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Abstract

The Decimator, an SED Systems Ltd. product, is a PCI slot card that performs both 

time and frequency domain measurements of given input signals.  It is essentially a  more 

economical version of a bench spectrum analyzer or oscilloscope,  with a PC interface. 

Several issues limit the speed and accuracy of the results of the Decimator, and the study 

of these issues is the focus of this thesis.  These issues, including but not limited to, are as 

follows: 1) Imbalances between the received In-phase and Quadrature-phase channels; 2) 

The FFT and Windowing functions are performed by a microcontroller, but it is desired 

that they be migrated to an FPGA.  While solutions to improve the first issue is being 

implemented and verified, the second issue is not one of simply reducing a source of error. 

The  second  issue  requires  a  cost-benefit  analysis  on  the  migration  of  these  signal 

processing algorithms from an ARM microcontroller to a Xilinx FPGA.
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CHAPTER 1 : INTRODUCTION

1.1 General

Communication schemes have developed from simple dot and dash Morse code to 

complex  high  speed  systems  where  numerous  transmitters  are  simultaneously 

communicating with numerous receivers.  The continual drive to explore new ideas and 

push known boundaries keeps technology marching steadily forward.

Global  communications  standards  have  emerged and are  enforced federally  in  all 

modern countries.  The regulations require wireless communication to adhere to stringent 

transmission and reception constraints.  Power and bandwidth are the two most limited 

factors that ensure a wide variety of wireless communication systems are able to co-exist 

without interference.  An example of one such highly regulated frequency band is the L-

band, which is used for satellite communication, and ranges from about 1 to 2GHz.  From 

the  perspective  of  a  designer,  a  spectrum  analyzer  may  be  used  for  research  and 

development,  troubleshooting,  and  the  verification  of  its  functionality  as  a  legal 

transmitter/receiver  device.   From  the  perspective  of  a  federal  regulator,  a  spectrum 

analyzer may be used to monitor the frequency spectrum to ensure that legal limits are 

observed.

The  complexity  of  communication  systems  increases  with  each  advancement  in 

technology,  and  new  methods  must  be  developed  for  verification  and  analysis.   An 

example of one such method for analyzing a signal is the Fast Fourier Transform, (FFT), 

which allows a time based signal to be viewed in the frequency domain (i.e., spectrum).  A 

spectrum analyzer is the hardware realization of the FFT, and it has become a common 
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tool used to monitor communication systems.  One such device is the Decimator.

1.2 The Decimator

The Decimator is a Peripheral Component Interconnect, (PCI), slot form factor L-

Band spectrum analyzer developed by SED Systems Ltd..  The Decimator is functionally a 

spectrum analyzer and an oscilloscope with a Personal Computer, (PC), interface.  The 

Decimator receives power from the PCI slot of the PC and communicates with the host 

computer via an Ethernet connection.  As long as the Decimator is powered, any PC with 

network access can use the Decimator and display its output either in a browser window, 

or the provided software Application Programming Interface, (API).

The market value of the Decimator comes as a result of its low cost in comparison to 

equivalent bench spectrum analyzers and oscilloscopes, as well as its small form factor.  A 

device of this nature works well in embedded systems because of its remote access and 

low power requirements.  While the Decimator was initially developed as a low cost test 

device  for  a  communication  system  that  was  being  developed,  its  market  value  was 

recognized  and  has  since  become  one  of  SED  Systems'  stand-alone  products.  The 

Decimator  uses  a  direct  conversion  receiver  architecture  to  convert  a  received  Radio 

Frequency, (RF), signal directly to baseband.  This architecture has allowed the Decimator 

to retain its small form factor and low power requirements.  However, it has also led to the 

introduction of errors that limit its accuracy.

1.3 Known Decimator Issues

1.3.1 I/Q Imbalance

The  main  issue  affecting  the  Decimator  is  the  introduction  of  In-Phase  (I)  and 
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Quadrature-Phase (Q) imbalances in the received signals from the RF receiver.  The gain 

and phase imbalances are a result of the Direct Conversion Receiver (DCR) architecture 

that the Decimator employs.  In certain applications these imbalances cause a relatively 

significant error to be present at the output from the receiver.  The output of the Decimator 

is  processed  and  either  the  frequency  or  time  domain  information  is  displayed  on  a 

computer screen.  In and of itself these errors may not be significant enough to warrant 

correction in some applications, but the usefulness of the Decimator is directly linked to 

the accuracy of its calculations.  Since other communication schemes and transmitters can 

be  tested,  calibrated,  and  verified  using  the  Decimator,  residual  errors  may  also  be 

transferred, and possibly amplified, in other applications.

1.4 Other Decimator modifications

The majority of known error present in Decimator output signals is due to the issues 

described above.  However, not all changes to the Decimator are being done for the sole 

purpose of increased accuracy.  Speed is also a factor that must be considered.  Changes to 

a major bottleneck in the Decimator's signal processing system will also be studied in an 

effort to increase its speed.  In the existing design, a Xilinx Spartan-3 FPGA and an Analog 

Devices  ARM  microcontroller  shared  the  signal  processing  in  the  Decimator.    The 

microcontroller currently handles two signal processing algorithms that limit the speed of 

the Decimator.  These two algorithms are “windowing” and the “Fast Fourier Transform,” 

(FFT).   By  coding  these  two  algorithms  in  the  FPGA and  removing  them from the 

microcontroller, an increase in speed should be achieved at the cost of some accuracy. 

This trade off comes as a result of the increased streamlining ability of the FPGA and 

performing the mathematical calculations in a  fixed point  precision environment.   The 
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fixed point precision math of the FPGA will be compared and contrasted with the 32-bit 

floating point precision math of the microcontroller to help evaluate this migration.

1.4.1 Windowing

A windowing function is a filter that converts a continuous signal into one where the 

only  non-zero  values  are  those  within  the  bandwidth  of  the  window  function.   The 

windowing function acts as a buffer and allows a finite length of samples to be analyzed 

by hardware-implemented signal processing algorithms.  In the case of the Decimator, the 

windowing function buffers the data for the FFT.  The windowing function is currently 

implemented in the microcontroller  using floating point precision calculations, but this 

causes a bottleneck in the signal processing chain.  The effect of the fixed point precision 

on a windowing algorithm will be explored from theoretical and practical viewpoints.  The 

windowing algorithm will be implemented in the FPGA to verify its performance and help 

conclude whether this migration is economical.

1.4.2 Fast Fourier Transform

The FFT is a practical DSP algorithm that allows the Discrete Fourier Transform, 

(DFT),  of  a  signal  to  be  calculated  in  real-world  devices  such  as  FPGAs  and 

microcontroller.  The FFT converts a signal from the time domain to the frequency domain 

by calculating the frequency components that are present in a given waveform.  Since the 

FFT is behind much of the functionality of the Decimator, its performance is of utmost 

important to the overall performance of the Decimator.

Implementing a FFT in a FPGA is not a new endeavor.  Xilinx, for example, has 

patented logic cores that can be dropped into a design and easily configured in a short 
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period of time.  By implementing the Xilinx core in the FPGA of the Decimator, it will be 

possible to perform an economic evaluation of the migration and determine whether the 

change is feasible.  Specifically, the results of the implemented algorithm will be analyzed 

to confirm whether or not the solution is  faster than the current implementation.   The 

degradation in accuracy will also be studied to ensure that it  is not beyond acceptable 

levels.

1.5 Decimator Modification Overview

A basic overview of the Decimator can be seen in Figure 1.1.  The incoming L-band 

signal  is  received  by  the  analog  RF  front-end  components.   The  received  signal  is 

converted  from analog  to  digital  form and  is  passed  to  a  chain  of  signal  processing 

algorithms.   The  signal  processing  algorithms  demodulate  the  received  signal  so  the 

samples passed to the time and frequency domain calculations are at baseband.

An I and Q imbalance correction scheme will be sought that can be implemented in 

the  “Received  Signal  Processing”  block  from Figure  1.1.   Implementing  an  I  and  Q 

imbalance  correction  algorithm  in  the  “Received  Signal  Processing”  block  is  desired 

5
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because  it  would  not  require  hardware  changes  to  be  made  to  the  Decimator.   The 

correction algorithm would only require modification to the firmware of the Decimator.

The  Windowing  and  FFT  algorithms  are  present  in  the  “Frequency  Domain 

Calculations”  block  seen  in  Figure  1.1.   Migrating  these  two  algorithms  from  the 

microcontroller to the FPGA in the Decimator will not change the block diagram, it will 

only change the way the Decimator calculates the functions.

1.6 Summary

This thesis will seek Digital Signal Processing (DSP) solutions that should improve 

the  accuracy of  the  Decimator  while  not  disrupting  the  current  data  throughput.   The 

proposed solutions will result in a stand-alone signal processing algorithm that will work 

with a wide variety of incoming signals, as is expected of a spectrum analyzer.  The DSP 

algorithms  should  require  neither  a  training  sequence  nor  a  calibration  signal,  (which 

would require transmitter modification), to help with the correction of the gain and phase 

imbalances.  The DSP algorithms will be implemented between a Spartan-3 FPGA and an 

ARM microcontroller  so that the proposed solutions are compatible with the hardware 

requirements.

The windowing and FFT algorithms will be theoretically analyzed to show the effect 

of  fixed-precision  calculations.   Both  algorithms  will  then  be  migrated  from  the 

microcontroller  of  the  Decimator  to  its  FPGA to  obtain  bit  accurate  results.   The  bit 

accurate simulations, along with the theoretical analysis, will help determine whether the 

changes are economical and worth implementing in all new Decimators.
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1.7 Thesis Outline

This thesis provides detailed descriptions related to the background, concepts, and 

implementation of the proposed Decimator modifications.  Chapter 2 gives a theoretical 

basis for the proposed changes and reviews literature pertinent to the issues related to the 

Decimator.  Chapter 3 provides details of the changes that are proposed and how each 

change ought to be simulated for verification. Chapter 4 reviews the simulation results 

obtained  from the  proposed methodology.   Chapter  5  discusses  the  results  and  forms 

conclusions based on the findings.  Future work is also suggested.

7



CHAPTER 2 : LITERATURE REVIEW AND THEORY

2.1 Introduction

This  thesis  is  not proposing a radically new system; rather,  its  purpose is  to take 

known  solutions  to  given  problems  and  evaluate  whether  these  solutions  can  be 

successfully used to solve the known issues within the Decimator.  The issue of I and Q 

imbalance in DCRs is well documented.  Various ways of dealing with I and Q imbalance 

will  be  discussed  and  evaluated  to  show  whether  previously  proposed  solutions  can 

provide  an  acceptable  solution  to  this  problem.   The  algorithm  migrations  will  be 

discussed from a  theoretical  standpoint  and simulated  to  study the  implications  of  the 

proposed changes.

2.2 Direct Conversion Receivers

The driving motive behind technological advances in communication systems is the 

desire to make transceivers with higher levels of integration.  Bulky off-chip components 

that  are  prominent  in  the  popular  heterodyne receivers  are  a  limiting factor  in  system 

integration because of their high power requirements and larger form factors.  This has led 

to transceiver designs such as the low-IF, (Intermediate Frequency), and zero-IF, or direct 

conversion,  receivers.   The  low-IF  and  zero-IF  receivers  greatly  reduce  the  off-chip 

hardware requirements, and thus improve efficiency and reduce size.  The issues related to 

direct conversion receivers are therefore the major topic of study in this thesis since the 

Decimator utilizes the direct conversion receiver architecture.
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Direct conversion receivers use quadrature demodulation to split the received signal 

into  real,  (In-phase),  and  imaginary,  (Quadrature-phase),  components  by  multiplying 

incoming signals by orthogonal sine and cosine functions.  Figure  2.1 depicts the basic 

architecture for a direct conversion receiver. Theoretically, quadrature mixing removes the 

need for anti-alias filtering by infinitely attenuating the image of the signal.  Practically, 

however, there will always be a certain amount of gain and phase imbalances between the I 

and Q branches of the receiver because of the inability to perfectly match the receiver's 

analog  components  [5].   The  errors  that  are  introduced  prevent  the  direct  conversion 

receiver architecture from being used in many high-end applications.

The error-free Local Oscillator, (LO), can be modeled as,

XLOt =cosw LO t − j sin w LO t (2.1)

where  cosw LOt   demodulates  the  I  branch,  and  − jsinwLO t   demodulates  the  Q 

branch.  An arbitrary quadrature incoming signal, sM= sI coswt sQ sin wt  , is split into 

its real and imaginary branches when it is multiplied by the LO function.  The received in-

phase signal is mathematically demodulated as shown below.

R I t=cosw LOt SM

9
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R I t=cosw LOt S I coswt SQ sin wLO t  (2.2)

R I t=S I coswt cos w LOt SQ sin wLO tcoswt 

The  LO  frequency  is  tuned  to  the  transmitted  signal  frequency,  so w=w LO .   Using 

standard trigonometric identities yields

R I t=
1
2 S I

1
2 S I cos2wt 1

2 SQ sin 2wt (2.3)

Following the down-conversion is the Automatic Gain Control, (AGC), which equalizes 

the received signal.  The LPF, as seen in Figure  2.1, then removes the high frequency 

components  containing 2w .   Only  the  baseband  components  of  the  original  signal 

remain.   The  quadrature-phase  branch  equation  seen  in  Equation  2.4 can  be  derived 

similarly.

RQ t =
1
2 SQ

1
2 SQ cos2wt  1

2 S I sin 2wt (2.4)

2.3 I/Q Imbalance

The dual path architecture makes the quadrature demodulator prone to gain and phase 

mismatches  between the  I  and Q branches,  and  these  are  called  I  and Q imbalances. 

Analog component imperfections alter the received signals differently despite an identical 

signal processing chain in both branches.  The result is a difference in the gain and phase 

between the I and Q branches of the received signal.  This causes the image of the signal to 

act as interference on top of the desired signal.  In theory, a direct conversion receiver can 

provide infinite attenuation to the received image signal, however, in practice this image 

cannot be fully removed.  Figure 2.2 depicts a RF to baseband conversion and shows the 
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effect that the image has on the received signal at baseband.

The imperfections in the receiver can be modeled by the complex Local Oscillator 

(LO) function in the time domain as,

X LO t =1−cos w LO t−/2− j 1 sinwLO t/2 (2.5)

where ε is the gain imbalance factor and ф is the phase imbalance in radians.  The gain 

imbalance in dB is found by,

=20log 1/1− (2.6)

Equation (2.5) shows an equal amount of the imbalances being applied to the I and Q 

channels.  This is an appropriate representation because the difference in gain and phase 

between the two channels is what is important, and not the absolute values.  Therefore, ε 

and  ф are determined by finding the differences between the gain and phase of the two 

channels.  It is possible to model ε and ф by applying half the total errors to each channel. 

This concept is important, and will be discussed later when the correction architectures are 
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Figure 2.2: Example RF and baseband spectra depicting an I/Q imbalance.



discussed.

Using Euler's formula and some basic mathematical considerations, the unbalanced 

Local Oscillator (LO) signal can be expressed as,

x LOt =K1 e− jwLO tK 2 e jw LOt (2.7)

where K1 is the desired signal, and K2 is its image.  Mathematically, K1 and K2 are,

K 1=
1−e

j 
21e

− j 
2

2
(2.8)

K 2=
1−e

− j 
2−1e

j 
2

2
(2.9)

To obtain infinite attenuation of the image,  ε = 1 and  ф = 0.  This would lead to  K1 = 

1 and K2 = 0, and thus an ideal down-conversion of the RF signal to baseband.  It is not 

currently possible to implement a direct conversion receiver without I and Q imbalances. 

Therefore the effect of the I and Q imbalances on the received data must be studied to 

determine the severity of the problem and to understand the nature of the solution.

Equation  (2.10)  shows  how  the  imbalanced  LO  signal  propagates  error  on  the 

received signal.  Using the imbalanced LO signal from Equation (2.5) to demodulate the 

received signal rather than the perfectly balanced theoretical LO in Eq (2.1) yields,

R I t=1−cosw LOt−
2 S I coswt SQ sin wt  (2.10)

R I t=1−S I cos 2 −SQ sin  2  (2.11)

Following the same procedure, the received quadrature phase branch can be shown as

RQ t =1SQ cos 2 −S I sin  2  (2.12)
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The ratio between  K1 and  K2 gives a measure of the power of the signal versus the 

power of the image.  To represent the attenuation achieved by the analog components in 

the receiver, or the Image Rejection Ratio, (IRR), the following relationship can be used,

IRRdB=20 log∣K 1∣
∣K 2∣ (2.13)

Figure  2.3 displays the effect that gain and phase mismatches have on the Image 

Rejection Ratio, (IRR).  The relationship is highly non-linear, so even small errors in gain 

and phase lead to a significant degradation of the received signal.  To achieve at least 50 

dB in image attenuation, the gain and phase errors must be held to less than 0.05 dB and 

0.2° respectively [6].
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Figure 2.3: Image Rejection Ratio (IRR) with respect to gain and phase imbalances.



The modulation schemes received by the Decimator will almost all be symmetric with 

a mean of zero.  These schemes include, but are not limited to: QAM, PSK, and OFDM. 

To visualize the effects of gain and phase imbalances in the receiver, Figures  2.4 to  2.6 

represent QAM demodulation functions with imbalance errors.  Rather than demodulating 

a  signal  with  a  perfectly  orthogonal  set  of  functions,  an  imbalanced  set  of  functions 

demodulates  the  signal.   Figure  2.4 shows  how  a  perfectly  balanced  receiver  will 

demodulate a received 4-QAM signal.  Both the I and Q branches of the signal will be 

accurately demodulated, as the constellation depicts.  Figure 2.5 illustrates the effect of a 

gain  imbalance  in  the  receiver.   The  received  signal  will  be  demodulated  with  an 

imbalance that causes the I branch data to have a higher amplitude than the Q branch data. 

Figure 2.6 shows the skew associated with a phase imbalanced receiver.
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Figure 2.4: 4-QAM original  

modulation scheme.

Figure 2.5: 4-QAM gain 

imbalanced modulation, (2dB).



The Decimator receives these signals and displays them graphically to the user.  The 

issue of concern is not one of Bit Error Rates, (BER), and data corruption, but of visual  

ambiguity.  The Decimator is not a part of a larger system that tries to decipher instructions 

from the  received  data  that  is  being  transmitted;  rather,  it  is  simply creating  a  visual 

display of the received data for the user.  An example of how this is detrimental to the 

usage of the Decimator becomes obvious when the practical applications of a Spectrum 

Analyzer are outlined.  Spectrum Analyzers are commonly used for testing, debugging, 

verification, and calibration.  From the visual inaccuracies displayed by the Decimator, it 

is possible to inaccurately calibrate another unit or system.  The errors in the Decimator 

then  have  the  possibility  of  propagating  themselves  to  other  systems,  which  is  why 

correcting the I and Q imbalance errors is so important.
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Figure 2.6: 4-QAM phase  

imbalanced modulation, (10º).



An RF signal with identical I and Q data was generated using a signal generator with 

arbitrary waveform generation  capability.   The  generated  signal  was then  fed  into  the 

Decimator.  A zoomed-in result of the Decimator's spectrum analysis can be seen in Figure 

2.7.  It is clear that the imbalances in the receiver have excessively increased the amplitude 

of the Q branch.  Based on the received data,  there is an estimated gain imbalance of 

0.4922 dB and a phase imbalance of 2.9303° in the particular Decimator this data capture 

was obtained from.  These errors lead to a 0.4944  dB difference between the peak FFT 

bins  of  the  two signals.   Now the  problem of  I  and Q imbalances  has  been properly 

defined,  and  its  effect  on  received  signals  has  been  quantified.   The  next  step  is  to 

determine how these errors can be corrected.
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Figure 2.7: Received data corrupted by gain and phase imbalances.



2.4 I/Q Imbalance Correction Schemes

The errors introduced by gain and phase imbalances in the receiver should now be 

apparent.   With  direct  conversion  receivers  being  a  viable  option  for  small  scale 

applications, and with imbalances being prevalent in their architecture, a large number of 

research papers have been published on the subject [5, 7, 8, 14, 16].  Each paper may bring 

some subtle nuance to a well-known solution but for the most part, these solutions can be 

categorized into several different types of correction schemes.

2.4.1 Non-Data-Aided (NDA) Correction Schemes

Non-data-aided  (NDA),  or  blind,  correction  schemes  are  a  popular  form  of  I/Q 

imbalance solution that do not require knowledge of the modulation scheme and do not 

utilize training sequences or test tones.  NDA correction methods utilize samples of the 

received data to determine the amount of error that is present, and then a correction is 

applied to remove the estimated error.  The procedures whereby NDA algorithms estimate 

the error and then apply corrections differ from method to method.  However, all methods 

share the fact that statistical characteristics are utilized to apply a correction to the received 

signal.

2.4.1.1 Blind Source Separation (BSS)

Blind Source Separation, (BSS), is the process of taking a mixture of N statistically 

independent signals and recovering all  N signals in their original form using no outside 

knowledge of the source or mixing matrices.  In other words, only the signal mixture is 

used [10].  An imbalanced direct-conversion receiver causes the I and Q channels to mix. 

Consequently, the signals become correlated and are no longer independent of one another. 
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BSS makes the implicit assumption that the mixed signals are independent.  Therefore, the 

I  and Q imbalance  problem is  solvable  via  the  BSS method with  N =  2  independent 

sources.

One method of BSS is Independent Component Analysis, (ICA), which provides a 

mathematical approach to solving the BSS problem.  While there are other methods to 

solve  the  BSS  problem,  ICA requires  that  the  sources  be  independent  to  achieve  an 

applicable solution.  ICA reconstructs both the source signals and the mixing matrix by 

minimizing the statistical dependencies, (i.e., cross-correlation), between the signals.  Bell 

and Sejnowski showed that in signals that have a positive kurtosis, maximizing the amount 

of information, or entropy, was equivalent to de-correlating the signals [9].  Rather than 

minimizing the statistical dependencies between the signals, the proposed method attempts 

to correct the problem by maximizing the signal information.

Figure 2.8 displays the basic structure of the ICA problem where S(t) is the original 

signals, R(t) is the received signals after being mixed, and C(t) is the corrected output after 

unmixing has occurred.  Both  S(t) and  A are unknown, but using only  R(t) and the ICA 

technique,  W can be adapted to remove the error introduced by A.  From this model it is 

possible to write,

R t=AS t 
(2.14)

C t =W R  t
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Figure 2.8: Independent Component Analysis problem definition.



The problem becomes one of developing a set of adaptive filters that will undo the effects 

of the mixing matrix.

A number  of  applicable  learning  algorithms  have  been  proposed  to  update  the 

coefficients in the unmixing matrix.  In [11], four of the most prominent learning rules are 

outlined, and a hybrid learning rule is developed.  While all four learning rules have been 

utilized successfully in other applications, arguably the most important learning rule was 

developed by Bell and Sejnowski [9].  Their proof of the information maximization rule, 

(i.e.,  Infomax),  was developed into  an effective  hardware  model  using adaptive filters 

proposed by Torkkola [10].  Torkkola proposed a hardware feedback network that has been 

at  the  heart  of  most  adaptive  filter  techniques  for  decorrelating  independent  signals 

because it provides a structure that can be realized in the receiver hardware.  Figure  2.9 

shows the Torkkola feedback architecture as it applies to the general case of convolved 

mixtures.

2.4.1.2 Interference Cancellation (IC)

The  Interference  Cancellation,  (IC),  based  technique  attempts  to  create  an 
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Figure 2.9: Torkkola's feedback network for separating convolved mixtures.



interference  signal  that,  when  subtracted  from  the  received  signal,  will  remove  the 

erroneous component from the desired signal.  This method also requires no knowledge of 

the received signal, but makes the fundamental assumption that the desired signal and its 

interfering  component  are  uncorrelated.   Since  in  the  case  of  I  and  Q  imbalance  the 

erroneous  component  of  the  signal  is  from  the  other  branch  of  the  receiver,  this 

relationship  holds  and the  IC method can  be  utilized  to  solve  the  I  and Q imbalance 

problem.

The basic architecture behind the IC method is depicted in Figure 2.10.  The adaptive 

filter modifies the reference signal such that it correlates with the erroneous component of 

the signal but not the desired portion.  The modified reference signal is then subtracted 

from the incoming signal in an attempt to remove the noise, or in the case of I and Q 

imbalance, the cross-talk.  Similar to the BSS solution, IC based methods rely heavily on 

the learning rules employed to modify the adaptive filter.

2.4.1.3 Adaptive Methodologies Summary

Valkama et. al. analyzed several BSS and IC based methods and determined that both 

provide feasible solutions to the problem of I and Q imbalances in low-IF receivers [5]. 

While  the  Decimator  uses  a  zero-IF  receiver  architecture,  the  methodologies  are  still 

applicable and have been applied to direct conversion receivers in other cases [6,  11]. 
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Figure 2.10: Adaptive interference canceler (IC) architecture.



Valkama concluded that the BSS based solutions are more robust and can correct a wider 

range of receiver imbalances at a variety of received signal levels.  BSS also avoids the 

signal leakage problems that inhibit the IC based methods.  On the other hand, IC based 

methods are more capable of handling the effects of additive noise and symbol timing 

errors.  The IC based method can also be less sensitive to the type of modulation scheme.

Both methods track changes in I and Q imbalances with time, as is expected of the 

adaptive  techniques.   The  speed  and  accuracy of  convergence  of  these  methods  vary 

depending on the learning rule used to update the filter coefficients.  Both methods are 

comparable in this respect with the proper update rule selection.

Valkama shows that both methods would be successful in various situations; however, 

these solutions are not the most promising when considering the nature of the Decimator 

[5].  The most obvious shortcoming is the fact that the number of filter coefficients needed 

to  obtain  acceptable  results  may  easily  be  in  the  range  of  60  to  100.   To  keep  the 

Decimator operating at 65 MHz on the Spartan 3 FPGA, this would require a large number 

of dedicated multipliers.  These added multipliers would also cause a considerable amount 

of added latency in the DSP.  The adaptive filtering techniques, while promising in other 

applications with different hardware, would most likely not provide the best results for the 

Decimator.

2.4.1.4 Statistical Correction Method (“Stat”)

Figures  2.4 to  2.6 show  the  changes  that  occur  to  a  modulation  scheme  in  the 

presence of I and Q imbalances.  These changes alter the shape of the incoming signals 

such that the statistical characteristics of the received signals are also modified.  There are 

a  number  of  I  and  Q  correction  schemes  that  take  advantage  of  these  known  signal 
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alterations to estimate the error that was introduced into the signal.  Error estimates can be 

made and then used to reverse the effect of the errors on the signals.  Several statistical  

methods  will  be  evaluated  to  determine  their  viability  as  a  solution  to  the  I  and  Q 

imbalance problem in the Decimator.

Statistical methods for solving the receiver I and Q imbalance problem are relatively 

new.   One  of  the  earliest  methods  that  is  applicable  to  the  Decimator  architecture  is 

presented  in  [12].   The  problems  encountered  with  direct  conversion  receivers  were 

discussed at length, and several variations of statistical methods for correcting gain and 

phase  imbalances  were  proposed.   Unfortunately,  the  paper  does  not  provide  any 

verification  of  the  proposed  methodologies.   Consequently,  the  proposed  techniques 

requires further study.

Around the same time as  [12]  was published,  a  methodology was proposed (and 

presumably independently developed) by Kocic et al. [13].  The proposed methodologies 

offered simple hardware implementation and promising error correction results.  Shortly 

after the Kocic et al. [13] paper, an essentially identical methodology was proposed by 

Rykaczewski et al. [14].  Their proposed methodology offered good Bit Error Rate (BER) 

improvements while using only received data to formulate the correction scheme.  The 

performances of both [13] and [14] have been verified, and their methodologies are similar 

in many respects to [12].  Therefore, it appears that the methodologies proposed in [13] 

and [14] should be pursued as a solution rather than [12].

The statistical-based correction scheme proposed in [13] and [14], known henceforth 

as “Stat”, makes several basic assumptions about the form of the signal being received. 

The first  assumption  is  that  the real  and imaginary portions  of  the  received signal  be 
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statistically independent.  This assumption differs from that of the BSS based solutions 

which make the assumption that the two original signals are uncorrelated.  For the two 

signals to be independent, the following relationship must hold [4]

E [R I RQ]=E [R I ]E [RQ] (2.15)

The second assumption was that the real and imaginary portions of the received signal are 

of equal power.  That is, the following relationship must hold.

E [R I
2 ]=E [RQ

2 ] (2.16)

While the second assumption is not required by the BSS solutions, it is not an assumption 

that  limits  the  practicality  of  the  Stat solution.   These  assumptions  will  still  cover 

approximately 98% of all incoming transmitted signals.  One notable modulation scheme 

that  does  not  meet  the  requirement  in  (2.16)  is  BPSK.   BPSK transmits  data  that  is 

modulated on the I branch only which means the real branch power will be much larger 

than the imaginary branch power.

The  signal  model  in  Equations  2.11 and  2.12 show  how  the  desired  signal  is 

interfered with by the gain and phase imbalance components present in the receiver.  The 

Stat method proposes an estimation of the variables ε and ф, and then use those estimates 

to reverse the effects of the imbalance error.  From Equation (2.6) it is evident that the 

scaling  factor  between  the  two  channels  is  1/−1 .   Using  mean-squared 

calculations on both channels, [14] proposes the gain imbalance estimate to be,

=E [RQ
2 ]−E [RI

2]

E [RQ
2 ]E [RI

2]
(2.17)

The gain imbalance can easily be removed by multiplying each branch by the estimated 

imbalance.
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Once the gain imbalance has been corrected, the phase imbalance can be addressed. 

Squaring the I and Q branches yields

S I
2=R I

2cos2 2 RQ
2 sin2 2 −RI RQ sin  (2.18)

SQ
2=RI

2 sin2 2 RQ
2 cos2 2 −R I RQsin  (2.19)

After the assumption in Equation (2.16) is acknowledged, it can be seen that,

E [S I
2]E [SQ

2 ]=E [R I
2 ]E [RQ

2 ] (2.20)

And since R I RQ=S I SQ−1/2 sin S I
2SQ

2  , it follows that,

=−arcsin 2 E [RI EQ ]
E [R I

2]E [RQ
2 ]  (2.21)

The calculations required to find the phase estimate are quite simple to compute in an 

FPGA,  with  the  exception  of  the  Arcsin function.   According  to  [13]  the  following 

simplification can be made,

=− 2 E [RI EQ]
E [R I

2]E [RQ
2 ]  (2.22)

Kocic  et  al.  justify  the  removal  of  the  Arcsin function  by  noting  that  in  real  world 

applications phase errors are typically less than 20° [13].  With small phase values, the 

Arcsin function does not significantly change the estimated value.  Therefore, it can be 

removed to make the algorithm easier to implement in hardware without a substantial loss 

of precision to the phase estimate.

Once estimates of the error parameters have been calculated, a method is needed for 

applying these estimates in a way that removes the I and Q imbalance error.   In [12], 

several time domain models for applying the correction coefficients are presented that look 
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quite similar to the feedback network solution proposed by Torkkola [10].  Figure  2.11 

depicts the proposed gain and phase error correction block diagram.  The gain is corrected 

first, and then the phase, as was outlined in [12].  Mathematically, it is clear that mixing 

the coefficients as shown in Figure  2.11 cancels the extra  components in the received 

signal, as shown in Eqs. 2.11 and 2.12.

The  block  diagram in  Figure  2.11 is  a  valid  method  of  applying  the  correction 

coefficients; however, the method requires the use of four multipliers and two adders.  The 

impaired signal was shown to have half the errors applied to the I channel, and the other 

half of the errors applied to the Q channel.  Applying the I and Q errors to only one branch 

of the signal is well documented [5,  16,  19].  Rather than spreading the gain and phase 

corrections between the I and Q channels, the corrections can be applied to just one of the 

channels.  This causes the Q branch of the receiver to be equalized to the I branch, and 

since the desire to make the spectral powers of the I and Q channels equal, this is a valid 

modification.  The proposed modification is depicted in Figure 2.12.  The simplification to 

25

Figure 2.11: I and Q Imbalance Correction Block Diagram.



the hardware correction scheme reduces the dedicated FPGA hardware required to two 

multipliers and one adder.

2.4.1.5 Other Statistical Correction Schemes

Stat is  not the only statistical  correction scheme that has been proposed and as a 

result, several other promising methods will also be presented and discussed.  Moseley and 

Slump presented a novel method that uses only data from the received signal to correct 

subsequent  incoming  samples  [18].   Figure  2.13 shows  the  proposed  correction 

architecture.  Three estimators are adapted in real time to determine the I and Q imbalance 

compensation  coefficients.   Windows  of  data  anywhere  from  32  to  256  samples  are 

captured and basic averaging is performed.  A Low Pass Filter (LPF) is used with each 

estimator to smooth the data that is generated by each window of samples.  The output of 

the estimators is then used to generate the correction coefficients.  Once the coefficients 

are  computed,  their  application  requires  only  two  multipliers  and  one  addition.   This 

hardware requirement is the same for Stat.
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Figure 2.12: Simplified I and Q Imbalance Correction Block Diagram.



The  Moseley  and  Slump  method  [18]  provides  an  alternative  to  Stat.   The 

performance  of  both  methods  cannot  be  compared  based  solely  on  the  respective 

performances  because  one  method  contains  IRR  simulations,  and  the  other  method 

provides  BER simulations.   Without  implementing  both  methods  in  Matlab  to  obtain 

numerical results, the decision can be made based on the ease of implementation in the 

Decimator.

The hardware requirements of [18] are only mildly greater than Stat.  The only major 

difference is that three additional multipliers are needed for the LPFs.  The main drawback 

comes from the flow of the correction algorithm.  Stat calculates several running sums in 

the background and then uses the sums to calculate the error coefficients.  Rather than 

calculating the coefficients in the FPGA, the sums can be passed to the microcontroller for 

processing.  The results can then be passed back to the FPGA for use.  Conversely, [18] 

would  require  full  implementation  in  the  FPGA because  of  its  real  time nature.   The 

Mosely and Slump [18] method cannot wait for values to be passed back and forth from 

the microcontroller.  For this reason, Stat still appears to be the more promising algorithm 

for implementation in the Decimator.

Another novel method for removing I and Q imbalances in both the transmitter and 
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Figure 2.13: Moseley and Slump's I and Q Imbalance Compensation Block Diagram.



receiver was proposed in [29].  Reference was made to  Stat in the paper but no reasons 

were given as  to  why it  should  not  be used were provided.   The main benefit  to  the 

proposed scheme is that it provides a correction in the transmitter as well as in the receiver. 

The Bit Error Rate (BER) graphs provided in [29] indicates that the proposed method does 

not perform as well as Stat while correcting 16-QAM and 64-QAM signals under similar 

conditions.  Since the Decimator is a receiver, and no modifications are being made to any 

transmitters, choosing Stat over the method proposed in [29] seems quite justified.

Another novel statistical correction technique was proposed by Anttila et al. [16, 17] 

which used second order statistics of a signal to obtain correction parameters.  The basic 

assumptions of the methodology are that the received signals are zero-mean, circularly 

symmetric, mutually uncorrelated, and of equal power.  This may seem like quite a number 

of  assumptions  to make,  but  these assumptions apply for  the vast  majority of modern 

communication systems.  The drawback in the case of the Decimator is that the calculated 

estimates must be implemented with adaptive filters.  Adaptive filters are not feasible in 

the case of the Decimator.  While the Anttila et al. technique may prove invaluable in other 

receivers, it would probably not be of much value to the Decimator [16, 17].

2.4.2 Data-Aided (DA) Correction Schemes

Data-aided  correction  schemes  are  less  popular  than  their  counterpart  schemes 

because training sequences must be injected into the signal at the transmitter.  Introducing 

a  training sequence requires an increase of  complexity in  both the transmitter  and the 

receiver due to the increased channel equalization and frequency synchronization.  While 

the  performance  of  DA correction  schemes  has  been  shown  to  be  quite  good,  the 

usefulness  of  such  correction  schemes  is  still  questionable.   For  these  reasons,  many 
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practical applications opt for a NDA type solution, rather than for a DA type solution [5]. 

DA solutions are not feasible in the case of the Decimator because the modulation scheme 

is unknown to the receiver and altering the transmitter is not an option.

2.4.3 I and Q Imbalance Conclusions

The simplicity of Stat and its error improvements in other application make it a prime 

candidate  for  integration  into  the Decimator.   It  does  not  require  calculations  that  are 

beyond the scope of an FPGA and it does not require any knowledge of the incoming 

signal.  The signal is assumed to be symmetric about the origin and to have equal channel 

powers.  For these reasons,  Stat will be further evaluated as a solution to the I and Q 

imbalance problems present in the Decimator.

2.5 Windowing

Windowing is a term used to refer to a filter that passes a selected group of samples 

and sets all others to zero.  In contrast with the other types of filters that pass data based on 

frequency content, a window filter passes data based on its time domain position.  The 

result is a finite sequence of non-zero samples that may be processed further by subsequent 

DSP algorithms.  In the case of the Decimator, the processing that follows the windowing 

is the FFT.

Windowing has become a common practice in applications that perform the FFT.  The 

reasons for its necessity stem from issues that arise out of the calculation of the FFT.  The 

FFT assumes it is calculating a periodic sequence of data, however, only a small sampling 

of the incoming data is used to make the calculation.  The starting point and ending point 

of the window frame have to exactly line up to provide a seamless periodic representation 
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of the captured signal.  In practice, a set  number of samples are used to represent the 

incoming signal but its starting and ending points do not line up.  This results in the energy 

of the signal being spread across a number of frequency bins, rather than being isolated 

from each other.  This phenomenon is known as spectral leakage.

Figure 2.15 shows the 256 point FFT of a simple sinusoidal wave whose starting and 

ending samples line up to make the data frame periodic.  The results in Figure 2.15  can be 

compared with the result seen in Figure 2.14, where the same sinusoid was processed and 

the frame of data did not line up.  The differences between these two representations are 

evident.   Firstly,  the  peak  FFT  bin  value  is  lower  because  of  the  spectral  leakage. 

Secondly, spectral leakage causes the base of the FFT spectrum to grow when it should be 

narrow,  as  shown in  Figure  2.15.   Obviously  this  introduction  of  error  into  the  FFT 

calculation should be mitigated.  This is why windowing has become an important process 

in the DSP chain of the Decimator.
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Figure 2.14: Non-periodic frame of data from a periodic sinusoid.



It  should  be noted  that  although windowing was  not  explicitly performed on the 

sinusoids from Figure 2.15 and Figure 2.14, the act of limiting the input to the 256 point 

FFT to  256  samples  is  itself  an  implicit  application  of  a  rectangular  window.   The 

rectangular window is what caused the sharp cut offs at each end of the data frame.  There 

are a wide variety of window designs that round the corners of the data frame to reduce 

spectral  leakage.   Figure  2.16 shows a few of the most common windows in the time 

domain.
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Figure 2.15: Periodic frame of data from a periodic sinusoid.



Taking the  example  from Figure  2.14 and applying a  Hamming window prior  to 

transformation yields improved results.  Figure 2.17 shows these improved results, along 

with the Hamming window coefficients that were applied.  Although the new frequency 

spectrum does not have the spectral leakage that was previously present, the amplitude of 

the spectrum is significantly lower.  The lowered spectral gain is due to the windowing 

function which removed much of the signal power when it tapered the edges of the data 

frame.  The amount by which the amplitude decreases is known for each type of window 

and can be corrected by applying a gain factor to the spectrum after the transformation.  

Another  significant  difference  can  be seen  by the  overall  width  of  the  frequency 

component.  While the frequency component no longer contains the leakage around the 

base, it is now wider than it was in Figure 2.15.  The frequency component is now wider 

and it has lost some of its spectral resolution.  Where two spectral components that are 
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Figure 2.16: Several common window functions.



very close to each other may have been distinguishable before the windowing operation, 

they may overlap each other and cause their spectral components to interfere with each 

other.  Herein lies the trade-off that takes place with the application of a window function: 

spectral leakage versus frequency resolution.
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Figure 2.17: Effect of the Hamming window on a periodic signal capture.



2.5.1 Finite Register Length

Finite register lengths degrade the precision of an algorithm in two ways.  First, by 

limiting the precision of calculated values (coefficients), and second, by truncating the 

results of multiplication operations that overflow.  Windowing coefficients are calculated 

by the Decimator in the microcontroller and may then be passed to the FPGA for storage 

and use.  This process will require rounding operations to take place such that the 32-bit 

coefficients can be represented by fewer bits in the FPGA.  This will be the first loss of 

precision in the window migration process.  The second source of error will not be an issue 

as it was in the FFT algorithm.  Each incoming sample is multiplied by its corresponding 

window coefficient, but each coefficient is less than 1.  There will be no errors introduced 

by overflows in the windowing function.  Only one of the two main sources of error are 

applicable to the windowing operation.  Migration of the windowing to the FPGA should 

not induce as much error in this system as migration of the FFT algorithm.

2.6 Fast Fourier Transform (FFT)

Advances in mathematics have brought about new ways of viewing data.  Various 

transforms  such  as  the  Hilbert,  Cosine,  and  Fourier  Transforms  have  become 

commonplace  in  a  variety  of  signal  processing  applications.   The  Fourier  Transform 

changes a signal so that rather than viewing a signal as an amplitude versus time function, 

the signal may be viewed as an amplitude versus frequency function.  While the Fourier 

Transform is a theoretical transformation, the Fast Fourier Transform (FFT) is its practical 

realization [1, 2, 3].  The FFT has become one of the most important transforms in signal 

processing applications and much work has been done to implement the FFT on a variety 

of hardware platforms.
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The FFT is currently performed in the ARM microcontroller on board the Decimator. 

However, there are several reasons why migrating the FFT to the FPGA is desired.  The 

primary reason relates to speed; the microcontroller is much slower at processing data than 

the FPGA.  The advantage of the microcontroller  is  that it  has a 32-bit  floating point  

mathematical operator, whereas the FPGA is inherently fixed point.  Keeping as much of 

the signal processing chain on the FPGA makes for a much more maintainable product.  As 

a side benefit, a logic core that performs the FFT adequately on the Decimator may be an 

asset to other related projects.

2.6.1 FFT Background

The Discrete Fourier Transform (DFT) provides a way for digital systems to realize 

the Fourier Transform of a function.  However, it is a time consuming transform that is not 

practical in most systems.  Exploiting some of the key properties of the DFT, such as  

periodicity and symmetry, a variety of more efficient algorithms have been developed to 

make the implementation of the DFT in hardware a practical reality.  These more efficient 

algorithms fall under the blanketed term “Fast Fourier Transform” because of increased 

speed with which the transform is calculated [1, 2].  

The general DFT equation can be written as,

X [k ]=∑
n=0

N−1

x [n]W N
kn (2.23)

where X[k] represents the frequency bins found in the sequence x[n].  N represents the 

number  of  samples  in  the  given  frame  of  data,  or  window,  and W N
kn represents  the 

complex exponential e− j2/ N kn .  By multiplying discrete samples by the complex vector 

e− j2/ N kn ,  the frequency content of the signal at various angles can be summed and 
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transformed into a set  of frequency bins [1,  2].  However,  the way in which the DFT 

algorithm is implemented in hardware is a topic of much study, and a number of methods 

have been proposed to reduce its computational complexity.

2.6.1.1 Decimation-in-Time (DIT) Algorithms

There  are  two  main  types  of  FFT  algorithms;  decimation-in-time  (DIT)  and 

decimation-in-frequency (DIF) algorithms. The DIT algorithms break an incoming frame 

of samples into successively smaller sub-sequences before performing the transform to 

only a  small  number  of  samples.   The  rest  of  the  transform coefficients  can  then  be 

deduced  using  the  periodicity  and  symmetry  principles  of  the  Fourier  Transform [1]. 

Figure 2.18 depicts the flow of a DIT algorithm.  While this example flow chart shows an 

8-point DIT FFT, the method can be expanded or contracted to apply to all FFT point sizes 

that are factors of 2N .  The decomposition scheme leads to a reduction in the number of 

multiplication operations needed by more than a factor of 100 [1, 2].

The values of W N
kn , referred to as “twiddle factors,” need to be calculated for each 

FFT point size.  They are reusable, however, so they only need to be calculated once per 

point size.  As is seen in Figure  2.18, some of the twiddle factors may be simplified to 

either a “1” or “-1”.  This is a valid simplification since the angular frequencies at even 

multiples of   are W N
N /2=e− j2/ N N /2=e− j=−1 and W N

0 =e− j0=1 .
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2.6.1.2 Decimation-in-Frequency (DIF) Algorithms

The most notable difference with the DIF algorithms is that it takes the input data in 

its natural order and performs the FFTs starting with the 2N  (for radix-2) FFT first.  This 

is in contrast to the DIT algorithm which rearranges the input data window in order to 

perform the smallest FFT calculation first before moving up to the higher values.  Both 

algorithms have strengths and weaknesses when compared to one another, so the right 

algorithm needs to be chosen to fit the system it is being implemented in.  Figure  2.19 

depicts the flow graph of a basic DIF implementation.

Comparing Figure  2.18 and Figure  2.19,  one design consideration is  immediately 

apparent.  A choice between ordered inputs, or ordered outputs must be made.  The DIT 

FFT must buffer the input data in order to rearrange it and apply the butterfly calculations. 

On the other hand, the DIF takes data in order and generates Fourier coefficients that are 

out of order.  Because of this, the data at the output must either be buffered and rearranged, 

or the system using the generated Fourier coefficients must know that they are not in their 

37

Figure 2.18: Flow graph of an 8-point DIT decomposition.



natural order (i.e. the coefficients are not ordered 0, 1,2,etc.).

2.6.1.3 FFT Radix Size

In the previous  examples  of  DIT and DIF FFTs, a  radix size of  N = 2 has  been 

assumed.  That is, the FFT length is broken down by a factor of 2 at each step of the  

decomposition.  Radix-2, where N = 2, is one of the most common FFT settings because it 

greatly reduces the number of multiplications needed.  The down side to decomposing the 

FFT this much is that it takes longer to calculate.  When implemented in hardware, this 

equates to an increase in algorithm latency.  Rather than decomposing the calculations 

down to a minimum of 2, as in the radix-2 calculation, setting  N = 4 simply causes the 

minimum FFT calculation to include 4 samples.  This is known as radix-4, and it offers an 

alternative to radix-2 in that it performs the same FFT calculation in less time but with 

more multiplications.   Unfortunately,  it  is  less robust than radix-2 because it  can only 

calculate FFT lengths that are a power of 4.
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Figure 2.19: Flow Graph of an 8-point DIF decomposition.



2.6.2 Finite Register Lengths

The most important issue when discussing the migration from floating point hardware 

to  a  fixed  point  platform is  the  loss  of  data  that  can  be  attributed  to  truncation  and 

rounding.  One way these errors creep into the FFT calculation is through twiddle factor 

multiplications.  Twiddle factors must be stored in memory with a fixed number of bits. 

The  number  of  bits  used  determines  how precisely  the  actual  twiddle  factor  value  is 

represented.  Bit growth due to the multiplications that take place in each butterfly of the 

FFT is the other dominant source of error due to finite register lengths.  Analyzing these 

two issues varies based on the FFT architecture and input signal model.

FFT  algorithms  contain  a  large  number  of  multiplications,  and  twiddle  factor 

quantization errors  propagate with each multiplication.   The way quantization noise is 

manifested in twiddle factors depends on the implementation of the complex multiplier 

(i.e. the architecture that is instantiated).  The Chang and Nguyen model is based on the 

Radix-2  FFT,  which  limits  their  results  to  be  applicable  only  to  Radix-2  FFTs  [27]. 

Comprehensively evaluating the effects of finite register lengths with respect to the Xilinx 

FFT core is a fairly in-depth task.  Oppenheim and Weinstein believe the twiddle factor 

quantization errors are not a major source of error [22].  Rather, it was concluded that the 

quantization error varies directly with N, the number of bits used, which means doubling 

the  number  of  bits  used  to  represent  the  twiddle  factors  would  produce  only a  small 

improvement in the noise-to-signal ratio of the FFT.  It is important to note that more 

experimental verification is required since their hypothesis is based on an equation meant 

to give a rough estimate of quantization error.

Each butterfly in  a  Radix-2 FFT has  the potential  to  increase the number of bits 
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required to represent the result by a factor of two [1].  In a Radix-4 FFT, an increase up to 

a factor of four is possible.  Floating point arithmetic is able to handle these bit growths 

because of its superior dynamic range performance [22], however, fixed point arithmetic 

requires some form of intervention to keep the result manageable.  The Xillinx FFT core 

comes with several configurable options to address this problem.

2.6.2.1 Full Precision Unscaled

The Full Precision Unscaled settings introduces the least noise into the system.  The 

number of bits at the output is determined by the worst case scenario formula, as seen in 

Equation (2.24).

input widthlog2FFT length1 (2.24)

Therefore, 12-bit input samples will yield 22-bit FFT coefficients.  While this setting 

does not introduce any truncation or rounding noise to the data, the data will not be usable 

by the rest of the system.  As a result, the output will most likely require scaling to bring it  

back to a usable size.  This is an elementary way of dealing with the bit growth problem, 

and it will introduce a substantial amount of error into the system.

2.6.2.2 Scaled Fixed Point

 The next built-in function to deal with bit growth after each butterfly calculation is 

called Scaled Fixed Point.  Rather than scaling the result at the output of the FFT, the 

scaled fixed point setting scales by a user-defined value at each butterfly calculation.  This 

technique is quite common, and has been shown to be superior to having one large scaling 

factor at the input of the FFT [1, 22].  The down side to this procedure is that scaling is not 

necessarily required with each butterfly, but it is still  applied anyway.  Data that has a 
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higher average value and comes close to saturation quite frequently will not notice much 

of an issue with this solution.  Data that is close to saturation requires scaling at most 

butterfly operations anyway.  Conversely,  data that has a lower amplitude will become 

much noisier with this setting since scaling is applied unnecessarily at most FFT stages.

2.6.2.3 Block Floating Point (BFP)

The final built-in FFT core setting implements Block Floating Point (BFP) arithmetic. 

BFP may be considered a special case of the floating point format where non-overlapping 

groups of data are joined together by a common scaling factor.  The scaling factor acts as 

the mantissa in a floating point number, except the scaling factor is chosen to represent the 

largest samples within the group [23].  When the BFP arithmetic option is selected, the 

output of each butterfly is checked to determine whether an overflow has occurred.  If an 

overflow has occurred, a scaling factor of two (for Radix-2) or four (for Radix-4) is used 

to bring the data back to the desired number of bits.  The number of overflows and the 

stage at which they occur affect the SNR.  The setting of this variable can greatly vary the 

SNR of the input data [1].

2.6.3 Dynamic Range

Dynamic range refers to the smallest and largest values that can be represented of a 

given variable.  As it pertains to spectral analysis, dynamic range determines the ability of 

the FFT to distinguish between small and large spectral peaks.  Measuring the dynamic 

range of an FFT system is not a trivial task.  This is primarily because dynamic range has 

no  specific  definition  as  it  pertains  to  FFT systems [24].  There  are  several  common 

methods of measuring the dynamic range of an FFT system that are widely accepted.  The 
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first method is to find the ratio between a full scale sinusoid and the noise floor.  This is 

called a “two-toned” measurement and it provides an accurate theoretical measurement of 

dynamic range.  The “two-toned” measurement does not take into consideration the fact 

that  real-world  signals  contain  numerous  sinusoids,  so  it  fails  to  provide  an  accurate 

practical measurement of dynamic range [25].

The second method for determining the dynamic range of an FFT system is called the 

“noise slot test” [21,  24]  White Gaussian noise is created and passed through either a 

notch filter or a bandpass filter.  The remaining data is then scaled and quantified to use the 

full range available given the number of bits in the system.  This signal is then passed to 

the input of the FFT system.  The difference between the average signal power and the 

average noise power is the dynamic range of the FFT system.  There is a third method of  

determining dynamic range called the “mean-squared error technique” but it can be shown 

to be equivalent to the “noise slot test” [24].

Xilinx simulated a number of “noise slot tests” in Matlab and documented the results 

[21].  Figure 2.20 shows an overview of the results that were obtained.  The slope of the 

graph is 6.06 dB/bit, which means that each additional bit used to represent the input and 

output increases the dynamic range of the FFT by 6.06 dB.  The change of about 6 dB of 

dynamic range per bit is not an accurate representation of actual dynamic range, but of 

theoretical range [24, 25].  In reality, there are other factors that cause noise and prevent 

the 6 dB per bit rule to be followed explicitly.
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Xilinx documented several other “noise slot test” result that are of interest to this 

thesis.  Xilinx calculated the dynamic ranges of the full precision unscaled arithmetic, the 

scaled (1/N) arithmetic, and the BFP arithmetic using a bit accurate Matlab model of the 

Xilinx FFT Core [21].   All  simulations were run using 1024 point,  Radix-4 Burst  I/O 

transforms with 16-bit input data, 16-bit phase factors, and convergent rounding.  The full 

precision unscaled simulation yielded a benchmark result of 91 dB.  The BFP simulation 

calculated  a  dynamic  range  of  73  dB.   The  smallest  dynamic  range  was  the  scaled 

arithmetic simulation, which found the dynamic range to be 64 dB.  Therefore, moving 

from full precision unscaled to BFP lead to a loss of 18 dB.  A further loss of 9 dB was 

sustained by going from the BFP to the scaled arithmetic.

A more  practical  look  at  the  effective  dynamic  range  of  an  FFT  system  was 

performed in [26].  Other factors that affect the dynamic range of an FFT system are the 

FFT algorithm that is used (i.e. DIT or DIF), the FFT length, and the window filter that is 
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Figure 2.20: Xilinx dynamic range results.
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used.   Several  simulations were run using a  variety of  settings,  but  one simulation in 

particular had similar settings to those used in [21].  Simulation 3 in [26] was run using the 

1024 point DIT FFT, a rectangular window, 15-bit input data, 15-bit phase factors, and 15-

bit output samples.  The only notable difference from one of the Xilinx simulations is the 

use of 15-bits as opposed to 16-bits.  The Dynamic range was found to be 70 dB in [26], 

which is very close to the 73 dB value found by Xilinx.  The 3 dB difference may be 

attributed to the slight differences between the simulations.
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CHAPTER 3 : RESEARCH PROGRAM / METHODOLOGY

3.1 Introduction

The research program is designed to study the effectiveness of the proposed changes 

to  the  Decimator.   A methodology  for  simulating  and  verifying  the  chosen  I  and  Q 

imbalance  correction  scheme  will  be  outlined.   Similarly,  a  plan  for  the  algorithm 

migrations will be outlined that can be implemented in VHDL and simulated using the 

Xilinx ISE Simulator.  The steps taken to study each of the issues in this thesis will be 

clearly defined.  The results of the described simulations will be presented and discussed in 

Chapter 4.

3.2 I and Q Imbalance

Chapter 2 presented a variety of solutions to the I and Q imbalance problem.  There 

are only a few that can be practically implemented in the Decimator.  Statistical methods 

of  correction  showed  promising  results  while  using  minimal  resources  and  for  these 

reasons, a statistical method was studied.  The statistical method studied is called Stat, as 

discussed in Chapter 2.  Stat will be implemented in VHDL and simulated using Xilinx 

ISE  to  obtain  bit  accurate  data  and  hardware  usage  estimates.   Stat will  also  be 

implemented in Matlab to give the bit accurate VHDL simulations 32-bit floating point 

reference results.  The method of applying the correction coefficients will be implemented 

as outlined in Figure 2.12.

3.2.1 Stat Design Overview

The overall design of Stat was outlined in Chapter 2, but a more detailed discussion 
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regarding its implementation in VHDL is presented herein. The discussion describes the 

source of the simulation results.  Figure 3.1 shows the VHDL system level design of Stat.

The first point to note is that the actual calculation of the correction coefficients is 

done outside the FPGA in the microcontroller.  The reasons for using this approach were 

outlined  in  Chapter  2.   The  low  level  calculations  required  to  find  the  correction 

coefficients (i.e., the sum of squares and sum of products) are performed in the FPGA. 

These calculations are kept in the FPGA because their hardware requirements are quite 

low and it is possible to keep up with the speed of the incoming data (65 MHz).  Sending 

all the incoming data to the microcontroller for the sum of squares operations would more 

than  likely  require  buffering.   Exporting  the  pre-summed quotients  should  work  well 

because it utilizes the speed of the FPGA and the precision of the microcontroller to find 

the correction coefficients.

The  microcontroller  controls  the  I  and  Q  imbalance  correction  block.   The 

Enable_Corr signal instructs the block whether to correct the incoming data or to simply 

46
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pass it through to the output without correction.  The Calc_New_Coeffs signal begins the 

process of calculating data for the microcontroller to use in formulating new correction 

coefficients.  Once the data has been summed, it is passed to the microcontroller for further 

calculations.  The gain coefficient is calculated first and is updated in the FPGA.  Using 

that new gain coefficient,  the incoming data is gain-corrected and the phase correction 

coefficient is calculated.  Once enough data has been summed, the phase data is sent to the 

microcontroller for coefficient calculation.  The phase coefficient is then passed back to 

the FPGA to correct phase errors in the incoming data.

A state machine will control the calculation of the gain coefficient and subsequently 

the phase coefficient to ensure that each step in finding the new coefficients is handled 

sequentially.   The  sequencing  relies  on  the  incoming  control  signals  from  the 

microcontroller to begin the process for finding new coefficients as well as advancing the 

process  through  its  cycle.   The  counter  is  also  a  critical  part  of  advancing  the  state 

machine.  The counter ensures the proper number of samples are summed as well as letting 

the state machine know when to pass the collected data to the microcontroller.

The design displayed in Figure 3.1 utilizes five 18 x 18 multipliers.  As was discussed 

in  Chapter  2,  correcting only one of  the channels to  make it  match the other  channel 

eliminates the need for two of the multipliers.  The Channel_Select modules are switches 

that pass the real data to the gain correction block when the gain correction coefficient is 

negative,  and  passes  the  imaginary  data  to  the  gain  correction  block  when  the  gain 

correction coefficient is positive.  The channel that is not passed to the correction blocks is 

passed to the phase correction block.  Simply stated, the channel that has more gain is 

multiplied by a correction coefficient that is between -1 and 1 to reduce its amplitude to 
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that of the other channel.  The Channel_Select facilitates this process.

3.2.2 Stat Sources of Error

The implementations of  Stat in VHDL and Matlab will help locate the sources of 

error that are associated with the correction scheme.  The Stat implementations will also 

help determine the error correction that it provides.  A number of simulations will be run 

that focus on specific areas of  Stat.  By testing individual sections of  Stat, it should be 

possible to pinpoint any deficiencies in the correction scheme.  Figure 3.1 shows that the 

error introduced in the correction scheme come from quantization of the gain and phase 

coefficients, and from truncating the result of the correction back to 14-bits.  The focus of 

this thesis will be on the overall performance of Stat and the quantity of error associated 

with each of its sources of error.

3.2.2.1 Coefficient Estimate Accuracy

There are two key questions that need to be answered regarding the ability of Stat to 

estimate correction coefficients; namely, 1) how accurate are the estimates? and 2) how 

many samples are necessary for sufficiently accurate estimates?  The remainder of this 

section will discuss these two issues and describe methodologies for obtaining quantifiable 

results that help answer these questions.

There is no closed-form expression for determining the correction coefficients.  The 

correction coefficients must be statistically determined from incoming data.  Estimating 

the correction coefficients introduces error into the correction scheme because the number 

of samples used will affect the result of a statistical estimate.  The number of data samples 

used to calculate the correction coefficients must be analyzed to determine whether there is 
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an  optimal  number  of  samples  that  should  be  collected  for  subsequent  coefficient 

estimations.  Searching for an optimal number of samples will also show whether or not 

the  accuracy  of  the  correction  coefficients  converges  as  the  number  of  samples  gets 

extremely large.

Figure 3.2 outlines the following data generation process description.  The first step 

in determining the affect the number of samples has on the accuracy of the estimate is to 

generate some random data.  Generating random data yields a full spectrum of frequencies. 

The simulations will involve modulation and demodulation of the generated data and both 

these  operations  include  anti-aliasing  Low  Pass  Filters  (LPFs).   LPFs  remove  the 

frequency components  of  the originally generated data  that  are  above ½ the  sampling 

frequency.  This cutoff is called the Nyquist  Frequency [1,  2].  Filtering the randomly 

generated data with a 5th order Butterworth LPF that has a cutoff frequency of ¼ the 

sampling frequency will eliminate this problem.  The random samples are generated with a 

mean of zero, however, there is always a possibility that the generated data will have a 

slight DC offset.  Any minor DC offset that may be present in the generated data will be 

removed to isolate the sources of error in the simulation.  The data is ready for simulation 

once these factors have been taken into consideration.

Either a filter must be used or a number of simulations need to be averaged to smooth 

the  results  of  the  simulation.   Averaging  a  number  of  simulations  is  a  better  way of 
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Figure 3.2: Data generation for coefficient estimate accuracy simulation.



performing the smoothing because it reduces the statistical anomalies that may be present 

in any one generated group of samples.  The coefficient estimation errors are averaged 

over 10 different trials, each using unique randomly generated data.  There are 20 different 

sample values used to calculate the gain and phase coefficients which range linearly from 

50 to  418876.   A range of  samples  of  this  size  should  yield  the  desired  convergence 

information.   The  gain  and  phase  errors  that  are  introduced  are  0.608  dB  and  4° 

respectively.   These are above-average I and Q imbalances than are typically found in 

Decimators.

The appropriate number of samples that must be used to obtain an accurate coefficient 

estimate should be clear once these simulations have been run.  The next step will be to 

choose a number of samples to use that is far larger than the determined minimum number 

of  samples  to  find how accurate  the coefficient  estimations  become as  the  number  of 

samples effectively approaches infinity.  This result should show what the estimators are 

capable of and how they can operate under ideal conditions.

3.2.2.2 32-Bit Floating Point Stat Performance

The  performance  of  Stat in  the  32-bit  floating  point  environment  of  Matlab  will 

determine its ability to correct unknown errors in the actual Decimator data.  The captured 

Decimator data will  come directly from the output of the Analog to Digital  Converter 

(ADC), which bypasses the DSP chain.  The input signals for the Decimator have been 

generated  using  a  variety  of  Arbitrary  Wave  Generators  (AWG)  that  are  capable  of 

producing  signals  up  to  at  least  2.15GHz.   The  Agilent  E4438C,  Agilent  8267D,  and 

Agilent N5181A are all examples of such AWGs.  The generated input signal was split into 

two identical components in order to have the I and Q channels of the Decimator identical. 
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By having  identical  simulated  received  signals,  any differences  between  the  two  post 

processed signals from the receiver  can be classified as front end receiver error.   The 

amount of error introduced will be evaluated and  Stat will be used to correct the data. 

Correcting  the  data  will  show the  effectiveness  of  Stat without  including  fixed  point 

precision error in the results.

A number of data captures have been obtained from the Decimator.  The captures will 

be used to verify the Matlab simulation of Stat.  The captures to be analyzed are discussed 

below  to  show  the  ability  of  Stat  to  handle  some  standard  signals  that  are  routinely 

encountered by the Decimator.  The captures contain a large number of samples but only a 

finite number will be used for  Stat coefficient estimation.  The number of samples that 

should  be  used  to  obtain  realistic  results  will  be  determined  prior  to  running  this 

simulation.

3.2.2.3 Fixed Point Precision Affect on Stat

Another important factor to consider is the amount of error that will be introduced 

into the  Stat correction scheme from the fixed-point precision arithmetic in the FPGA. 

The  implementation  of  Stat in  the  FPGA  will  be  functionally  identical  to  its 

implementation in Matlab.  The only difference is that the fixed point hardware is used to 

run  the  calculations  and  correction.   This  simulation  will  illustrate  the  error  that  is 

introduced into the correction scheme from the truncation and rounding associated with 

fixed point mathematics.  The simulation will also serve as a verification that Stat has been 

successfully implemented in VHDL.
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3.2.2.4 Arcsin Affect on Phase Estimates

As  was  discussed  in  Section  2.4.1.4,  [13]  concluded  that  removing  the  Arcsin 

function  from the  phase  coefficient  estimate,  (as  seen  in  Equation  (2.22)),  would  not 

contribute greatly to the error in the estimate for phase imbalances under 20°.  The reason 

20° was chosen as the maximum phase the estimator equation could handle is unclear 

since  no  data  is  presented  to  qualify  this  claim.   A simulation  will  be  performed  to 

determine  the  affect  the  Arcsin  function  has  on the  precision  of  the  phase  coefficient 

estimation.  The results will indicate whether the reduction in hardware from the Arcsin 

function  is  worth  the  loss  in  the  coefficient  precision.   The  results  will  also  indicate 

whether the 20° error point recommended in [13] was identified for an obvious reason.

The simulation will be set up in a manner similar to the one described in Section 

3.2.2.1.  Phase errors between 0° and 30° will be introduced in five randomly generated 

signals through a demodulator.  The five randomly generated sets of data will help smooth 

statistical anomalies that may be present in any one of the randomly generated sets of data. 

Each of the five sets of data will be run through two Stat functions; one using the phase 

estimate seen in Equation (2.21) that contains the Arcsin function, and one using the phase 

estimate in Equation (2.22) that does not have the Arcsin function.

3.2.3 Stat Resource Usage

The hardware resources required by Stat will be individually evaluated and discussed 

once the VHDL implementation of Stat has been synthesized.  The required resources will 

be apparent and the available resources on the Spartan 3 1500 are known, so concluding 

whether  the  VHDL implementation  of  Stat will  work in  the  FPGA should  be  straight 

forward.  The current Decimator implementation has also been previously synthesized and 
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the  results  of  the  synthesis  will  be  compared  with  the  added  resources  that  Stat will 

require.

3.3 Windowing

A window filter will be designed to operate in the FPGA of the Decimator based on 

the currently implemented window filter that operates in the microcontroller.  A similarly 

functioning window filter will also be designed in Matlab.  Bit accurate simulations using 

Xilinx ISE will then be run to obtain results that ought to be identical to those that would 

be obtained if the algorithm were running on the FPGA in the Decimator.  The results of 

the  VHDL simulation  can  then  be  compared  to  those  of  the  Matlab  simulation.   The 

differences  between the  two simulations  will  characterize  the  affects  of  migrating  the 

window filter from the microcontroller to the FPGA.

The design of the window filter is based on the original design that was implemented 

in the microcontroller of the FPGA in C.  The code required to implement the windowing 
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Figure 3.3: Window filter VHDL implementation block diagram.



in VHDL is substantially more complex than the original C code due to the nature of 

VHDL.  Figure 3.3 displays a system-level overview of the implemented VHDL window 

filter.

Data enters the window filter as 16-bit fixed point real and imaginary samples.  The 

windowing coefficients will be generated in the microcontroller, truncated to 16-bits, and 

then passed to the shared RAM that the microcontroller and the FPGA both have access to. 

The Controller  & Sample  Counter  in  the  window filter  keeps  track  of  the  number  of 

samples that have been received, which coefficient is required next, and when the filter has 

completed its  cycle.   The  incoming real  and imaginary samples  are  multiplied by the 

recalled coefficients stored in the shared RAM.  The two 16-bit multipliers yield 32-bit 

fixed point results which are then truncated to 16-bit values and passed out of the block.

3.4 Fast Fourier Transform (FFT)

Since the Decimator uses a Xilinx Spartan-3 FPGA as one of its main computational 

units, using a Xilinx FFT core would appear to be an obvious solution to pursue.  The 

various features of the Xilinx FFT core, along with a discussion of why it would most 

likely function satisfactorily if used in the Decimator.  In this section, the Xilinx FFT core 

will be reviewed, and a number of simulations will be devised to test various features of 

the core.  The results of these simulations should show whether the core does in fact meet 

the requirements of the Decimator, or whether another solution will be required.

3.4.1 Xilinx FFT Core

There  are  four  basic  architectures  available  for  the  Xilinx  FFT  core:  Pipelined 

streaming I/O; Radix-4 burst I/O; Radix-2 burst I/O; and Radix-2 Lite burst I/O [21].  Each 
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architecture calculates the FFT differently, offering a tradeoff between resource usage and 

throughput.  The details of the architectures are not as important to this thesis as their 

resulting  performances.   These  four  basic  architectures  will  be  discussed  along  with 

pertinent design considerations.

Figure 3.4 is a graph provided by Xilinx to illustrate the relationship between the four 

architectures with respect to their performances.  By far the most powerful architecture is 

the Pipelined Streaming I/O FFT, but its resource usage is also the highest.  There is no 

added latency associated with loading and unloading the data frame with the Streaming 

I/O architecture because it is capable of processing data in real time.  It is also the only 

architecture to use the DIF algorithm, but the output can either be in natural order or bit 

reversed order.  The processing engines used are Radix-2, so the point sizes supported 

range from 8 to 65536 at multiples of 2N .

Radix-4 Burst I/O, along with both the Radix-2 and Radix-2 Lite architectures, use 
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Figure 3.4: Resource usage V.S. throughput for Xilinx architecture options [21].



the  DIT  FFT  algorithm  to  process  data.   These  architectures  are  labeled  as  “burst” 

architectures  because  loading,  calculating,  and  unloading  the  data  happens  separately. 

Incoming data cannot be processed in real time as in the case of the Pipelined Streaming 

architecture.  The exception to this rule is that data load and unload operations can be 

overlapped when the output is in bit reversed order.  The processing engine is Radix-4 

based which allows for computation of point sizes that are multiples of  4N .  A Radix-2 

engine is added to the architecture and this allows for point sizes of 64 to 65536 to be 

processed by the Radix-4 Burst architecture in multiples of 2N .

The Radix-2 Burst I/O architecture and Radix-2 Lite Burst I/O both use one Radix-2 

butterfly  engine  and  both  support  point  sizes  from  8  to  65536.   The  difference  in 

performance is a result of the Lite architecture only having one input to the butterfly.  The 

real and imaginary samples are alternately fed into the butterfly of the Lite architecture, 

which adds an extra clock cycle to complete each calculation.

The  first  consideration  when  implementing  the  FFT  core  is  determining  which 

architecture  should  be  used.   While  the  Pipelined,  Streaming  I/O  architecture  is  not 

necessary and is most likely too large for the Spartan-3 FPGA, one of the Radix-4, Radix-

2,  or  the  Radix-2  Lite  architectures  may  operate  satisfactorily  and  use  an  acceptable 

number of resources.  Each of the four architectures will be instantiated and their hardware 

requirements and performances will be evaluated to determine the optimal solution.

One  of  the  key  features  of  the  Xilinx  FFT  core  is  its  ability  to  perform  BFP 

arithmetic.  A Radix-2 1024-point FFT can grow by 10 bits, which is a factor of 1024 

times the size of the original data.  BFP arithmetic allows the data to be scaled only when 

there is an overflow from one of the butterfly operations, which prevents truncation from 
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occurring unnecessarily.  Unnecessary truncation is a major source of error with fixed-

point pre-determined scheduled scaling.  BFP also keeps track of the number of times the 

data is scaled so the output can be re-scaled once the output of the FFT has been passed to 

the microcontroller.  Simulations will be run to determine the feasibility of implementing 

the FFT using BFP arithmetic.  Simulations will also determine whether there is in fact a 

reduction in truncation error.

The performance improvement of BFP will be determined by implementing the FFT 

core using a scheduled scaling routine.  After each butterfly, the data will be scaled by 1-

bit to ensure there are no overflows.  The spectrum will then be compared to both the 

Matlab simulation and the block floating point VHDL simulation.  Measures of accuracy 

will  involve  spectral  peak  error  and  Mean  Squared  Error  (MSE)  using  the  Matlab 

simulation output as the benchmark.  The loss of dynamic range that occurs with scaled 

fixed point arithmetic may become apparent through these simulations.  If it is, dynamic 

range measurement will also be taken to quantify the results of the system.

3.5 Windowing and FFT VHDL Simulation

Testing the window filter and the FFT in an independent manner should help isolate 

the exact locations of introduced errors.  Independently testing the windowing and FFT 

modules may not be necessary because they will never function independently from one 

another  in  the  Decimator.   Testing  the  two  systems  together  will  yield  the  overall 

performance of the two blocks as they will be operating when implemented within the 

Decimator.

There  will  be  two  measures  of  accuracy  to  determine  the  performance  of  the 

windowing filter and the FFT algorithm as they operate together in the FPGA.  The first 
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measure is the spectral peak error.  The signal that will be analyzed is a complex wave 

with a carrier at +15 MHz.  This means there will be one large spectral peak carrier signal. 

The ratio between the error of the VHDL and Matlab implementations and the power of 

the transmitted signal will show the amount of error at the peak of the transmitted signal. 

This is an important measurement since many of the measurements taken from a spectrum 

analyzer involve spectral peak values.  The second measure of accuracy is mean error, 

where  the  average  difference  between  the  VHDL  implementation  and  the  Matlab 

implementation is calculated.  The ratio between the power of the transmitted signal and 

the average error of the VHDL implementation is then calculated to present the results in 

Decibels.  These two measurements will be performed at window and FFT lengths of 512, 

2048, and 8192 to determine the affect of point size on these algorithm migrations.  The 

point sizes will be used to represent the entire range of point sizes the Decimator is capable 

of handling.

Figure 3.5 shows the system level layout of the two blocks implemented in VHDL. 

The input data and windowing coefficients must be supplied when simulating the system. 

The input data will be obtained in the simulation by reading captured Decimator data from 

a text file.  The window coefficients will be generated in Matlab and truncated to 16-bit  

values.  The window coefficients will then be loaded into a block RAM that simulates the 

shared RAM on the Decimator.  The VHDL testbench can then obtain input samples of 

real and imaginary data in real time while the window filter and FFT process the correct 

samples of data based on their control signals.
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Spectral output of the FFT will be written to a text file that can be analyzed in Matlab. 

The Decimator  displays  the magnitude of  the spectral  data,  so the real  and imaginary 

output must be processed by Equation (3.1) before it can be displayed.  Calculating the 

magnitude can be done on the microcontroller to save FPGA hardware resources.  This 

choice also brings about two major benefits; namely, the output of the FFT can be scaled 

back to its actual level, and the required calculations to obtain the magnitude of I and Q 

samples can both be performed using 32-bit floating point precision.

Magnitude=I 2Q2 (3.1)

3.5.1 Block Floating Point (BFP) Versus 32-bit Floating Point

The  microcontroller  is  simulated  using  Matlab  since  both  operate  using  32-bit 

floating point arithmetic.  The output of the FFT core must be represented using 16-bits. 

The blk_exp variable is incremented each time there is an overflow in one of the butterfly 

calculations.  The results of the Xilinx FFT core will be passed to the microcontroller for  

further processing, which achieves benefits that were mentioned earlier.  The FFT results 

in the microcontroller may be expanded from their 16-bit representation to their actual 
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Figure 3.5: Window filter and FFT system level layout.



representation by multiplying each spectral  bin by  2blk_exp .   This expansion makes the 

results of the Xilinx FFT core comparable with the Matlab FFT results since they have the 

same scale.

3.5.2 16-bit Fixed Point Versus 32-bit Floating Point

A fully fixed point FFT simulation will be run for comparison with the previously 

mentioned BFP FFT implementation.  Implementing the fixed point FFT core requires a 

pre-determined scaling schedule to be set in order to prevent butterfly overflows.  The 

scaling schedule that will be used is one bit (1-bit) per stage (butterfly).  This is a fairly 

aggressive  setting  to  mitigate  overflows,  but  it  is  necessary  unless  more  advanced 

knowledge about  the  input  data  is  known.   The results  of  the  16-bit  fixed  point  FFT 

implementation will be compared with the BFP results and the 32-bit floating point results. 

The hardware usage for the fixed point FFT core will also be presented in the hardware 

usage section of the results.
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CHAPTER 4 : PRESENTATION of the RESULTS

4.1 Introduction

The system level  designs  for  each part  of this  thesis  were outlined in Chapter  3. 

Testing methodologies were also outlined to verify the functionality and performance of 

the outlined systems.  The focus of this chapter is to present the results that were obtained 

from the previously described simulations and discuss whether the results are in line with 

the system requirements of the Decimator.  At the conclusion of this chapter, there should 

be a full understanding of the designs that were implemented, how the designs were tested, 

and how well each design performed.

4.1.1 Stat Sources of Error

4.1.1.1 Coefficient Estimate Accuracy

There is  always  some error when calculating averages based on a  finite  data  set. 

Performing the simulation described in Section  3.2.2.1 allowed the determination of the 

number of samples necessary to obtain accurate coefficient estimates.  Figures 4.1 and 4.2 

depict  the number of samples used to calculate the coefficients versus the error in the 

estimates.  It is clear that using more samples yields a more accurate estimate.  The gain 

and phase estimates converge similarly, and it does not appear that more data is required 

by one method than another to obtain an accurate result.
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One of the important observations the simulation is that the results do not converge to 
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Figure 4.1: Error of gain coefficient estimate with respect to number of samples used.

Figure 4.2: Error of phase coefficient estimate with respect to number of samples used.



zero.  There is always a small error present in the estimate regardless of the number of 

samples used to calculate  the estimates.   There is  little to no benefit  using more than 

150,000 samples for both gain and phase estimates.   The simulations show acceptable 

estimates are produced by using 100,000 samples.  Choosing a point close to the corner of 

the exponential curve is not prudent.  Doing so could possibly compromise the accuracy of 

the estimates because real transmitted signals may not converge quite as quickly as the 

random data that was generated.  Using 154,354 samples, the gain estimate average is off 

by 0.029532 dB and the phase estimate average is off by 0.148969°.

4.1.1.2 32-Bit Floating Point Stat Performance

CAPTURE 1) Decimator_Time_Uncal The first data capture that was analyzed was 

taken from an early version of the Decimator.  It exhibits more gain error than is found in 

the current version of the Decimator.  This section discusses the performance of Stat, not 
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Figure 4.3: Capture 1 – Error visualized using best fit line estimate.



the Decimator, so the data still provides meaningful results.  An x-y scatter plot of 1000 

samples of the capture is seen in Figure 4.3.  The 'x' markers indicate data points from the 

original received data.  The circle serves as a reference point since it is perfectly round. 

Ideally, the received samples should be symmetrical about the circle.

It is clear that the received samples deviate from the circle because of both noise and I 

and Q imbalances.   The dashed line in Figure  4.3 is a best-fit estimate of the received 

samples.  The spectrum of the received data is seen in Figure 4.4.  This zoomed view of 

the spectrum of the received signal shows that there is  an imbalance between the two 

channels.  Using 200,000 samples, Stat estimates the gain error to be 0.4940 dB, and the 

phase error to be 2.9586° in this capture.

Figure 4.5 shows the scatter plot of the received data before and after the correction 
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Figure 4.4: Capture 1 – Spectral peaks before correction.



coefficients  have  been  applied.   The  corrected  data  matches  with  the  reference  circle 

whereas the original data showed a deviation from the reference circle, as shown in Figure 

4.3.  To visualize the gain imbalance, a zoomed spectral view of the capture is shown in 

Figure  4.6.  Using the Root Mean Squared (RMS) values of the two channels yields an 

imbalance estimate of 0.4940 dB, which is the same as the estimate yielded by Stat.

The  correction  coefficients  estimated  by  Stat were  quite  accurate   When  the 

correction coefficients were applied to the data the gain and phase errors were greatly 

reduced.   The  imbalance  between  the  corrected  signals  is  0.0253  dB,  which  is  an 

improvement of 0.4687 dB.  Stat estimates the imbalance between the corrected signals to 

be 0.0253 dB as well.  The phase imbalance of the received data is 2.9586° according to 

Stat, and it becomes -0.0000813° after correction for an improvement of 2.95852°.  This 

Matlab simulation shows that Stat functioned effectively for this captured data.

65

Figure 4.5: Capture 1 - PSK modulated data with significant imbalances.



CAPTURE 2) CW512Samples+5 The second capture was obtained from a current 

version of the Decimator, which has significantly reduced gain imbalances as compared to 

the older version that was used for the first capture.  Figure 4.7 shows a plot of the original 

received data, along with the corrected Stat estimation and a reference circle.  The capture 

is of PSK modulated sine waves at 5 MHz above the center frequency.  Figure 4.7 shows 

that there is less imbalance present in this capture than there was in the first capture.  Stat 

estimates a gain imbalance of 0.0702 dB and a phase imbalance of -2.1949°.  The gain is 

considerably more accurate in this capture than it was with capture 1.
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Figure 4.6: Capture 1 - Spectral peaks after correction.



Correcting the captured data and re-evaluating the errors yielded improved results. 

The new gain imbalance is 0.0067 dB and the phase imbalance is 0.00007136°.  These are 

improvements of 0.0635 dB and 2.1948°, respectively.  Once again, Stat corrected much of 

the error that was introduced by the RF receiver.

CAPTURE 3) CW+15 The third capture was also obtained from a current version of 

the  Decimator.   Figure  4.8 shows a  plot  of  the original  received data,  along with the 

corrected  Stat estimation and a reference circle.  The capture is of PSK modulated sine 

waves at 15 MHz above the center frequency.  The gain imbalance of the capture is 0.0985 

dB and the phase imbalance is -0.3843°.
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Figure 4.7: Capture 2 - PSK modulated received data.



After  applying  the  correction  coefficients,  the  gain  imbalance  improved  to 

0.00075114  dB  and  the  phase  imbalance  improved  to  0.00002459°.   These  are 

improvements of 0.09775 dB and 0.38432°, respectively.

Several other data captures were analyzed similarly to the ones described above.  The 

results  of  these  other  captures  functioned acceptably and no notable  deviations  in  the 

performance of Stat were observed.

In conclusion, Stat operates well in a 32-bit floating point environment and is able to 

improve imbalanced data by at least a factor of 10.  In several cases Stat improved the data 

by much more than a  factor  of  10.   Figure  4.9 outlines the results  obtained from the 

various Decimator data capture simulations.
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Figure 4.8: Capture 3 - PSK modulated received data.



Capture Number Gain Improvement (dB) Phase Improvement (°)
1 0.4687 2.9585
2 0.0635 2.1948
3 0.0978 0.3844

Figure 4.9: Data capture results summary.

4.1.1.3 Fixed Point Precision Affect on Stat

The VHDL and Matlab implementations of Stat were simulated using the same data 

to  determine the performance degradation that will  occur by implementing Stat in  the 

FPGA.   The  correction  coefficients  were  varied  while  the  same  data  set  was  passed 

through the two Stat implementations.  The arrangement allows for the direct comparison 

of the two simulations and indicates whether the FPGA correction differs from the Matlab 

correction simulations.

69

Figure 4.10: Spectral peak error comparison between Matlab and Xilinx ISE simulation.
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Figure 4.10 displays the results obtained from the Xilinx ISE and Matlab simulations. 

The generated data was corrupted with a different set of correction coefficients in each 

trial  and  the  spectral  peak  error  was  used  as  a  measure  of  how well  the  corrections 

performed.  Clearly the Stat  algorithm is not adversely affected by the implementation 

hardware.  While there is some error present with each trial, the important point to note is 

that the Matlab and Xilinx ISE simulations performed nearly the same.  Empirically, the 

results  deviate  from each other  by an average of  0.002656 dB.   The amount  of  error 

introduced into the system from the fixed point arithmetic of the FPGA must therefore be 

negligible because the differences between the two simulations are so minimal.  It can be 

concluded  that  the  Matlab  simulations  presented  previously  provide  a  fairly  accurate 

representation of how well Stat will function in the FPGA.

4.1.1.4 Arcsin Affect on Phase Estimates

The phase errors typically found in the Decimator are well under +/- 4°.  Even in 
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Figure 4.11: Arcsin Affect on Phase Coefficient Estimate



Capture 1, where the data was obtained from an older version of the Decimator, the phase 

error is less than 3°.  The results of this simulation are shown in Figs. 4.11 and 4.12.  For 

phase  errors  less  than  4°,  the  difference  in  phase  estimates  is  negligible.   The  Arcsin 

function begins to alter the results of the estimator equations when the phase error is above 

4°.  At 5° the difference between the two estimates is about 1 dB, and at 10° the difference 

is 4.57 dB.  These results show that the error of the phase estimate increases exponentially 

when the Arcsin is not used.  The difference between the two estimators is quite minimal 

when kept under 5°.  The results of this simulation show that phase errors of 20° introduce 

a considerable amount of error in the phase coefficient estimate.  It is not clear from these 

results how the 20° level was chosen in [13] to be the appropriate cutoff for Eq. (2.22).

The simulations confirm the suggestion in [13] to remove the Arcsin from the phase 

coefficient estimation equation in order to conserve hardware resources.  This conclusion 
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Figure 4.12: Error introduced in phase coefficient from not using Arcsin.



can be drawn based on the fact that phase errors in the front end receiver components in 

the Decimator are typically much less than 5°, and errors under 5° contribute very little 

error to the coefficient estimate.

4.1.2 VHDL Resource Requirements

The resource requirements of the VHDL programmed Stat algorithms are quite low 

for all areas except one; 18 x 18 multipliers.  Figure 4.13 depicts the resource requirements 

for the current Decimator implementation as well as the additional resources that would be 

used by the Stat I and Q imbalance correction module.  It is apparent that the I and Q 

imbalance module would fit in the Spartan 3 1500 alongside the current Decimator code. 

The only concern with the Stat correction module is that it uses 5 of the total 32 18 x 18 

multipliers on the FPGA.  This means there would be 11 18 x 18 multipliers available on 
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Figure 4.13: Stat I and Q Imbalance VHDL Resource Requirements.
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the FPGA for other algorithms and future development.

4.1.3 Speed Requirements

The Decimator operates at 65 MHz near the front end of the Decimator where the 

Stat module would be implemented.  This means Stat must operate at least at 65 MHz to 

be implemented seamlessly into the received data processing chain.  The synthesis report 

for the  Stat  module shows its maximum operating speed to be 64.574 MHz at a speed 

grade of -4.  This is close to the required speed, but it is not sufficiently close.  The present 

design of the I and Q correction module is not fast enough and will require modification to 

make it viable for the Decimator.

Figure 3.1 should be reviewed in an attempt to locate the bottleneck in the I and Q 

imbalance VHDL model.  The “Channel Select” block acts as a switch and has a fairly 

simple design.  The subsequent gain and phase multiplications are straight forward and are 

capable of operating at much higher speeds than 65 MHz, so the problem is most likely not 

due to any of these operations.  The “Multiply Accumulate” block could possibly be the 

problem, but given its low level nature, this is unlikely.   The most likely culprit is the 

“State Machine” because there are a number of signals that drive the case statements in it.  

Reviewing the HDL Synthesis report confirms these suspicions.  The report indicates 

that there is a latch in the “Multiply Accumulate” block and that it may be causing timing 

problems.   Even more  critical  are  the  warnings  regarding  the  Synthesis  of  the  “State 

Machine.”  According to the Xilinx ISE Synthesis report:

“INFO:Xst:2371 - HDL ADVISOR - Logic functions respectively driving the 

data and gate enable inputs of this latch share common terms. This situation 

will  potentially lead to  setup/hold violations  and,  as a result,  to  simulation 
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problems.  This  situation may come from an incomplete  case statement  (all 

selector values are not covered). You should carefully review if it was in your 

intentions to describe such a latch.”

This statement is an obvious red flag that indicates a flaw in the VHDL code.  Although 

the I and Q imbalance code simulated fine, it does not synthesize properly because the 

timing of the system has been so adversely affected by the inferred latch.  Correcting the 

“State Maching” block is necessary before proceeding with further system integration.

4.2 Windowing and the Fast Fourier Transform (FFT)

4.2.1 Simulation Results

A number of  simulations  were performed using the same data  capture that  has  a 

carrier wave at 15 MHz above the baseband.  Results were obtained from both the Xilinx 

ISE Simulator and from Matlab.  The simulations varied the type of window that was used 

and the length of the window and FFT calculation that was performed.   These results 

display the error that can be attributed directly to the migration of these algorithms from 

the  floating  point  microcontroller  to  the  fixed  point  FPGA.   The  microcontroller  is 

equivalent to the Matlab 32-bit floating point results, and the FPGA is equivalent to the 

Xilinx ISE 16-bit fixed point results.

4.2.1.1 Block Floating Point (BFP) Versus Floating Point

The first set of simulations compares the error introduced by the window filter and 

FFT core when the FFT core is implemented using BFP arithmetic.  Figure 4.14 displays 

the results of the simulation where the error is the average deviation in Decibels between 

the fixed and floating point simulation results.
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Figure 4.15 presents a similar comparison to that shown in Figure 4.14, however, only 

the error of the peak spectral bin is evaluated.  It is important to evaluate the peak spectral 

bin  because  many  of  the  measurements  taken  by the  Decimator  are  of  the  peaks  of 

transmitted signals.  It is clear that Figs. 4.14 and 4.15 appear to be similar, but it is also 

important to note the magnitude of the error associated with each point on the graphs.  The 

spectral peak errors are much larger than the average spectral error which means there is 

an above average error present at the peaks generated by the fixed point hardware.  This is 

a drawback associated with fixed point hardware but is still relatively insignificant.
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Figure 4.14: Average FFT bin error VS length of FFT.
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Figures 4.14 and 4.15 have similar shapes to the graphs.  An initial conclusion might 

be to assume that the FlatTop and BlackmanHarris 512 point simulations are erroneous, 

and that the others are correct.  Upon further study of the spectrums of the simulation 

results, it is apparent that the FlatTop and BlackmanHarris 512 point simulations are most 

likely the correct results and the others are erroneous.  Figure 4.16 shows the results of the 

2048  point  FlatTop  windowed  and  FFTed  data  produced  by  the  Xilinx  and  Matlab 

simulations.   While  the  results  of  the  FlatTop  and  BlackmanHarris  512  point  Xilinx 

simulations compare quite accurately to their Matlab counterparts, the other simulations 

look similar to those shown in Figure 4.16.  The Xilinx results contain an added erroneous 

signal that creates a spectral arc near the 15 MHz carrier wave.  The results for the other  
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Figure 4.15: Carrier peak error VS length of FFT.
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simulations are similar, however the arc becomes narrower with higher point sizes.

The spectral  error as displayed in  Figure  4.16 is  either caused by the windowing 

module that was developed, or by the Xilinx FFT core that was used for the simulations. 

To determine where the error was originating, the output of the Xilinx window filter was 

put through the Matlab FFT.  The results are similar to those in Figure 4.16 which means 

the error is caused by the window filter designed for the FPGA.  It is not known why this 

error is created only with certain windows and at certain point lengths.  Reviewing the 

Synthesis report did not yield any indications of an ill-designed block.  Troubleshooting 

the VHDL window filter will have to be a topic of further study.

The rectangular window in both Figs. 4.14 and 4.15 displays significantly lower error 

values  than  their  Hamming  and  Hanning  windowed  counterparts  while  maintaining  a 
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Figure 4.16: Window and FFT calculated results: Matlab vs Xillinx.



similar shape.  Although a large error has been discovered in the results of the window 

filter  block,  the  differences  between  the  rectangular  window  and  the  Hamming  and 

Hanning windows ought to provide some insight into the performance of the Xilinx ISE 

simulations.  Incoming data samples are multiplied by one and passed to the FFT because 

the rectangular  window contains  only ones as  coefficients.   This  results  is  little  to no 

rounding error being introduced by the window filter.

The error that is present in the rectangular window simulations is entirely due to the 

FFT calculation  and  the  newly  discovered  error  in  the  design  of  the  window  block. 

Comparing the values of the rectangular  window simulations with their  Hamming and 

Hanning counterparts, it is quite possible that the majority of the increased error in the 

simulation was introduced by the window filter, and not the FFT.  As an example, the 

Hamming 2048 point simulation had on average 6.263 times the amount of error of the 

rectangular 2048 point simulation.  This means the average amount of error introduced by 

the window filter stage of the hardware is over six times as much as the FFT stage of the 

hardware.  Therefore, the dominant source of error by migrating the windowing and FFT 

algorithms to the FPGA will most likely come from the window filter.  Of course, the 

design flaw in the window filter means that this conclusion cannot be formally verified.

4.2.1.2 Fixed Point Versus BFP and Floating Point

The simulation comparing fixed point versus BFP and floating point is identical to the 

one discussed previously in Section 4.2.1.1 except it includes results obtained from a fixed 

point FFT implementation in Xilinx ISE.  By comparing the BFP results to the fixed-point 

results, the loss in precision by using fixed-point arithmetic over BFP were apparent.
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Figure  4.17 displays the results of the simulations with the measure of error being 

mean deviation from the 32-bit floating point arithmetic results in Decibels.  As predicted 

the  fixed-point  introduces  a  significant  amount  of  extra  error  into  the  results  of  the 

windowed and FFT calculated data.  The 8192 length FFTs display some telling results.  In 

both cases the error introduced by the fixed point FFT arithmetic increased the total system 

error by a factor of about three.  This means that the error attributed only to the fixed point  

FFT could potentially be twice that of the error introduced by the BFP FFT.
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Figure 4.17: Loss of precision caused by BFP and fixed point arithmetic in the FFT.
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Figure  4.18 displays the 2048-point FlatTop window results of the BFP and Fixed-

point  FFT core.   The  noise  that  is  added  to  the  system from the  fixed-point  scaling 

schedule in the FFT is quite evident.  Most notable is the loss in dynamic range of the FFT 

when using fixed-point arithmetic.  The fixed-point results bottom out at about 74 dB, 

whereas  the  BFP results  are  able  to  resolve  spectral  data  down to  30  dB.   This  is  a 

substantial loss in precision.  The scaling schedule should help to quantify the reason for 

this loss in precision and dynamic range.  For a 2048 fixed-point FFT, such as what was 

processed in Figure  4.18, there is a possible bit growth of 11-bits.  The bit growth will 

occur if there is an overflow caused by each butterfly in the FFT.  The scaling schedule 

that was used in this simulation was one bit per stage.  The results of the FFT then need to 
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Figure 4.18: Block floating point VS fixed point FFT implementation.  2048-point  

FlatTop window.



be scaled by 211  to be comparable to floating-point results.  By contrast, the BFP FFT is 

sufficiently intelligent to only scale after a butterfly when an overflow has occurred.  At 

the  end  of  the  FFT,  the  blk_exp indicates  how  many  bits  were  lost  during  the  FFT 

processing.  The blk_exp variable was 5 for this simulation, which means using the fixed 

point pre-determined scaling schedule truncated 6-bits of data unnecessarily.

It was discussed previously that each extra bit used to represent the input and output 

data of an FFT theoretically increases the dynamic range by about 6 dB.  A rough estimate 

of the loss of dynamic range experienced by the fixed point scaling result seen in Figure 

4.18 is found by multiplying the unnecessary loss of bits by the affect each bit has on 

dynamic range.  Therefore,  6 dB /bit∗6 bits=36dB .  Figure  4.18 shows a loss of 36 dB 

between the smallest signal in the BFP simulation and the smallest signal in the scaled 

fixed point simulation.  Although the actual and theoretical values are equal, it cannot be 

concluded that the theoretical prediction is 100% accurate at determining dynamic range 

[25].  The estimate has provided a good indication of the loss of dynamic range in this  

case.

The  performance  improvement  by  using  BFP  is  certainly  apparent  from  the 

simulations that were performed.  Of course, the tradeoff in using BFP arithmetic in the 

FFT is  an increase in hardware resource usage.   The tradeoff will  be discussed in the 

hardware usage section that follows.

4.2.2 Hardware Usage

Migrating the window filter and FFT algorithms has proved to be functionally viable, 

however, limited FPGA resources make these changes impossible to implement.  Figure 

4.19 shows the percentage of total FPGA resources needed for each FFT architecture type 
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along with the developed window filter.  The “IADC” bar at the far right of each category 

indicates  the  percentage  of  FPGA resources  that  are  currently used by the  Decimator. 

Successfully migrating the windowing and FFT algorithms to the FPGA requires adding 

one of the first four bars in each column with the “IADC” bar without exceeding 100% 

resource usage in any column.

The “Block RAMs” column of Figure  4.19 shows the limiting factor of migrating 

these algorithms to the FPGA.  The current Decimator implementation utilizes 50% of the 

available block RAMs on the Spartan 3 1500 but all FFT implementations require at least 

56% of the block RAMs on the FPGA.  As such, migrating the FFT algorithm to the FPGA 

is impossible.

A possible solution to this problem is to reduce the maximum point size of the FFT 

core to 4096.  The window filter and FFT core were again instantiated and synthesized 

using 4098 as the maximum point size supported in order to provide verification of this 
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Figure 4.19: Windowing and FFT Resource Usage
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point.  While most of the resource requirements stayed near previous synthesis reports, the 

number of block RAMs dropped to 9.  This reduction of block RAMs by half would allow 

the FFT to fit in the current Xilinx Spartan 3 chip.  Unfortunately the loss of the 8192 

window and FFT calculation would be required for the windowing and FFT operations to 

be implemented in the FPGA.

The additional hardware requirements of the BFP over the fixed-point arithmetic in 

the FFT are quite minimal.  As Figure 4.19 shows, the only resource that the BFP core uses 

more  of  than  the  fixed-point  core  is  4-input  LUTs.   The increase  in  4-input  LUTs is 

minimal.  The number of slices, block RAMs, and 18 x 18 multipliers all either remain the 

same or increases a negligible amount.  Slice flip flop usage is actually less in the BFP 

FFT core implementation.  Given the increase in precision that was shown previously in 

Section  4.2.1.2 and the minimal change in FPGA resource requirements, it is concluded 

that BFP ought to be used when implementing the FFT core in the FPGA.

4.2.3 Speed Requirements

The signal processing in the Decimator operates at 65 MHz, therefore the window 

filter  and FFT core  must  operate  at  least  at  this  frequency to  avoid  a  more  complex 

integration into the Decimator.  According to the synthesis results, the window and FFT 

blocks can operate at a maximum frequency of 99.463 MHz at a speed grade of -4.  This  

maximum speed remained constant despite varying the FFT architecture and various other 

FFT settings.  The synthesis report for the FFT core that was reduced to a 4096 maximum 

point size also reported this same speed.  Therefore the window filter and FFT core should 

be more than capable of handling the 65 MHz clock in the signal processing section of the 

Decimator.
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CHAPTER 5 : CONCLUSIONS and RECOMMENDATIONS

5.1 Introduction

This  thesis  has focused on several  key issues relating to  a  SED Systems product 

called the Decimator.  The first issue that was evaluated was whether or not it is possible to 

correct the I and Q imbalance that is present in the analog RF receiver.   The I and Q 

imbalance error is one of the main sources of error in the Decimator, and as such, a method 

of improving this error was sought.  A general overview of the problem was presented, and 

a  suitable solution was found.  The statistical  I  and Q imbalance correction algorithm 

known as “Stat” was implemented in VHDL and in Matlab, and was simulated to verify its 

performance in both of these architectures.

The second issue this thesis dealt with was the migration of two key signal processing 

algorithms from the on-board microcontroller  to the on-board FPGA.  The first  signal 

processing algorithm that was migrated was the window filter.  The window filter currently 

implemented  in  the  microcontroller  was  used  as  a  reference  design  and  a  similar 

instantiation of it was coded in VHDL.  The second algorithm migration that was reviewed 

was the FFT.  Like the window filter, it was desired for the FFT processing to occur in the 

FPGA rather than the microcontroller.  While migrating these algorithms was desired for 

speed and future consideration reasons, the microcontroller provides a 32-bit floating point 

environment in which to perform these calculations.  The FPGA, on the other hand, is 

inherently fixed point in its arithmetic.  Both algorithms were implemented in VHDL and 

were simulated to help quantify the loss in precision that would occur if these algorithms 

were migrated to the FPGA.
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5.2 I and Q Imbalance

The I and Q correction scheme that was evaluated is called Stat.  The results of the 

simulations all showed that Stat is a viable option for correcting front-end receiver error. 

The  main  issue  that  was  discovered  during  the  simulations  is  that  the  current  VHDL 

implementation of Stat cannot operate at the target speed of 65 MHz.  The reasons for this 

behavior  is  most  likely  due  to  the  implementation  of  the  “State  Machine”  block. 

According to the synthesis report there were unintended latches in the design.  Latches 

often adversely affect the timing of a block.  Removing the latches in the design of the 

“State Machine” block would undoubtedly improve the maximum speed to well above the 

65 MHz target speed.

An issue for further study is the response of Stat to transmitter I and Q imbalances. 

This thesis has only exposed the correction algorithm to imbalances originating in the RF 

receiver.  Stat was not implemented and tested with the intent to correct transmitter I and Q 

imbalances.  There will most likely be instances where the Decimator is exposed to I and 

Q imbalances that have originated in the transmitter.   Therefore, quantifying the correction 

ability  of  Stat with  imbalances  that  originated  in  the  transmitter  would  certainly  be 

beneficial.

5.3 Windowing

The basic window filter design in the microcontroller was used to develop a VHDL 

window filter.  The design performs most of the processing in the FPGA, but still obtains 

its coefficients from the microcontroller.  The window filter that was designed seemed to 

operate  properly,  but  later  turned  out  to  be  introducing  a  substantial  error  into  the 

processed signals.  The cause of this error was not determined.  Without a fully operational 
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window block in VHDL, comparing the Matlab and Xilinx simulations is inconsequential. 

One suggestion is  that rounding be implemented rather than truncating,  which may be 

adding a bias to the resultant windowed signal.

5.4 Fast Fourier Transform (FFT)

The Xilinx FFT core was evaluated as a possible solution to the FFT migration to the 

FPGA.  The Xilinx FFT core offers a variety of settings to make it viable in a number of 

different applications.  Each architecture was implemented and simulated.  The results of 

these simulations showed that there would be a minute change in the fixed-point precision 

error introduced into the system from the FFT.  From a performance standpoint, the Xilinx 

FFT  core  would  operate  fast  enough  and  accurately  enough  to  perform  well  in  the 

Decimator.

The number of block RAMs required for the lightest FFT architecture, Radix-2 Lite, 

exceeds the number that are available in the Spartan 3 1500 FPGA.  The only way to 

reduce the number of required block RAMs is to reduce the maximum point size of the 

FFT to 4096.  The Decimator currently handles point sizes up to 8192, so reducing the 

maximum available point size in order to migrate the FFT to the FPGA is an undesired 

consequence.  An area of future study is whether there are any other available FFT cores 

that are free and would fit in the Spartan 3 1500.  If there are no available FFT cores that 

meet the block RAM constraints in the Spartan 3 1500, it may be possible to design and 

implement a fully custom FFT that fits the requirements of the Decimator.

5.5 Conclusions

This  thesis  has  focused  on  several  issues  related  to  the  performance  and 
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implementation of a device called the Decimator.  From theory to bit accurate simulations,  

these  issues  have  been thoroughly investigated and meaningful  conclusions  have been 

drawn from their results.  The results of this thesis should provide SED Systems Ltd with 

meaningful data to be of assistance with decision processes related to changes to the next 

revision of the Decimator.

As is the case with all research, many venues were not fully explored and many new 

questions came to light as a result of the research.  While this thesis fell short of fully 

integrating the  described changes  in  the  Decimator,  many key questions  regarding the 

implementation of these changes have been answered.  This thesis would undoubtedly be 

of value to anyone working to improve the described issues in either the Decimator or in 

any other similar system.
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