57,823 research outputs found

    Dynamic concentration of the triangle-free process

    Full text link
    The triangle-free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle-free graph at which the triangle-free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R(3,t): we show R(3,t) > (1-o(1)) t^2 / (4 log t), which is within a 4+o(1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self-correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle-free graph produced by the triangle-free process: they are precisely those triangle-free graphs with density at most 2.Comment: 75 pages, 1 figur

    Minimizing the number of independent sets in triangle-free regular graphs

    Get PDF
    Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due, in various parts, to Kahn, Galvin-Tetali, and Zhao) that the independence polynomial of a dd-regular graph is maximized by disjoint copies of Kd,dK_{d,d}. Their proof uses linear programming bounds on the distribution of a cleverly chosen random variable. In this paper, we use this method to give lower bounds on the independence polynomial of regular graphs. We also give new bounds on the number of independent sets in triangle-free regular graphs

    Spectra of "Real-World" Graphs: Beyond the Semi-Circle Law

    Full text link
    Many natural and social systems develop complex networks, that are usually modelled as random graphs. The eigenvalue spectrum of these graphs provides information about their structural properties. While the semi-circle law is known to describe the spectral density of uncorrelated random graphs, much less is known about the eigenvalues of real-world graphs, describing such complex systems as the Internet, metabolic pathways, networks of power stations, scientific collaborations or movie actors, which are inherently correlated and usually very sparse. An important limitation in addressing the spectra of these systems is that the numerical determination of the spectra for systems with more than a few thousand nodes is prohibitively time and memory consuming. Making use of recent advances in algorithms for spectral characterization, here we develop new methods to determine the eigenvalues of networks comparable in size to real systems, obtaining several surprising results on the spectra of adjacency matrices corresponding to models of real-world graphs. We find that when the number of links grows as the number of nodes, the spectral density of uncorrelated random graphs does not converge to the semi-circle law. Furthermore, the spectral densities of real-world graphs have specific features depending on the details of the corresponding models. In particular, scale-free graphs develop a triangle-like spectral density with a power law tail, while small-world graphs have a complex spectral density function consisting of several sharp peaks. These and further results indicate that the spectra of correlated graphs represent a practical tool for graph classification and can provide useful insight into the relevant structural properties of real networks.Comment: 14 pages, 9 figures (corrected typos, added references) accepted for Phys. Rev.

    On the average size of independent sets in triangle-free graphs

    Get PDF
    We prove an asymptotically tight lower bound on the average size of independent sets in a triangle-free graph on n n vertices with maximum degree d d, showing that an independent set drawn uniformly at random from such a graph has expected size at least (1+od(1))logddn (1+o_d(1)) \frac {\log d}{d}n. This gives an alternative proof of Shearer's upper bound on the Ramsey number R(3,k) R(3,k). We then prove that the total number of independent sets in a triangle-free graph with maximum degree d d is at least exp[(12+od(1))log2ddn] \exp \left [\left (\frac {1}{2}+o_d(1) \right ) \frac {\log ^2 d}{d}n \right ]. The constant 1/2 1/2 in the exponent is best possible. In both cases, tightness is exhibited by a random d d-regular graph. Both results come from considering the hard-core model from statistical physics: a random independent set I I drawn from a graph with probability proportional to λI \lambda ^{\vert I\vert}, for a fugacity parameter λ>0 \lambda >0. We prove a general lower bound on the occupancy fraction (normalized expected size of the random independent set) of the hard-core model on triangle-free graphs of maximum degree d d. The bound is asymptotically tight in d d for all λ=Od(1) \lambda =O_d(1). We conclude by stating several conjectures on the relationship between the average and maximum size of an independent set in a triangle-free graph and give some consequences of these conjectures in Ramsey theor

    On existentially complete triangle-free graphs

    Get PDF
    For a positive integer k, we say that a graph is k-existentially complete if for every 0 ⩽ a ⩽ k, and every tuple of distinct vertices x1, …, xa, y1, …, yk−a, there exists a vertex z that is joined to all of the vertices x1, …, xa and to none of the vertices y1, …, yk−a. While it is easy to show that the binomial random graph Gn,1/2 satisfies this property (with high probability) for k = (1 − o(1)) log2n, little is known about the “triangle-free” version of this problem: does there exist a finite triangle-free graph G with a similar “extension property”? This question was first raised by Cherlin in 1993 and remains open even in the case k = 4. We show that there are no k-existentially complete triangle-free graphs on n vertices with k>8lognloglogn, for n sufficiently large

    Random triangle removal

    Full text link
    Starting from a complete graph on nn vertices, repeatedly delete the edges of a uniformly chosen triangle. This stochastic process terminates once it arrives at a triangle-free graph, and the fundamental question is to estimate the final number of edges (equivalently, the time it takes the process to finish, or how many edge-disjoint triangles are packed via the random greedy algorithm). Bollob\'as and Erd\H{o}s (1990) conjectured that the expected final number of edges has order n3/2n^{3/2}, motivated by the study of the Ramsey number R(3,t)R(3,t). An upper bound of o(n2)o(n^2) was shown by Spencer (1995) and independently by R\"odl and Thoma (1996). Several bounds were given for variants and generalizations (e.g., Alon, Kim and Spencer (1997) and Wormald (1999)), while the best known upper bound for the original question of Bollob\'as and Erd\H{o}s was n7/4+o(1)n^{7/4+o(1)} due to Grable (1997). No nontrivial lower bound was available. Here we prove that with high probability the final number of edges in random triangle removal is equal to n3/2+o(1)n^{3/2+o(1)}, thus confirming the 3/2 exponent conjectured by Bollob\'as and Erd\H{o}s and matching the predictions of Spencer et al. For the upper bound, for any fixed ϵ>0\epsilon>0 we construct a family of exp(O(1/ϵ))\exp(O(1/\epsilon)) graphs by gluing O(1/ϵ)O(1/\epsilon) triangles sequentially in a prescribed manner, and dynamically track all homomorphisms from them, rooted at any two vertices, up to the point where n3/2+ϵn^{3/2+\epsilon} edges remain. A system of martingales establishes concentration for these random variables around their analogous means in a random graph with corresponding edge density, and a key role is played by the self-correcting nature of the process. The lower bound builds on the estimates at that very point to show that the process will typically terminate with at least n3/2o(1)n^{3/2-o(1)} edges left.Comment: 42 pages, 4 figures. Supercedes arXiv:1108.178

    Inapproximability for Antiferromagnetic Spin Systems in the Tree Non-Uniqueness Region

    Full text link
    A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree D undergoes a phase transition that coincides with the statistical physics uniqueness/non-uniqueness phase transition on the infinite D-regular tree. Despite this clear picture for 2-spin systems, there is little known for multi-spin systems. We present the first analog of the above inapproximability results for multi-spin systems. The main difficulty in previous inapproximability results was analyzing the behavior of the model on random D-regular bipartite graphs, which served as the gadget in the reduction. To this end one needs to understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis of the second moment for any spin system on random D-regular bipartite graphs. This yields concentration results for any spin system in which one can analyze the maxima of the first moment. The connection to fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models of interest. For k-colorings we prove that for even k, in the tree non-uniqueness region (which corresponds to k<D) it is NP-hard, unless NP=RP, to approximate the number of colorings for triangle-free D-regular graphs. Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under a mild condition
    corecore