+ <array>

<array> -+ (<datum>*)

Expressions

<expression> -+ <variable> I <literal> I <procedure call>

I <conditional> I <assignment> I <derived expression>

<literal> -+ quotation I self-evaluating

<self -evaluating> -+ boolean I number I character string

<quotation> -+ '<datum> I (quote <datum>)

<procedure call> -4 (<operator> [dss] <operand>*

<operator> -4 <expression>

<operand> -4 <expression>

<conditional> -+ (if <test> <consequent> <alternate>)

<test> -4 <expression>

<consequent> - <expression>

<alternate> - <expression> | empty

<assignment> -+ (set! <variable> <expression>)

<derived expression> -+

(cond <cond clause>+)

| (cond <cond clause>+ (else <sequence>))

| (and <test>*)

| (or <test>*)

| (not <test>)

| (let (<binding spec>*) <body>)

(begin <sequence>)

| (do (<iteration spec>*) (<test> <do result>)

<command>*)

<cond clause> -+ (<test> <sequence>)

<binding spec> - (<variable> <expression>)

<iteration spec> -+ (<variable> <init> <step>)

I (<variable> <init>)
<init> -+ <expression>

<step> - <expression>

<do result> -* <sequence> I empty

Programs and Definitions

<program> -4

<device>+ <cluster>+ <definition>+

<device> -+

(declare-device <dev-name> ((processor <string>)

(ram <string>) (code-mem <string>) (rom <string>)

(<property> <simple datum>)*)

<dev-name> - <identifier>

<property> -+ <identifier>

<cluster> -4

(declare-cluster <clust-name> (<dev-name> <count>) +)

<cluster-name> -+ <identifier>

<count> -4 <digit>+

<definition> -+

| (define <dss> <type> <variable> <expression>)

(define <dss> <type spec> <variable> <def formals> <body>)

<type spec> -+ void I <type>[< digit >+]*

<type> -+ char int I float I string

<def formals> - <variable>*

<body> -4 <definition>* <sequence>

<sequence> -+ <command>* <expression>

<command> - <expression>

Appendix B

Source Code

; declare devices and cluster

(declare-device switch ((processor "16f84")))

(declare-device lamp ((processor "16f84")))

(declare-cluster gsg ((switch 50) (lamp 100)))

;; ----- Switch Code

;define variables on switches.

(define (U () (= device "switch")) int lamp-count 0)

(define (@ () (= device "switch")) int lamp-list 0)

(define (@ () (= device "switch")) int on 0) 10

(define (@ () (= device "switch")) int prevrb6 1)

;define functions on switch.

(define (@ () (= device "switch")) void (handler)

(if (and (= rbie 1) (= rbif 1))

(if (and (!= rb6 prevrb6) (!= lamp-count 0))

(begin

(set! gie 0)

(set! rbif 0)

(set! prevrb6 rb6) 20

(if (= on 0)

(begin

(set! on 1)

(activate (@ (count 1 1) (grammar 'relational)

(filter (= id lamp-list))))

(begin

(set! on 0)

(deactivate (@ (count 1 1) (grammar 'relational)

(filter (= id lamp-list))))

(set! gie 1)))) 30

(set! gie 1)))))

(define (@ () (= device "switch")) int (add-lamp (int id))

(begin

(set! lamp-list id)

(set! lamp-count (+ 1 lamp-count)))

0)

(define (@ () (= device "switch")) int (main)

(begin

(set! lamp-count 0)

(set! rbie 1) 40

(set! gie 1)

(do ()

0
0)

7))

End of Switch Code

Lamp Code

;define functions on lamp.

(define (@ () (= device "lamp")) int (activate) 50

(set! ra4 1))

(define (A () (= device "lamp")) int (deactivate)

(set! ra4 0))

(define (@ () (= device "lamp")) int (notify-switch)

(add-lamp (@ (count 1 1) (grammar 'relational)

(filter (and (= device 0) (= hop 1)))) i))

(define (A () (= device "lamp")) void (handler)

5)

(define (@ () (= device "lamp")) int (main)

(set! rbie 1) 60

(set! gie 1)

(set! ra4 0)

(set! trisa4 0)

(notify-switch)

(do ()

0
0)

1)

;; ~End of Lamp Code - - - - - -

Bibliography

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, R. Nagpal,

E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. Communica-

tions of the ACM, 43(5):74-82, 2000.

[2] H. Abelson, G. Sussman, and J. Sussman. Structure and Interpretation of Com-

puter Programs. MIT Press, 1996.

[3] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and

implementation of an intentional naming system. Proc. 17th SOSP, 1999.

[4] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

[5] G.R. Andrews, R.A. Olsson, M. Coffin, I. Elshoff, K. Nielsen, T. Purdin, and

G. Townsend. An overview of the sr language and implementation. A CM Trans-

actions on Programming Language Systems, 10(1):51-86, 1988.

[6] H.E. Bal, J.G. Steiner, and A.S.Tanenbaum. Programming languages for dis-

tributed computing systems. ACM Computing Surveys, 21(3):261-322, Septem-

ber 1989.

[7] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. A CM Trans-

actions on Computer Systems, 2(1):39-59, February 1984.

[8] W. Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[9] N. Carriero, D. Gelernter, and J. Leichter. Distributed data structures in linda.

In Symposium on Principles of Programming Language. ACM, New York, 1986.

[10] D. Clark and D. Tennenhouse. Architectural considerations for a new generation

of protocols. In Symposium on communication Architectures and Protocols, pages

200-208. ACM Press, september 1990.

[11] D. Coore. Botanical Computing: A Developmental Approach to Generating In-

terconnect Topologies on an Amorphous Computer. PhD thesis, MIT, 1999.

[12] Echelon corporation. http://www.echelon.com.

[13] P. Eles, K. Kuchcinski, and Z. Peng. System

Academic Publishers, 1998.

[14] N. Gershenfeld. When Things Start to Think.

1999.

Synthesis with VHDL. Kluwer

Henry Holt & Company, Inc.,

[15] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.

communication protocols for wireless microsensor networks. In

Int'l Conf. on Systems Science, 2000.

Energy-efficient

Proc. Hawaaian

[16] Hi-tech picc lite compiler. http://www.htsoft.com.

[17] Information processing systems - open systems interconnection - basic reference

model. ISO-7498, 1984.

[18] T. Lawrence, J. Suominen T. McLeish, and K. Larson.

http://architecture.mit.edu/house-n/.

House-n.

[19] G. Leavens. Introduction to the literature on programming language design.

http://www.cs.iastate.edu/leavens/homepage.html, 1999.

[20] C. Leopold. Parallel and Distributed Computing - A Survey

Paradigms, and Approaches. John Wiley & Sons, Inc., 2001.

of Models,

[21] J. Lifton. Pushpin computing. Unpublished master's thesis available at

http://www.media.mit.edu/lifton/Pushpin/, 2001.

[22] A. Lindenmayer. Mathematical models for cellular interaction in development,

parts i and ii. Journal of Theoretical Biology, 18:280-315, 1968.

[23] B.B. Mandelbrot. The fractal geometry of nature. W.H. Freeman and Company,

1977.

[24] Microchip technology inc. http://www.microchip.com.

[25] R. Nagpal. Programmable Self-Assembly: Constructing Global Shape using

Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis,

MIT, 2001.

[26] Plt scheme. http://www.plt-scheme.org.

[27] D. Seetharam, H. Shrikumar, T. Lawrence, T. McLeish, and K. Larson. Dis-

tributed building networks. http://architecture.mit.edu/house-n/.

[28] H. Shrikumar. Data composability in myriad nets (invited talk): De-layering in

billion node mobile networks. In Second ACM international workshop on Data

engineering for wireless and mobile access, pages 43-43, 2001.

[29] R. E. Strom and S. Yemini. NIL: An integrated language and system for dis-

tributed programming. In SIGPLAN'83, pages 73 - 82, June 1983.

[30] H. Takada and K. Sakamura. Compact, low-cost, but real-time distributed com-

puting for computer augmented environments. In IEEE Computer Society Work-

shop on Future Trends of Dist. Comp. Sys., pages 56-63, Aug. 1995.

[31] D. Tennenhouse. Proactive computing. Communications of the ACM, 43(5):43-

50, May 2000.

[32] J. Waldo. The Jini architecture for network-centric computing. Communications

of the ACM, 42(7):76-82, 1999.

[33] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94-

104, September 1991.

