4 research outputs found

    Noncontact detection and analysis of respiratory function using microwave Doppler Radar

    Full text link
    Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS), and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform) for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I: E ratio). This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine

    Techniques for low-cost spectrum analysis on quadrature demodulation architectures

    Get PDF
    The Decimator, an SED Systems Ltd. product, is a PCI slot card that performs both time and frequency domain measurements of given input signals. It is essentially a more economical version of a bench spectrum analyzer or oscilloscope, with a PC interface. Several issues limit the speed and accuracy of the results of the Decimator, and the study of these issues is the focus of this thesis. These issues, including but not limited to, are as follows: 1) Imbalances between the received In-phase and Quadrature-phase channels; 2) The FFT and Windowing functions are performed by a microcontroller, but it is desired that they be migrated to an FPGA. While solutions to improve the first issue is being implemented and verified, the second issue is not one of simply reducing a source of error. The second issue requires a cost-benefit analysis on the migration of these signal processing algorithms from an ARM microcontroller to a Xilinx FPGA

    Detection and analysis of human respiration using microwave Doppler radar

    Full text link
     Non-contact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations such as physical sensor attachment or special clothing. Furthermore, robustness of Doppler radar against environmental factors reduce environmental constraints and strengthens the possibility of employing Doppler radar as a practical biomedical devices in the future particularly in long term monitoring applications such as in sleep studies

    Detection and analysis of human respiration using microwave Doppler radar

    Get PDF
     Non-contact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations such as physical sensor attachment or special clothing. Furthermore, robustness of Doppler radar against environmental factors reduce environmental constraints and strengthens the possibility of employing Doppler radar as a practical biomedical devices in the future particularly in long term monitoring applications such as in sleep studies
    corecore