
Techniques for Low-Cost Spectrum Analysis on

Quadrature Demodulation Architectures

A Thesis submitted

to the College of Graduate Studies and Research

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Brendon Fredlund

© Copyright Brendon Fredlund, May 2010. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226150298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Masters degree

from the University of Saskatchewan, I agree that the Libraries of this University may

make it freely available for inspection. I further agree that permission for copying of this

thesis in any manner, in whole or in part, for scholarly purposes may be granted by the

professor or professors who supervised my thesis work or, in their absence, by the Head of

the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan, Canada

S7N5A9

i

Abstract

The Decimator, an SED Systems Ltd. product, is a PCI slot card that performs both

time and frequency domain measurements of given input signals. It is essentially a more

economical version of a bench spectrum analyzer or oscilloscope, with a PC interface.

Several issues limit the speed and accuracy of the results of the Decimator, and the study

of these issues is the focus of this thesis. These issues, including but not limited to, are as

follows: 1) Imbalances between the received In-phase and Quadrature-phase channels; 2)

The FFT and Windowing functions are performed by a microcontroller, but it is desired

that they be migrated to an FPGA. While solutions to improve the first issue is being

implemented and verified, the second issue is not one of simply reducing a source of error.

The second issue requires a cost-benefit analysis on the migration of these signal

processing algorithms from an ARM microcontroller to a Xilinx FPGA.

ii

Acknowledgments

I greatly appreciate the guidance my supervisor, Dr. Dinh, has given me during the

writing of this thesis. His encouragement and insights were important in helping me find

my way through uncharted waters.

I would also like to thank Dr. Salt for his time and consideration. He inspired me to

pursue a Masters degree, and he gave me the contacts I needed to find a meaningful and

practical thesis topic. He showed me that I did not need to jump into industry in order to

meet professionals and work on real-world problems.

My father, Delwyn, has supervised hundreds of graduate students during his tenure at

the U of S, and the advice he imparted was invaluable to my journey through the Masters

program. By discussing my graduate program with him I was able to see him in a different

light than I did growing up. He went from being “Dad” to being “Professor”, and through

this transformation I was easily able to identify the skills and abilities he has utilized in his

decorated career as an Engineer.

The Engineers at SED Systems Ltd. have been more than generous with their time

during the course of this thesis. Mr. Akins, Mr. Gunderson, Mr. Armstrong, and Mr.

Warkentin were able to provide me with a meaningful thesis project and they helped me

greatly along the way. There was no question or request too mundane for them, and for

that I am truly grateful.

This thesis was funded by the TRLabs Graduate scholarship and by Professor Dinh. I

sincerely appreciate having the financial means necessary to complete my studies.

iii

Table of Contents

Permission to Use...i

Abstract...ii

Acknowledgments...iii

Table of Contents...iv

Nomenclature..vii

Acronyms..vii

List of Figures..viii

CHAPTER 1 : INTRODUCTION..1

1.1 General...1

1.2 The Decimator..2

1.3 Known Decimator Issues...2

1.3.1 I/Q Imbalance...2

1.4 Other Decimator modifications..3

1.4.1 Windowing...4

1.4.2 Fast Fourier Transform...4

1.5 Decimator Modification Overview..5

1.6 Summary..6

1.7 Thesis Outline..7

CHAPTER 2 : LITERATURE REVIEW AND THEORY..8

2.1 Introduction..8

2.2 Direct Conversion Receivers..8

2.3 I/Q Imbalance...10

2.4 I/Q Imbalance Correction Schemes...17

2.4.1 Non-Data-Aided (NDA) Correction Schemes..17

2.4.1.1 Blind Source Separation (BSS)..17

2.4.1.2 Interference Cancellation (IC)..19

2.4.1.3 Adaptive Methodologies Summary..20

iv

2.4.1.4 Statistical Correction Method (“Stat”)..21

2.4.1.5 Other Statistical Correction Schemes...26

2.4.2 Data-Aided (DA) Correction Schemes...28

2.4.3 I and Q Imbalance Conclusions..29

2.5 Windowing...29

2.5.1 Finite Register Length..34

2.6 Fast Fourier Transform (FFT)..34

2.6.1 FFT Background...35

2.6.1.1 Decimation-in-Time (DIT) Algorithms..36

2.6.1.2 Decimation-in-Frequency (DIF) Algorithms..37

2.6.1.3 FFT Radix Size...38

2.6.2 Finite Register Lengths...39

2.6.2.1 Full Precision Unscaled..40

2.6.2.2 Scaled Fixed Point..40

2.6.2.3 Block Floating Point (BFP)..41

2.6.3 Dynamic Range..41

CHAPTER 3 : RESEARCH PROGRAM / METHODOLOGY...................................45

3.1 Introduction..45

3.2 I and Q Imbalance..45

3.2.1 Stat Design Overview...45

3.2.2 Stat Sources of Error..48

3.2.2.1 Coefficient Estimate Accuracy...48

3.2.2.2 32-Bit Floating Point Stat Performance..50

3.2.2.3 Fixed Point Precision Affect on Stat...51

3.2.2.4 Arcsin Affect on Phase Estimates...52

3.2.3 Stat Resource Usage...52

3.3 Windowing...53

3.4 Fast Fourier Transform (FFT)..54

3.4.1 Xilinx FFT Core...54

v

3.5 Windowing and FFT VHDL Simulation..57

3.5.1 Block Floating Point (BFP) Versus 32-bit Floating Point................................59

3.5.2 16-bit Fixed Point Versus 32-bit Floating Point...60

CHAPTER 4 : PRESENTATION of the RESULTS...61

4.1 Introduction..61

4.1.1 Stat Sources of Error..61

4.1.1.1 Coefficient Estimate Accuracy...61

4.1.1.2 32-Bit Floating Point Stat Performance..63

4.1.1.3 Fixed Point Precision Affect on Stat...69

4.1.1.4 Arcsin Affect on Phase Estimates...70

4.1.2 VHDL Resource Requirements..72

4.1.3 Speed Requirements...73

4.2 Windowing and the Fast Fourier Transform (FFT)..74

4.2.1 Simulation Results..74

4.2.1.1 Block Floating Point (BFP) Versus Floating Point...................................74

4.2.1.2 Fixed Point Versus BFP and Floating Point..78

4.2.2 Hardware Usage...81

4.2.3 Speed Requirements...83

CHAPTER 5 : CONCLUSIONS and RECOMMENDATIONS...................................84

5.1 Introduction..84

5.2 I and Q Imbalance..85

5.3 Windowing...85

5.4 Fast Fourier Transform (FFT)..86

5.5 Conclusions..86

References...88

vi

Nomenclature

ε Gain imbalance coefficient

ф Phase imbalance coefficient

Acronyms

ADC Analog to Digital Converter

BER Bit Error Rate

BFP Block Floating Point

BSS Blind Source Separation

DA Data Aided

DAC Digital to Analog Converter

DCR Direct Conversion Receiver

DIF Decimation In Frequency

DIT Decimation In Time

DSP Digital Signal Processing

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

IC Interference Cancellation

I In-phase

IRR Image Rejection Ratio

NDA Non-Data Aided

OFDM Orthogonal Frequency Division Multiplexing

LPF Low Pass Filter

Q Quadrature-phase

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

SNR Signal to Noise Ratio

VHDL Very high speed integrated circuit Hardware Description Language

vii

List of Figures

Figure 1.1: Decimator block diagram..5

Figure 2.1: Direct conversion receiver architecture...9

Figure 2.2: Example RF and baseband spectra depicting an I/Q imbalance........................11

Figure 2.3: Image Rejection Ratio (IRR) with respect to gain and phase imbalances........13

Figure 2.4: 4-QAM original modulation scheme...14

Figure 2.5: 4-QAM gain imbalanced modulation, (2dB)..14

Figure 2.6: 4-QAM phase imbalanced modulation, (10º)..15

Figure 2.7: Received data corrupted by gain and phase imbalances...................................16

Figure 2.8: Independent Component Analysis problem definition......................................18

Figure 2.9: Torkkola's feedback network for separating convolved mixtures.....................19

Figure 2.10: Adaptive interference canceler (IC) architecture...20

Figure 2.11: I and Q Imbalance Correction Block Diagram..25

Figure 2.12: Simplified I and Q Imbalance Correction Block Diagram..............................26

Figure 2.13: Moseley and Slump's I and Q Imbalance Compensation Block Diagram......27

Figure 2.14: Non-periodic frame of data from a periodic sinusoid.....................................30

Figure 2.15: Periodic frame of data from a periodic sinusoid...31

Figure 2.16: Several common window functions..32

Figure 2.17: Effect of the Hamming window on a periodic signal capture.........................33

Figure 2.18: Flow graph of an 8-point DIT decomposition...37

Figure 2.19: Flow Graph of an 8-point DIF decomposition..38

Figure 2.20: Xilinx dynamic range results...43

Figure 3.1: System level design of I/Q imbalance correction implementation....................46

Figure 3.2: Data generation for coefficient estimate accuracy simulation..........................49

Figure 3.3: Window filter VHDL implementation block diagram.......................................53

Figure 3.4: Resource usage V.S. throughput for Xilinx architecture options [21]...............55

Figure 3.5: Window filter and FFT system level layout..59

Figure 4.1: Error of gain coefficient estimate with respect to number of samples used......62

Figure 4.2: Error of phase coefficient estimate with respect to number of samples used.. .62

Figure 4.3: Capture 1 – Error visualized using best fit line estimate...................................63

Figure 4.4: Capture 1 – Spectral peaks before correction..64

viii

Figure 4.5: Capture 1 - PSK modulated data with significant imbalances..........................65

Figure 4.6: Capture 1 - Spectral peaks after correction...66

Figure 4.7: Capture 2 - PSK modulated received data...67

Figure 4.8: Capture 3 - PSK modulated received data...68

Figure 4.9: Data capture results summary..69

Figure 4.10: Spectral peak error comparison between Matlab and Xilinx ISE simulation. 69

Figure 4.11: Arcsin Affect on Phase Coefficient Estimate..70

Figure 4.12: Error introduced in phase coefficient from not using Arcsin..........................71

Figure 4.13: Stat I and Q Imbalance VHDL Resource Requirements.................................72

Figure 4.14: Average FFT bin error VS length of FFT..75

Figure 4.15: Carrier peak error VS length of FFT...76

Figure 4.16: Window and FFT calculated results: Matlab vs Xillinx..................................77

Figure 4.17: Loss of precision caused by BFP and fixed point arithmetic in the FFT.........79

Figure 4.18: Block floating point VS fixed point FFT implementation. 2048-point FlatTop

window...80

Figure 4.19: Windowing and FFT Resource Usage...82

ix

CHAPTER 1 : INTRODUCTION

1.1 General

Communication schemes have developed from simple dot and dash Morse code to

complex high speed systems where numerous transmitters are simultaneously

communicating with numerous receivers. The continual drive to explore new ideas and

push known boundaries keeps technology marching steadily forward.

Global communications standards have emerged and are enforced federally in all

modern countries. The regulations require wireless communication to adhere to stringent

transmission and reception constraints. Power and bandwidth are the two most limited

factors that ensure a wide variety of wireless communication systems are able to co-exist

without interference. An example of one such highly regulated frequency band is the L-

band, which is used for satellite communication, and ranges from about 1 to 2GHz. From

the perspective of a designer, a spectrum analyzer may be used for research and

development, troubleshooting, and the verification of its functionality as a legal

transmitter/receiver device. From the perspective of a federal regulator, a spectrum

analyzer may be used to monitor the frequency spectrum to ensure that legal limits are

observed.

The complexity of communication systems increases with each advancement in

technology, and new methods must be developed for verification and analysis. An

example of one such method for analyzing a signal is the Fast Fourier Transform, (FFT),

which allows a time based signal to be viewed in the frequency domain (i.e., spectrum). A

spectrum analyzer is the hardware realization of the FFT, and it has become a common

1

tool used to monitor communication systems. One such device is the Decimator.

1.2 The Decimator

The Decimator is a Peripheral Component Interconnect, (PCI), slot form factor L-

Band spectrum analyzer developed by SED Systems Ltd.. The Decimator is functionally a

spectrum analyzer and an oscilloscope with a Personal Computer, (PC), interface. The

Decimator receives power from the PCI slot of the PC and communicates with the host

computer via an Ethernet connection. As long as the Decimator is powered, any PC with

network access can use the Decimator and display its output either in a browser window,

or the provided software Application Programming Interface, (API).

The market value of the Decimator comes as a result of its low cost in comparison to

equivalent bench spectrum analyzers and oscilloscopes, as well as its small form factor. A

device of this nature works well in embedded systems because of its remote access and

low power requirements. While the Decimator was initially developed as a low cost test

device for a communication system that was being developed, its market value was

recognized and has since become one of SED Systems' stand-alone products. The

Decimator uses a direct conversion receiver architecture to convert a received Radio

Frequency, (RF), signal directly to baseband. This architecture has allowed the Decimator

to retain its small form factor and low power requirements. However, it has also led to the

introduction of errors that limit its accuracy.

1.3 Known Decimator Issues

1.3.1 I/Q Imbalance

The main issue affecting the Decimator is the introduction of In-Phase (I) and

2

Quadrature-Phase (Q) imbalances in the received signals from the RF receiver. The gain

and phase imbalances are a result of the Direct Conversion Receiver (DCR) architecture

that the Decimator employs. In certain applications these imbalances cause a relatively

significant error to be present at the output from the receiver. The output of the Decimator

is processed and either the frequency or time domain information is displayed on a

computer screen. In and of itself these errors may not be significant enough to warrant

correction in some applications, but the usefulness of the Decimator is directly linked to

the accuracy of its calculations. Since other communication schemes and transmitters can

be tested, calibrated, and verified using the Decimator, residual errors may also be

transferred, and possibly amplified, in other applications.

1.4 Other Decimator modifications

The majority of known error present in Decimator output signals is due to the issues

described above. However, not all changes to the Decimator are being done for the sole

purpose of increased accuracy. Speed is also a factor that must be considered. Changes to

a major bottleneck in the Decimator's signal processing system will also be studied in an

effort to increase its speed. In the existing design, a Xilinx Spartan-3 FPGA and an Analog

Devices ARM microcontroller shared the signal processing in the Decimator. The

microcontroller currently handles two signal processing algorithms that limit the speed of

the Decimator. These two algorithms are “windowing” and the “Fast Fourier Transform,”

(FFT). By coding these two algorithms in the FPGA and removing them from the

microcontroller, an increase in speed should be achieved at the cost of some accuracy.

This trade off comes as a result of the increased streamlining ability of the FPGA and

performing the mathematical calculations in a fixed point precision environment. The

3

fixed point precision math of the FPGA will be compared and contrasted with the 32-bit

floating point precision math of the microcontroller to help evaluate this migration.

1.4.1 Windowing

A windowing function is a filter that converts a continuous signal into one where the

only non-zero values are those within the bandwidth of the window function. The

windowing function acts as a buffer and allows a finite length of samples to be analyzed

by hardware-implemented signal processing algorithms. In the case of the Decimator, the

windowing function buffers the data for the FFT. The windowing function is currently

implemented in the microcontroller using floating point precision calculations, but this

causes a bottleneck in the signal processing chain. The effect of the fixed point precision

on a windowing algorithm will be explored from theoretical and practical viewpoints. The

windowing algorithm will be implemented in the FPGA to verify its performance and help

conclude whether this migration is economical.

1.4.2 Fast Fourier Transform

The FFT is a practical DSP algorithm that allows the Discrete Fourier Transform,

(DFT), of a signal to be calculated in real-world devices such as FPGAs and

microcontroller. The FFT converts a signal from the time domain to the frequency domain

by calculating the frequency components that are present in a given waveform. Since the

FFT is behind much of the functionality of the Decimator, its performance is of utmost

important to the overall performance of the Decimator.

Implementing a FFT in a FPGA is not a new endeavor. Xilinx, for example, has

patented logic cores that can be dropped into a design and easily configured in a short

4

period of time. By implementing the Xilinx core in the FPGA of the Decimator, it will be

possible to perform an economic evaluation of the migration and determine whether the

change is feasible. Specifically, the results of the implemented algorithm will be analyzed

to confirm whether or not the solution is faster than the current implementation. The

degradation in accuracy will also be studied to ensure that it is not beyond acceptable

levels.

1.5 Decimator Modification Overview

A basic overview of the Decimator can be seen in Figure 1.1. The incoming L-band

signal is received by the analog RF front-end components. The received signal is

converted from analog to digital form and is passed to a chain of signal processing

algorithms. The signal processing algorithms demodulate the received signal so the

samples passed to the time and frequency domain calculations are at baseband.

An I and Q imbalance correction scheme will be sought that can be implemented in

the “Received Signal Processing” block from Figure 1.1. Implementing an I and Q

imbalance correction algorithm in the “Received Signal Processing” block is desired

5

Figure 1.1: Decimator block diagram.

because it would not require hardware changes to be made to the Decimator. The

correction algorithm would only require modification to the firmware of the Decimator.

The Windowing and FFT algorithms are present in the “Frequency Domain

Calculations” block seen in Figure 1.1. Migrating these two algorithms from the

microcontroller to the FPGA in the Decimator will not change the block diagram, it will

only change the way the Decimator calculates the functions.

1.6 Summary

This thesis will seek Digital Signal Processing (DSP) solutions that should improve

the accuracy of the Decimator while not disrupting the current data throughput. The

proposed solutions will result in a stand-alone signal processing algorithm that will work

with a wide variety of incoming signals, as is expected of a spectrum analyzer. The DSP

algorithms should require neither a training sequence nor a calibration signal, (which

would require transmitter modification), to help with the correction of the gain and phase

imbalances. The DSP algorithms will be implemented between a Spartan-3 FPGA and an

ARM microcontroller so that the proposed solutions are compatible with the hardware

requirements.

The windowing and FFT algorithms will be theoretically analyzed to show the effect

of fixed-precision calculations. Both algorithms will then be migrated from the

microcontroller of the Decimator to its FPGA to obtain bit accurate results. The bit

accurate simulations, along with the theoretical analysis, will help determine whether the

changes are economical and worth implementing in all new Decimators.

6

1.7 Thesis Outline

This thesis provides detailed descriptions related to the background, concepts, and

implementation of the proposed Decimator modifications. Chapter 2 gives a theoretical

basis for the proposed changes and reviews literature pertinent to the issues related to the

Decimator. Chapter 3 provides details of the changes that are proposed and how each

change ought to be simulated for verification. Chapter 4 reviews the simulation results

obtained from the proposed methodology. Chapter 5 discusses the results and forms

conclusions based on the findings. Future work is also suggested.

7

CHAPTER 2 : LITERATURE REVIEW AND THEORY

2.1 Introduction

This thesis is not proposing a radically new system; rather, its purpose is to take

known solutions to given problems and evaluate whether these solutions can be

successfully used to solve the known issues within the Decimator. The issue of I and Q

imbalance in DCRs is well documented. Various ways of dealing with I and Q imbalance

will be discussed and evaluated to show whether previously proposed solutions can

provide an acceptable solution to this problem. The algorithm migrations will be

discussed from a theoretical standpoint and simulated to study the implications of the

proposed changes.

2.2 Direct Conversion Receivers

The driving motive behind technological advances in communication systems is the

desire to make transceivers with higher levels of integration. Bulky off-chip components

that are prominent in the popular heterodyne receivers are a limiting factor in system

integration because of their high power requirements and larger form factors. This has led

to transceiver designs such as the low-IF, (Intermediate Frequency), and zero-IF, or direct

conversion, receivers. The low-IF and zero-IF receivers greatly reduce the off-chip

hardware requirements, and thus improve efficiency and reduce size. The issues related to

direct conversion receivers are therefore the major topic of study in this thesis since the

Decimator utilizes the direct conversion receiver architecture.

8

Direct conversion receivers use quadrature demodulation to split the received signal

into real, (In-phase), and imaginary, (Quadrature-phase), components by multiplying

incoming signals by orthogonal sine and cosine functions. Figure 2.1 depicts the basic

architecture for a direct conversion receiver. Theoretically, quadrature mixing removes the

need for anti-alias filtering by infinitely attenuating the image of the signal. Practically,

however, there will always be a certain amount of gain and phase imbalances between the I

and Q branches of the receiver because of the inability to perfectly match the receiver's

analog components [5]. The errors that are introduced prevent the direct conversion

receiver architecture from being used in many high-end applications.

The error-free Local Oscillator, (LO), can be modeled as,

XLOt =cosw LO t − j sin w LO t (2.1)

where cosw LOt demodulates the I branch, and − jsinwLO t demodulates the Q

branch. An arbitrary quadrature incoming signal, sM= sI coswt sQ sin wt , is split into

its real and imaginary branches when it is multiplied by the LO function. The received in-

phase signal is mathematically demodulated as shown below.

R I t=cosw LOt SM

9

Figure 2.1: Direct conversion receiver architecture.

R I t=cosw LOt S I coswt SQ sin wLO t (2.2)

R I t=S I coswt cos w LOt SQ sin wLO tcoswt

The LO frequency is tuned to the transmitted signal frequency, so w=w LO . Using

standard trigonometric identities yields

R I t=
1
2 S I

1
2 S I cos2wt 1

2 SQ sin 2wt (2.3)

Following the down-conversion is the Automatic Gain Control, (AGC), which equalizes

the received signal. The LPF, as seen in Figure 2.1, then removes the high frequency

components containing 2w . Only the baseband components of the original signal

remain. The quadrature-phase branch equation seen in Equation 2.4 can be derived

similarly.

RQ t =
1
2 SQ

1
2 SQ cos2wt 1

2 S I sin 2wt (2.4)

2.3 I/Q Imbalance

The dual path architecture makes the quadrature demodulator prone to gain and phase

mismatches between the I and Q branches, and these are called I and Q imbalances.

Analog component imperfections alter the received signals differently despite an identical

signal processing chain in both branches. The result is a difference in the gain and phase

between the I and Q branches of the received signal. This causes the image of the signal to

act as interference on top of the desired signal. In theory, a direct conversion receiver can

provide infinite attenuation to the received image signal, however, in practice this image

cannot be fully removed. Figure 2.2 depicts a RF to baseband conversion and shows the

10

effect that the image has on the received signal at baseband.

The imperfections in the receiver can be modeled by the complex Local Oscillator

(LO) function in the time domain as,

X LO t =1−cos w LO t−/2− j 1 sinwLO t/2 (2.5)

where ε is the gain imbalance factor and ф is the phase imbalance in radians. The gain

imbalance in dB is found by,

=20log 1/1− (2.6)

Equation (2.5) shows an equal amount of the imbalances being applied to the I and Q

channels. This is an appropriate representation because the difference in gain and phase

between the two channels is what is important, and not the absolute values. Therefore, ε

and ф are determined by finding the differences between the gain and phase of the two

channels. It is possible to model ε and ф by applying half the total errors to each channel.

This concept is important, and will be discussed later when the correction architectures are

11

Figure 2.2: Example RF and baseband spectra depicting an I/Q imbalance.

discussed.

Using Euler's formula and some basic mathematical considerations, the unbalanced

Local Oscillator (LO) signal can be expressed as,

x LOt =K1 e− jwLO tK 2 e jw LOt (2.7)

where K1 is the desired signal, and K2 is its image. Mathematically, K1 and K2 are,

K 1=
1−e

j
21e

− j
2

2
(2.8)

K 2=
1−e

− j
2−1e

j
2

2
(2.9)

To obtain infinite attenuation of the image, ε = 1 and ф = 0. This would lead to K1 =

1 and K2 = 0, and thus an ideal down-conversion of the RF signal to baseband. It is not

currently possible to implement a direct conversion receiver without I and Q imbalances.

Therefore the effect of the I and Q imbalances on the received data must be studied to

determine the severity of the problem and to understand the nature of the solution.

Equation (2.10) shows how the imbalanced LO signal propagates error on the

received signal. Using the imbalanced LO signal from Equation (2.5) to demodulate the

received signal rather than the perfectly balanced theoretical LO in Eq (2.1) yields,

R I t=1−cosw LOt−
2 S I coswt SQ sin wt (2.10)

R I t=1−S I cos 2 −SQ sin 2 (2.11)

Following the same procedure, the received quadrature phase branch can be shown as

RQ t =1SQ cos 2 −S I sin 2 (2.12)

12

The ratio between K1 and K2 gives a measure of the power of the signal versus the

power of the image. To represent the attenuation achieved by the analog components in

the receiver, or the Image Rejection Ratio, (IRR), the following relationship can be used,

IRRdB=20 log∣K 1∣
∣K 2∣ (2.13)

Figure 2.3 displays the effect that gain and phase mismatches have on the Image

Rejection Ratio, (IRR). The relationship is highly non-linear, so even small errors in gain

and phase lead to a significant degradation of the received signal. To achieve at least 50

dB in image attenuation, the gain and phase errors must be held to less than 0.05 dB and

0.2° respectively [6].

13

Figure 2.3: Image Rejection Ratio (IRR) with respect to gain and phase imbalances.

The modulation schemes received by the Decimator will almost all be symmetric with

a mean of zero. These schemes include, but are not limited to: QAM, PSK, and OFDM.

To visualize the effects of gain and phase imbalances in the receiver, Figures 2.4 to 2.6

represent QAM demodulation functions with imbalance errors. Rather than demodulating

a signal with a perfectly orthogonal set of functions, an imbalanced set of functions

demodulates the signal. Figure 2.4 shows how a perfectly balanced receiver will

demodulate a received 4-QAM signal. Both the I and Q branches of the signal will be

accurately demodulated, as the constellation depicts. Figure 2.5 illustrates the effect of a

gain imbalance in the receiver. The received signal will be demodulated with an

imbalance that causes the I branch data to have a higher amplitude than the Q branch data.

Figure 2.6 shows the skew associated with a phase imbalanced receiver.

14

Figure 2.4: 4-QAM original

modulation scheme.

Figure 2.5: 4-QAM gain

imbalanced modulation, (2dB).

The Decimator receives these signals and displays them graphically to the user. The

issue of concern is not one of Bit Error Rates, (BER), and data corruption, but of visual

ambiguity. The Decimator is not a part of a larger system that tries to decipher instructions

from the received data that is being transmitted; rather, it is simply creating a visual

display of the received data for the user. An example of how this is detrimental to the

usage of the Decimator becomes obvious when the practical applications of a Spectrum

Analyzer are outlined. Spectrum Analyzers are commonly used for testing, debugging,

verification, and calibration. From the visual inaccuracies displayed by the Decimator, it

is possible to inaccurately calibrate another unit or system. The errors in the Decimator

then have the possibility of propagating themselves to other systems, which is why

correcting the I and Q imbalance errors is so important.

15

Figure 2.6: 4-QAM phase

imbalanced modulation, (10º).

An RF signal with identical I and Q data was generated using a signal generator with

arbitrary waveform generation capability. The generated signal was then fed into the

Decimator. A zoomed-in result of the Decimator's spectrum analysis can be seen in Figure

2.7. It is clear that the imbalances in the receiver have excessively increased the amplitude

of the Q branch. Based on the received data, there is an estimated gain imbalance of

0.4922 dB and a phase imbalance of 2.9303° in the particular Decimator this data capture

was obtained from. These errors lead to a 0.4944 dB difference between the peak FFT

bins of the two signals. Now the problem of I and Q imbalances has been properly

defined, and its effect on received signals has been quantified. The next step is to

determine how these errors can be corrected.

16

Figure 2.7: Received data corrupted by gain and phase imbalances.

2.4 I/Q Imbalance Correction Schemes

The errors introduced by gain and phase imbalances in the receiver should now be

apparent. With direct conversion receivers being a viable option for small scale

applications, and with imbalances being prevalent in their architecture, a large number of

research papers have been published on the subject [5, 7, 8, 14, 16]. Each paper may bring

some subtle nuance to a well-known solution but for the most part, these solutions can be

categorized into several different types of correction schemes.

2.4.1 Non-Data-Aided (NDA) Correction Schemes

Non-data-aided (NDA), or blind, correction schemes are a popular form of I/Q

imbalance solution that do not require knowledge of the modulation scheme and do not

utilize training sequences or test tones. NDA correction methods utilize samples of the

received data to determine the amount of error that is present, and then a correction is

applied to remove the estimated error. The procedures whereby NDA algorithms estimate

the error and then apply corrections differ from method to method. However, all methods

share the fact that statistical characteristics are utilized to apply a correction to the received

signal.

2.4.1.1 Blind Source Separation (BSS)

Blind Source Separation, (BSS), is the process of taking a mixture of N statistically

independent signals and recovering all N signals in their original form using no outside

knowledge of the source or mixing matrices. In other words, only the signal mixture is

used [10]. An imbalanced direct-conversion receiver causes the I and Q channels to mix.

Consequently, the signals become correlated and are no longer independent of one another.

17

BSS makes the implicit assumption that the mixed signals are independent. Therefore, the

I and Q imbalance problem is solvable via the BSS method with N = 2 independent

sources.

One method of BSS is Independent Component Analysis, (ICA), which provides a

mathematical approach to solving the BSS problem. While there are other methods to

solve the BSS problem, ICA requires that the sources be independent to achieve an

applicable solution. ICA reconstructs both the source signals and the mixing matrix by

minimizing the statistical dependencies, (i.e., cross-correlation), between the signals. Bell

and Sejnowski showed that in signals that have a positive kurtosis, maximizing the amount

of information, or entropy, was equivalent to de-correlating the signals [9]. Rather than

minimizing the statistical dependencies between the signals, the proposed method attempts

to correct the problem by maximizing the signal information.

Figure 2.8 displays the basic structure of the ICA problem where S(t) is the original

signals, R(t) is the received signals after being mixed, and C(t) is the corrected output after

unmixing has occurred. Both S(t) and A are unknown, but using only R(t) and the ICA

technique, W can be adapted to remove the error introduced by A. From this model it is

possible to write,

R t=AS t
(2.14)

C t =W R t

18

Figure 2.8: Independent Component Analysis problem definition.

The problem becomes one of developing a set of adaptive filters that will undo the effects

of the mixing matrix.

A number of applicable learning algorithms have been proposed to update the

coefficients in the unmixing matrix. In [11], four of the most prominent learning rules are

outlined, and a hybrid learning rule is developed. While all four learning rules have been

utilized successfully in other applications, arguably the most important learning rule was

developed by Bell and Sejnowski [9]. Their proof of the information maximization rule,

(i.e., Infomax), was developed into an effective hardware model using adaptive filters

proposed by Torkkola [10]. Torkkola proposed a hardware feedback network that has been

at the heart of most adaptive filter techniques for decorrelating independent signals

because it provides a structure that can be realized in the receiver hardware. Figure 2.9

shows the Torkkola feedback architecture as it applies to the general case of convolved

mixtures.

2.4.1.2 Interference Cancellation (IC)

The Interference Cancellation, (IC), based technique attempts to create an

19

Figure 2.9: Torkkola's feedback network for separating convolved mixtures.

interference signal that, when subtracted from the received signal, will remove the

erroneous component from the desired signal. This method also requires no knowledge of

the received signal, but makes the fundamental assumption that the desired signal and its

interfering component are uncorrelated. Since in the case of I and Q imbalance the

erroneous component of the signal is from the other branch of the receiver, this

relationship holds and the IC method can be utilized to solve the I and Q imbalance

problem.

The basic architecture behind the IC method is depicted in Figure 2.10. The adaptive

filter modifies the reference signal such that it correlates with the erroneous component of

the signal but not the desired portion. The modified reference signal is then subtracted

from the incoming signal in an attempt to remove the noise, or in the case of I and Q

imbalance, the cross-talk. Similar to the BSS solution, IC based methods rely heavily on

the learning rules employed to modify the adaptive filter.

2.4.1.3 Adaptive Methodologies Summary

Valkama et. al. analyzed several BSS and IC based methods and determined that both

provide feasible solutions to the problem of I and Q imbalances in low-IF receivers [5].

While the Decimator uses a zero-IF receiver architecture, the methodologies are still

applicable and have been applied to direct conversion receivers in other cases [6, 11].

20

Figure 2.10: Adaptive interference canceler (IC) architecture.

Valkama concluded that the BSS based solutions are more robust and can correct a wider

range of receiver imbalances at a variety of received signal levels. BSS also avoids the

signal leakage problems that inhibit the IC based methods. On the other hand, IC based

methods are more capable of handling the effects of additive noise and symbol timing

errors. The IC based method can also be less sensitive to the type of modulation scheme.

Both methods track changes in I and Q imbalances with time, as is expected of the

adaptive techniques. The speed and accuracy of convergence of these methods vary

depending on the learning rule used to update the filter coefficients. Both methods are

comparable in this respect with the proper update rule selection.

Valkama shows that both methods would be successful in various situations; however,

these solutions are not the most promising when considering the nature of the Decimator

[5]. The most obvious shortcoming is the fact that the number of filter coefficients needed

to obtain acceptable results may easily be in the range of 60 to 100. To keep the

Decimator operating at 65 MHz on the Spartan 3 FPGA, this would require a large number

of dedicated multipliers. These added multipliers would also cause a considerable amount

of added latency in the DSP. The adaptive filtering techniques, while promising in other

applications with different hardware, would most likely not provide the best results for the

Decimator.

2.4.1.4 Statistical Correction Method (“Stat”)

Figures 2.4 to 2.6 show the changes that occur to a modulation scheme in the

presence of I and Q imbalances. These changes alter the shape of the incoming signals

such that the statistical characteristics of the received signals are also modified. There are

a number of I and Q correction schemes that take advantage of these known signal

21

alterations to estimate the error that was introduced into the signal. Error estimates can be

made and then used to reverse the effect of the errors on the signals. Several statistical

methods will be evaluated to determine their viability as a solution to the I and Q

imbalance problem in the Decimator.

Statistical methods for solving the receiver I and Q imbalance problem are relatively

new. One of the earliest methods that is applicable to the Decimator architecture is

presented in [12]. The problems encountered with direct conversion receivers were

discussed at length, and several variations of statistical methods for correcting gain and

phase imbalances were proposed. Unfortunately, the paper does not provide any

verification of the proposed methodologies. Consequently, the proposed techniques

requires further study.

Around the same time as [12] was published, a methodology was proposed (and

presumably independently developed) by Kocic et al. [13]. The proposed methodologies

offered simple hardware implementation and promising error correction results. Shortly

after the Kocic et al. [13] paper, an essentially identical methodology was proposed by

Rykaczewski et al. [14]. Their proposed methodology offered good Bit Error Rate (BER)

improvements while using only received data to formulate the correction scheme. The

performances of both [13] and [14] have been verified, and their methodologies are similar

in many respects to [12]. Therefore, it appears that the methodologies proposed in [13]

and [14] should be pursued as a solution rather than [12].

The statistical-based correction scheme proposed in [13] and [14], known henceforth

as “Stat”, makes several basic assumptions about the form of the signal being received.

The first assumption is that the real and imaginary portions of the received signal be

22

statistically independent. This assumption differs from that of the BSS based solutions

which make the assumption that the two original signals are uncorrelated. For the two

signals to be independent, the following relationship must hold [4]

E [R I RQ]=E [R I]E [RQ] (2.15)

The second assumption was that the real and imaginary portions of the received signal are

of equal power. That is, the following relationship must hold.

E [R I
2]=E [RQ

2] (2.16)

While the second assumption is not required by the BSS solutions, it is not an assumption

that limits the practicality of the Stat solution. These assumptions will still cover

approximately 98% of all incoming transmitted signals. One notable modulation scheme

that does not meet the requirement in (2.16) is BPSK. BPSK transmits data that is

modulated on the I branch only which means the real branch power will be much larger

than the imaginary branch power.

The signal model in Equations 2.11 and 2.12 show how the desired signal is

interfered with by the gain and phase imbalance components present in the receiver. The

Stat method proposes an estimation of the variables ε and ф, and then use those estimates

to reverse the effects of the imbalance error. From Equation (2.6) it is evident that the

scaling factor between the two channels is 1/−1 . Using mean-squared

calculations on both channels, [14] proposes the gain imbalance estimate to be,

=E [RQ
2]−E [RI

2]

E [RQ
2]E [RI

2]
(2.17)

The gain imbalance can easily be removed by multiplying each branch by the estimated

imbalance.

23

Once the gain imbalance has been corrected, the phase imbalance can be addressed.

Squaring the I and Q branches yields

S I
2=R I

2cos2 2 RQ
2 sin2 2 −RI RQ sin (2.18)

SQ
2=RI

2 sin2 2 RQ
2 cos2 2 −R I RQsin (2.19)

After the assumption in Equation (2.16) is acknowledged, it can be seen that,

E [S I
2]E [SQ

2]=E [R I
2]E [RQ

2] (2.20)

And since R I RQ=S I SQ−1/2 sin S I
2SQ

2 , it follows that,

=−arcsin 2 E [RI EQ]
E [R I

2]E [RQ
2] (2.21)

The calculations required to find the phase estimate are quite simple to compute in an

FPGA, with the exception of the Arcsin function. According to [13] the following

simplification can be made,

=− 2 E [RI EQ]
E [R I

2]E [RQ
2] (2.22)

Kocic et al. justify the removal of the Arcsin function by noting that in real world

applications phase errors are typically less than 20° [13]. With small phase values, the

Arcsin function does not significantly change the estimated value. Therefore, it can be

removed to make the algorithm easier to implement in hardware without a substantial loss

of precision to the phase estimate.

Once estimates of the error parameters have been calculated, a method is needed for

applying these estimates in a way that removes the I and Q imbalance error. In [12],

several time domain models for applying the correction coefficients are presented that look

24

quite similar to the feedback network solution proposed by Torkkola [10]. Figure 2.11

depicts the proposed gain and phase error correction block diagram. The gain is corrected

first, and then the phase, as was outlined in [12]. Mathematically, it is clear that mixing

the coefficients as shown in Figure 2.11 cancels the extra components in the received

signal, as shown in Eqs. 2.11 and 2.12.

The block diagram in Figure 2.11 is a valid method of applying the correction

coefficients; however, the method requires the use of four multipliers and two adders. The

impaired signal was shown to have half the errors applied to the I channel, and the other

half of the errors applied to the Q channel. Applying the I and Q errors to only one branch

of the signal is well documented [5, 16, 19]. Rather than spreading the gain and phase

corrections between the I and Q channels, the corrections can be applied to just one of the

channels. This causes the Q branch of the receiver to be equalized to the I branch, and

since the desire to make the spectral powers of the I and Q channels equal, this is a valid

modification. The proposed modification is depicted in Figure 2.12. The simplification to

25

Figure 2.11: I and Q Imbalance Correction Block Diagram.

the hardware correction scheme reduces the dedicated FPGA hardware required to two

multipliers and one adder.

2.4.1.5 Other Statistical Correction Schemes

Stat is not the only statistical correction scheme that has been proposed and as a

result, several other promising methods will also be presented and discussed. Moseley and

Slump presented a novel method that uses only data from the received signal to correct

subsequent incoming samples [18]. Figure 2.13 shows the proposed correction

architecture. Three estimators are adapted in real time to determine the I and Q imbalance

compensation coefficients. Windows of data anywhere from 32 to 256 samples are

captured and basic averaging is performed. A Low Pass Filter (LPF) is used with each

estimator to smooth the data that is generated by each window of samples. The output of

the estimators is then used to generate the correction coefficients. Once the coefficients

are computed, their application requires only two multipliers and one addition. This

hardware requirement is the same for Stat.

26

Figure 2.12: Simplified I and Q Imbalance Correction Block Diagram.

The Moseley and Slump method [18] provides an alternative to Stat. The

performance of both methods cannot be compared based solely on the respective

performances because one method contains IRR simulations, and the other method

provides BER simulations. Without implementing both methods in Matlab to obtain

numerical results, the decision can be made based on the ease of implementation in the

Decimator.

The hardware requirements of [18] are only mildly greater than Stat. The only major

difference is that three additional multipliers are needed for the LPFs. The main drawback

comes from the flow of the correction algorithm. Stat calculates several running sums in

the background and then uses the sums to calculate the error coefficients. Rather than

calculating the coefficients in the FPGA, the sums can be passed to the microcontroller for

processing. The results can then be passed back to the FPGA for use. Conversely, [18]

would require full implementation in the FPGA because of its real time nature. The

Mosely and Slump [18] method cannot wait for values to be passed back and forth from

the microcontroller. For this reason, Stat still appears to be the more promising algorithm

for implementation in the Decimator.

Another novel method for removing I and Q imbalances in both the transmitter and

27

Figure 2.13: Moseley and Slump's I and Q Imbalance Compensation Block Diagram.

receiver was proposed in [29]. Reference was made to Stat in the paper but no reasons

were given as to why it should not be used were provided. The main benefit to the

proposed scheme is that it provides a correction in the transmitter as well as in the receiver.

The Bit Error Rate (BER) graphs provided in [29] indicates that the proposed method does

not perform as well as Stat while correcting 16-QAM and 64-QAM signals under similar

conditions. Since the Decimator is a receiver, and no modifications are being made to any

transmitters, choosing Stat over the method proposed in [29] seems quite justified.

Another novel statistical correction technique was proposed by Anttila et al. [16, 17]

which used second order statistics of a signal to obtain correction parameters. The basic

assumptions of the methodology are that the received signals are zero-mean, circularly

symmetric, mutually uncorrelated, and of equal power. This may seem like quite a number

of assumptions to make, but these assumptions apply for the vast majority of modern

communication systems. The drawback in the case of the Decimator is that the calculated

estimates must be implemented with adaptive filters. Adaptive filters are not feasible in

the case of the Decimator. While the Anttila et al. technique may prove invaluable in other

receivers, it would probably not be of much value to the Decimator [16, 17].

2.4.2 Data-Aided (DA) Correction Schemes

Data-aided correction schemes are less popular than their counterpart schemes

because training sequences must be injected into the signal at the transmitter. Introducing

a training sequence requires an increase of complexity in both the transmitter and the

receiver due to the increased channel equalization and frequency synchronization. While

the performance of DA correction schemes has been shown to be quite good, the

usefulness of such correction schemes is still questionable. For these reasons, many

28

practical applications opt for a NDA type solution, rather than for a DA type solution [5].

DA solutions are not feasible in the case of the Decimator because the modulation scheme

is unknown to the receiver and altering the transmitter is not an option.

2.4.3 I and Q Imbalance Conclusions

The simplicity of Stat and its error improvements in other application make it a prime

candidate for integration into the Decimator. It does not require calculations that are

beyond the scope of an FPGA and it does not require any knowledge of the incoming

signal. The signal is assumed to be symmetric about the origin and to have equal channel

powers. For these reasons, Stat will be further evaluated as a solution to the I and Q

imbalance problems present in the Decimator.

2.5 Windowing

Windowing is a term used to refer to a filter that passes a selected group of samples

and sets all others to zero. In contrast with the other types of filters that pass data based on

frequency content, a window filter passes data based on its time domain position. The

result is a finite sequence of non-zero samples that may be processed further by subsequent

DSP algorithms. In the case of the Decimator, the processing that follows the windowing

is the FFT.

Windowing has become a common practice in applications that perform the FFT. The

reasons for its necessity stem from issues that arise out of the calculation of the FFT. The

FFT assumes it is calculating a periodic sequence of data, however, only a small sampling

of the incoming data is used to make the calculation. The starting point and ending point

of the window frame have to exactly line up to provide a seamless periodic representation

29

of the captured signal. In practice, a set number of samples are used to represent the

incoming signal but its starting and ending points do not line up. This results in the energy

of the signal being spread across a number of frequency bins, rather than being isolated

from each other. This phenomenon is known as spectral leakage.

Figure 2.15 shows the 256 point FFT of a simple sinusoidal wave whose starting and

ending samples line up to make the data frame periodic. The results in Figure 2.15 can be

compared with the result seen in Figure 2.14, where the same sinusoid was processed and

the frame of data did not line up. The differences between these two representations are

evident. Firstly, the peak FFT bin value is lower because of the spectral leakage.

Secondly, spectral leakage causes the base of the FFT spectrum to grow when it should be

narrow, as shown in Figure 2.15. Obviously this introduction of error into the FFT

calculation should be mitigated. This is why windowing has become an important process

in the DSP chain of the Decimator.

30

Figure 2.14: Non-periodic frame of data from a periodic sinusoid.

It should be noted that although windowing was not explicitly performed on the

sinusoids from Figure 2.15 and Figure 2.14, the act of limiting the input to the 256 point

FFT to 256 samples is itself an implicit application of a rectangular window. The

rectangular window is what caused the sharp cut offs at each end of the data frame. There

are a wide variety of window designs that round the corners of the data frame to reduce

spectral leakage. Figure 2.16 shows a few of the most common windows in the time

domain.

31

Figure 2.15: Periodic frame of data from a periodic sinusoid.

Taking the example from Figure 2.14 and applying a Hamming window prior to

transformation yields improved results. Figure 2.17 shows these improved results, along

with the Hamming window coefficients that were applied. Although the new frequency

spectrum does not have the spectral leakage that was previously present, the amplitude of

the spectrum is significantly lower. The lowered spectral gain is due to the windowing

function which removed much of the signal power when it tapered the edges of the data

frame. The amount by which the amplitude decreases is known for each type of window

and can be corrected by applying a gain factor to the spectrum after the transformation.

Another significant difference can be seen by the overall width of the frequency

component. While the frequency component no longer contains the leakage around the

base, it is now wider than it was in Figure 2.15. The frequency component is now wider

and it has lost some of its spectral resolution. Where two spectral components that are

32

Figure 2.16: Several common window functions.

very close to each other may have been distinguishable before the windowing operation,

they may overlap each other and cause their spectral components to interfere with each

other. Herein lies the trade-off that takes place with the application of a window function:

spectral leakage versus frequency resolution.

33

Figure 2.17: Effect of the Hamming window on a periodic signal capture.

2.5.1 Finite Register Length

Finite register lengths degrade the precision of an algorithm in two ways. First, by

limiting the precision of calculated values (coefficients), and second, by truncating the

results of multiplication operations that overflow. Windowing coefficients are calculated

by the Decimator in the microcontroller and may then be passed to the FPGA for storage

and use. This process will require rounding operations to take place such that the 32-bit

coefficients can be represented by fewer bits in the FPGA. This will be the first loss of

precision in the window migration process. The second source of error will not be an issue

as it was in the FFT algorithm. Each incoming sample is multiplied by its corresponding

window coefficient, but each coefficient is less than 1. There will be no errors introduced

by overflows in the windowing function. Only one of the two main sources of error are

applicable to the windowing operation. Migration of the windowing to the FPGA should

not induce as much error in this system as migration of the FFT algorithm.

2.6 Fast Fourier Transform (FFT)

Advances in mathematics have brought about new ways of viewing data. Various

transforms such as the Hilbert, Cosine, and Fourier Transforms have become

commonplace in a variety of signal processing applications. The Fourier Transform

changes a signal so that rather than viewing a signal as an amplitude versus time function,

the signal may be viewed as an amplitude versus frequency function. While the Fourier

Transform is a theoretical transformation, the Fast Fourier Transform (FFT) is its practical

realization [1, 2, 3]. The FFT has become one of the most important transforms in signal

processing applications and much work has been done to implement the FFT on a variety

of hardware platforms.

34

The FFT is currently performed in the ARM microcontroller on board the Decimator.

However, there are several reasons why migrating the FFT to the FPGA is desired. The

primary reason relates to speed; the microcontroller is much slower at processing data than

the FPGA. The advantage of the microcontroller is that it has a 32-bit floating point

mathematical operator, whereas the FPGA is inherently fixed point. Keeping as much of

the signal processing chain on the FPGA makes for a much more maintainable product. As

a side benefit, a logic core that performs the FFT adequately on the Decimator may be an

asset to other related projects.

2.6.1 FFT Background

The Discrete Fourier Transform (DFT) provides a way for digital systems to realize

the Fourier Transform of a function. However, it is a time consuming transform that is not

practical in most systems. Exploiting some of the key properties of the DFT, such as

periodicity and symmetry, a variety of more efficient algorithms have been developed to

make the implementation of the DFT in hardware a practical reality. These more efficient

algorithms fall under the blanketed term “Fast Fourier Transform” because of increased

speed with which the transform is calculated [1, 2].

The general DFT equation can be written as,

X [k]=∑
n=0

N−1

x [n]W N
kn (2.23)

where X[k] represents the frequency bins found in the sequence x[n]. N represents the

number of samples in the given frame of data, or window, and W N
kn represents the

complex exponential e− j2/ N kn . By multiplying discrete samples by the complex vector

e− j2/ N kn , the frequency content of the signal at various angles can be summed and

35

transformed into a set of frequency bins [1, 2]. However, the way in which the DFT

algorithm is implemented in hardware is a topic of much study, and a number of methods

have been proposed to reduce its computational complexity.

2.6.1.1 Decimation-in-Time (DIT) Algorithms

There are two main types of FFT algorithms; decimation-in-time (DIT) and

decimation-in-frequency (DIF) algorithms. The DIT algorithms break an incoming frame

of samples into successively smaller sub-sequences before performing the transform to

only a small number of samples. The rest of the transform coefficients can then be

deduced using the periodicity and symmetry principles of the Fourier Transform [1].

Figure 2.18 depicts the flow of a DIT algorithm. While this example flow chart shows an

8-point DIT FFT, the method can be expanded or contracted to apply to all FFT point sizes

that are factors of 2N . The decomposition scheme leads to a reduction in the number of

multiplication operations needed by more than a factor of 100 [1, 2].

The values of W N
kn , referred to as “twiddle factors,” need to be calculated for each

FFT point size. They are reusable, however, so they only need to be calculated once per

point size. As is seen in Figure 2.18, some of the twiddle factors may be simplified to

either a “1” or “-1”. This is a valid simplification since the angular frequencies at even

multiples of are W N
N /2=e− j2/ N N /2=e− j=−1 and W N

0 =e− j0=1 .

36

2.6.1.2 Decimation-in-Frequency (DIF) Algorithms

The most notable difference with the DIF algorithms is that it takes the input data in

its natural order and performs the FFTs starting with the 2N (for radix-2) FFT first. This

is in contrast to the DIT algorithm which rearranges the input data window in order to

perform the smallest FFT calculation first before moving up to the higher values. Both

algorithms have strengths and weaknesses when compared to one another, so the right

algorithm needs to be chosen to fit the system it is being implemented in. Figure 2.19

depicts the flow graph of a basic DIF implementation.

Comparing Figure 2.18 and Figure 2.19, one design consideration is immediately

apparent. A choice between ordered inputs, or ordered outputs must be made. The DIT

FFT must buffer the input data in order to rearrange it and apply the butterfly calculations.

On the other hand, the DIF takes data in order and generates Fourier coefficients that are

out of order. Because of this, the data at the output must either be buffered and rearranged,

or the system using the generated Fourier coefficients must know that they are not in their

37

Figure 2.18: Flow graph of an 8-point DIT decomposition.

natural order (i.e. the coefficients are not ordered 0, 1,2,etc.).

2.6.1.3 FFT Radix Size

In the previous examples of DIT and DIF FFTs, a radix size of N = 2 has been

assumed. That is, the FFT length is broken down by a factor of 2 at each step of the

decomposition. Radix-2, where N = 2, is one of the most common FFT settings because it

greatly reduces the number of multiplications needed. The down side to decomposing the

FFT this much is that it takes longer to calculate. When implemented in hardware, this

equates to an increase in algorithm latency. Rather than decomposing the calculations

down to a minimum of 2, as in the radix-2 calculation, setting N = 4 simply causes the

minimum FFT calculation to include 4 samples. This is known as radix-4, and it offers an

alternative to radix-2 in that it performs the same FFT calculation in less time but with

more multiplications. Unfortunately, it is less robust than radix-2 because it can only

calculate FFT lengths that are a power of 4.

38

Figure 2.19: Flow Graph of an 8-point DIF decomposition.

2.6.2 Finite Register Lengths

The most important issue when discussing the migration from floating point hardware

to a fixed point platform is the loss of data that can be attributed to truncation and

rounding. One way these errors creep into the FFT calculation is through twiddle factor

multiplications. Twiddle factors must be stored in memory with a fixed number of bits.

The number of bits used determines how precisely the actual twiddle factor value is

represented. Bit growth due to the multiplications that take place in each butterfly of the

FFT is the other dominant source of error due to finite register lengths. Analyzing these

two issues varies based on the FFT architecture and input signal model.

FFT algorithms contain a large number of multiplications, and twiddle factor

quantization errors propagate with each multiplication. The way quantization noise is

manifested in twiddle factors depends on the implementation of the complex multiplier

(i.e. the architecture that is instantiated). The Chang and Nguyen model is based on the

Radix-2 FFT, which limits their results to be applicable only to Radix-2 FFTs [27].

Comprehensively evaluating the effects of finite register lengths with respect to the Xilinx

FFT core is a fairly in-depth task. Oppenheim and Weinstein believe the twiddle factor

quantization errors are not a major source of error [22]. Rather, it was concluded that the

quantization error varies directly with N, the number of bits used, which means doubling

the number of bits used to represent the twiddle factors would produce only a small

improvement in the noise-to-signal ratio of the FFT. It is important to note that more

experimental verification is required since their hypothesis is based on an equation meant

to give a rough estimate of quantization error.

Each butterfly in a Radix-2 FFT has the potential to increase the number of bits

39

required to represent the result by a factor of two [1]. In a Radix-4 FFT, an increase up to

a factor of four is possible. Floating point arithmetic is able to handle these bit growths

because of its superior dynamic range performance [22], however, fixed point arithmetic

requires some form of intervention to keep the result manageable. The Xillinx FFT core

comes with several configurable options to address this problem.

2.6.2.1 Full Precision Unscaled

The Full Precision Unscaled settings introduces the least noise into the system. The

number of bits at the output is determined by the worst case scenario formula, as seen in

Equation (2.24).

input widthlog2FFT length1 (2.24)

Therefore, 12-bit input samples will yield 22-bit FFT coefficients. While this setting

does not introduce any truncation or rounding noise to the data, the data will not be usable

by the rest of the system. As a result, the output will most likely require scaling to bring it

back to a usable size. This is an elementary way of dealing with the bit growth problem,

and it will introduce a substantial amount of error into the system.

2.6.2.2 Scaled Fixed Point

 The next built-in function to deal with bit growth after each butterfly calculation is

called Scaled Fixed Point. Rather than scaling the result at the output of the FFT, the

scaled fixed point setting scales by a user-defined value at each butterfly calculation. This

technique is quite common, and has been shown to be superior to having one large scaling

factor at the input of the FFT [1, 22]. The down side to this procedure is that scaling is not

necessarily required with each butterfly, but it is still applied anyway. Data that has a

40

higher average value and comes close to saturation quite frequently will not notice much

of an issue with this solution. Data that is close to saturation requires scaling at most

butterfly operations anyway. Conversely, data that has a lower amplitude will become

much noisier with this setting since scaling is applied unnecessarily at most FFT stages.

2.6.2.3 Block Floating Point (BFP)

The final built-in FFT core setting implements Block Floating Point (BFP) arithmetic.

BFP may be considered a special case of the floating point format where non-overlapping

groups of data are joined together by a common scaling factor. The scaling factor acts as

the mantissa in a floating point number, except the scaling factor is chosen to represent the

largest samples within the group [23]. When the BFP arithmetic option is selected, the

output of each butterfly is checked to determine whether an overflow has occurred. If an

overflow has occurred, a scaling factor of two (for Radix-2) or four (for Radix-4) is used

to bring the data back to the desired number of bits. The number of overflows and the

stage at which they occur affect the SNR. The setting of this variable can greatly vary the

SNR of the input data [1].

2.6.3 Dynamic Range

Dynamic range refers to the smallest and largest values that can be represented of a

given variable. As it pertains to spectral analysis, dynamic range determines the ability of

the FFT to distinguish between small and large spectral peaks. Measuring the dynamic

range of an FFT system is not a trivial task. This is primarily because dynamic range has

no specific definition as it pertains to FFT systems [24]. There are several common

methods of measuring the dynamic range of an FFT system that are widely accepted. The

41

first method is to find the ratio between a full scale sinusoid and the noise floor. This is

called a “two-toned” measurement and it provides an accurate theoretical measurement of

dynamic range. The “two-toned” measurement does not take into consideration the fact

that real-world signals contain numerous sinusoids, so it fails to provide an accurate

practical measurement of dynamic range [25].

The second method for determining the dynamic range of an FFT system is called the

“noise slot test” [21, 24] White Gaussian noise is created and passed through either a

notch filter or a bandpass filter. The remaining data is then scaled and quantified to use the

full range available given the number of bits in the system. This signal is then passed to

the input of the FFT system. The difference between the average signal power and the

average noise power is the dynamic range of the FFT system. There is a third method of

determining dynamic range called the “mean-squared error technique” but it can be shown

to be equivalent to the “noise slot test” [24].

Xilinx simulated a number of “noise slot tests” in Matlab and documented the results

[21]. Figure 2.20 shows an overview of the results that were obtained. The slope of the

graph is 6.06 dB/bit, which means that each additional bit used to represent the input and

output increases the dynamic range of the FFT by 6.06 dB. The change of about 6 dB of

dynamic range per bit is not an accurate representation of actual dynamic range, but of

theoretical range [24, 25]. In reality, there are other factors that cause noise and prevent

the 6 dB per bit rule to be followed explicitly.

42

Xilinx documented several other “noise slot test” result that are of interest to this

thesis. Xilinx calculated the dynamic ranges of the full precision unscaled arithmetic, the

scaled (1/N) arithmetic, and the BFP arithmetic using a bit accurate Matlab model of the

Xilinx FFT Core [21]. All simulations were run using 1024 point, Radix-4 Burst I/O

transforms with 16-bit input data, 16-bit phase factors, and convergent rounding. The full

precision unscaled simulation yielded a benchmark result of 91 dB. The BFP simulation

calculated a dynamic range of 73 dB. The smallest dynamic range was the scaled

arithmetic simulation, which found the dynamic range to be 64 dB. Therefore, moving

from full precision unscaled to BFP lead to a loss of 18 dB. A further loss of 9 dB was

sustained by going from the BFP to the scaled arithmetic.

A more practical look at the effective dynamic range of an FFT system was

performed in [26]. Other factors that affect the dynamic range of an FFT system are the

FFT algorithm that is used (i.e. DIT or DIF), the FFT length, and the window filter that is

43

Figure 2.20: Xilinx dynamic range results.

6 8 10 12 14 16 18 20 22 24 26
0

20

40

60

80

100

120

140

160

Dynamic Range VS Number of Bits

Number of Bits

D
yn

am
ic

 R
an

ge
 (d

B
)

used. Several simulations were run using a variety of settings, but one simulation in

particular had similar settings to those used in [21]. Simulation 3 in [26] was run using the

1024 point DIT FFT, a rectangular window, 15-bit input data, 15-bit phase factors, and 15-

bit output samples. The only notable difference from one of the Xilinx simulations is the

use of 15-bits as opposed to 16-bits. The Dynamic range was found to be 70 dB in [26],

which is very close to the 73 dB value found by Xilinx. The 3 dB difference may be

attributed to the slight differences between the simulations.

44

CHAPTER 3 : RESEARCH PROGRAM / METHODOLOGY

3.1 Introduction

The research program is designed to study the effectiveness of the proposed changes

to the Decimator. A methodology for simulating and verifying the chosen I and Q

imbalance correction scheme will be outlined. Similarly, a plan for the algorithm

migrations will be outlined that can be implemented in VHDL and simulated using the

Xilinx ISE Simulator. The steps taken to study each of the issues in this thesis will be

clearly defined. The results of the described simulations will be presented and discussed in

Chapter 4.

3.2 I and Q Imbalance

Chapter 2 presented a variety of solutions to the I and Q imbalance problem. There

are only a few that can be practically implemented in the Decimator. Statistical methods

of correction showed promising results while using minimal resources and for these

reasons, a statistical method was studied. The statistical method studied is called Stat, as

discussed in Chapter 2. Stat will be implemented in VHDL and simulated using Xilinx

ISE to obtain bit accurate data and hardware usage estimates. Stat will also be

implemented in Matlab to give the bit accurate VHDL simulations 32-bit floating point

reference results. The method of applying the correction coefficients will be implemented

as outlined in Figure 2.12.

3.2.1 Stat Design Overview

The overall design of Stat was outlined in Chapter 2, but a more detailed discussion

45

regarding its implementation in VHDL is presented herein. The discussion describes the

source of the simulation results. Figure 3.1 shows the VHDL system level design of Stat.

The first point to note is that the actual calculation of the correction coefficients is

done outside the FPGA in the microcontroller. The reasons for using this approach were

outlined in Chapter 2. The low level calculations required to find the correction

coefficients (i.e., the sum of squares and sum of products) are performed in the FPGA.

These calculations are kept in the FPGA because their hardware requirements are quite

low and it is possible to keep up with the speed of the incoming data (65 MHz). Sending

all the incoming data to the microcontroller for the sum of squares operations would more

than likely require buffering. Exporting the pre-summed quotients should work well

because it utilizes the speed of the FPGA and the precision of the microcontroller to find

the correction coefficients.

The microcontroller controls the I and Q imbalance correction block. The

Enable_Corr signal instructs the block whether to correct the incoming data or to simply

46

Figure 3.1: System level design of I/Q imbalance correction implementation

pass it through to the output without correction. The Calc_New_Coeffs signal begins the

process of calculating data for the microcontroller to use in formulating new correction

coefficients. Once the data has been summed, it is passed to the microcontroller for further

calculations. The gain coefficient is calculated first and is updated in the FPGA. Using

that new gain coefficient, the incoming data is gain-corrected and the phase correction

coefficient is calculated. Once enough data has been summed, the phase data is sent to the

microcontroller for coefficient calculation. The phase coefficient is then passed back to

the FPGA to correct phase errors in the incoming data.

A state machine will control the calculation of the gain coefficient and subsequently

the phase coefficient to ensure that each step in finding the new coefficients is handled

sequentially. The sequencing relies on the incoming control signals from the

microcontroller to begin the process for finding new coefficients as well as advancing the

process through its cycle. The counter is also a critical part of advancing the state

machine. The counter ensures the proper number of samples are summed as well as letting

the state machine know when to pass the collected data to the microcontroller.

The design displayed in Figure 3.1 utilizes five 18 x 18 multipliers. As was discussed

in Chapter 2, correcting only one of the channels to make it match the other channel

eliminates the need for two of the multipliers. The Channel_Select modules are switches

that pass the real data to the gain correction block when the gain correction coefficient is

negative, and passes the imaginary data to the gain correction block when the gain

correction coefficient is positive. The channel that is not passed to the correction blocks is

passed to the phase correction block. Simply stated, the channel that has more gain is

multiplied by a correction coefficient that is between -1 and 1 to reduce its amplitude to

47

that of the other channel. The Channel_Select facilitates this process.

3.2.2 Stat Sources of Error

The implementations of Stat in VHDL and Matlab will help locate the sources of

error that are associated with the correction scheme. The Stat implementations will also

help determine the error correction that it provides. A number of simulations will be run

that focus on specific areas of Stat. By testing individual sections of Stat, it should be

possible to pinpoint any deficiencies in the correction scheme. Figure 3.1 shows that the

error introduced in the correction scheme come from quantization of the gain and phase

coefficients, and from truncating the result of the correction back to 14-bits. The focus of

this thesis will be on the overall performance of Stat and the quantity of error associated

with each of its sources of error.

3.2.2.1 Coefficient Estimate Accuracy

There are two key questions that need to be answered regarding the ability of Stat to

estimate correction coefficients; namely, 1) how accurate are the estimates? and 2) how

many samples are necessary for sufficiently accurate estimates? The remainder of this

section will discuss these two issues and describe methodologies for obtaining quantifiable

results that help answer these questions.

There is no closed-form expression for determining the correction coefficients. The

correction coefficients must be statistically determined from incoming data. Estimating

the correction coefficients introduces error into the correction scheme because the number

of samples used will affect the result of a statistical estimate. The number of data samples

used to calculate the correction coefficients must be analyzed to determine whether there is

48

an optimal number of samples that should be collected for subsequent coefficient

estimations. Searching for an optimal number of samples will also show whether or not

the accuracy of the correction coefficients converges as the number of samples gets

extremely large.

Figure 3.2 outlines the following data generation process description. The first step

in determining the affect the number of samples has on the accuracy of the estimate is to

generate some random data. Generating random data yields a full spectrum of frequencies.

The simulations will involve modulation and demodulation of the generated data and both

these operations include anti-aliasing Low Pass Filters (LPFs). LPFs remove the

frequency components of the originally generated data that are above ½ the sampling

frequency. This cutoff is called the Nyquist Frequency [1, 2]. Filtering the randomly

generated data with a 5th order Butterworth LPF that has a cutoff frequency of ¼ the

sampling frequency will eliminate this problem. The random samples are generated with a

mean of zero, however, there is always a possibility that the generated data will have a

slight DC offset. Any minor DC offset that may be present in the generated data will be

removed to isolate the sources of error in the simulation. The data is ready for simulation

once these factors have been taken into consideration.

Either a filter must be used or a number of simulations need to be averaged to smooth

the results of the simulation. Averaging a number of simulations is a better way of

49

Figure 3.2: Data generation for coefficient estimate accuracy simulation.

performing the smoothing because it reduces the statistical anomalies that may be present

in any one generated group of samples. The coefficient estimation errors are averaged

over 10 different trials, each using unique randomly generated data. There are 20 different

sample values used to calculate the gain and phase coefficients which range linearly from

50 to 418876. A range of samples of this size should yield the desired convergence

information. The gain and phase errors that are introduced are 0.608 dB and 4°

respectively. These are above-average I and Q imbalances than are typically found in

Decimators.

The appropriate number of samples that must be used to obtain an accurate coefficient

estimate should be clear once these simulations have been run. The next step will be to

choose a number of samples to use that is far larger than the determined minimum number

of samples to find how accurate the coefficient estimations become as the number of

samples effectively approaches infinity. This result should show what the estimators are

capable of and how they can operate under ideal conditions.

3.2.2.2 32-Bit Floating Point Stat Performance

The performance of Stat in the 32-bit floating point environment of Matlab will

determine its ability to correct unknown errors in the actual Decimator data. The captured

Decimator data will come directly from the output of the Analog to Digital Converter

(ADC), which bypasses the DSP chain. The input signals for the Decimator have been

generated using a variety of Arbitrary Wave Generators (AWG) that are capable of

producing signals up to at least 2.15GHz. The Agilent E4438C, Agilent 8267D, and

Agilent N5181A are all examples of such AWGs. The generated input signal was split into

two identical components in order to have the I and Q channels of the Decimator identical.

50

By having identical simulated received signals, any differences between the two post

processed signals from the receiver can be classified as front end receiver error. The

amount of error introduced will be evaluated and Stat will be used to correct the data.

Correcting the data will show the effectiveness of Stat without including fixed point

precision error in the results.

A number of data captures have been obtained from the Decimator. The captures will

be used to verify the Matlab simulation of Stat. The captures to be analyzed are discussed

below to show the ability of Stat to handle some standard signals that are routinely

encountered by the Decimator. The captures contain a large number of samples but only a

finite number will be used for Stat coefficient estimation. The number of samples that

should be used to obtain realistic results will be determined prior to running this

simulation.

3.2.2.3 Fixed Point Precision Affect on Stat

Another important factor to consider is the amount of error that will be introduced

into the Stat correction scheme from the fixed-point precision arithmetic in the FPGA.

The implementation of Stat in the FPGA will be functionally identical to its

implementation in Matlab. The only difference is that the fixed point hardware is used to

run the calculations and correction. This simulation will illustrate the error that is

introduced into the correction scheme from the truncation and rounding associated with

fixed point mathematics. The simulation will also serve as a verification that Stat has been

successfully implemented in VHDL.

51

3.2.2.4 Arcsin Affect on Phase Estimates

As was discussed in Section 2.4.1.4, [13] concluded that removing the Arcsin

function from the phase coefficient estimate, (as seen in Equation (2.22)), would not

contribute greatly to the error in the estimate for phase imbalances under 20°. The reason

20° was chosen as the maximum phase the estimator equation could handle is unclear

since no data is presented to qualify this claim. A simulation will be performed to

determine the affect the Arcsin function has on the precision of the phase coefficient

estimation. The results will indicate whether the reduction in hardware from the Arcsin

function is worth the loss in the coefficient precision. The results will also indicate

whether the 20° error point recommended in [13] was identified for an obvious reason.

The simulation will be set up in a manner similar to the one described in Section

3.2.2.1. Phase errors between 0° and 30° will be introduced in five randomly generated

signals through a demodulator. The five randomly generated sets of data will help smooth

statistical anomalies that may be present in any one of the randomly generated sets of data.

Each of the five sets of data will be run through two Stat functions; one using the phase

estimate seen in Equation (2.21) that contains the Arcsin function, and one using the phase

estimate in Equation (2.22) that does not have the Arcsin function.

3.2.3 Stat Resource Usage

The hardware resources required by Stat will be individually evaluated and discussed

once the VHDL implementation of Stat has been synthesized. The required resources will

be apparent and the available resources on the Spartan 3 1500 are known, so concluding

whether the VHDL implementation of Stat will work in the FPGA should be straight

forward. The current Decimator implementation has also been previously synthesized and

52

the results of the synthesis will be compared with the added resources that Stat will

require.

3.3 Windowing

A window filter will be designed to operate in the FPGA of the Decimator based on

the currently implemented window filter that operates in the microcontroller. A similarly

functioning window filter will also be designed in Matlab. Bit accurate simulations using

Xilinx ISE will then be run to obtain results that ought to be identical to those that would

be obtained if the algorithm were running on the FPGA in the Decimator. The results of

the VHDL simulation can then be compared to those of the Matlab simulation. The

differences between the two simulations will characterize the affects of migrating the

window filter from the microcontroller to the FPGA.

The design of the window filter is based on the original design that was implemented

in the microcontroller of the FPGA in C. The code required to implement the windowing

53

Figure 3.3: Window filter VHDL implementation block diagram.

in VHDL is substantially more complex than the original C code due to the nature of

VHDL. Figure 3.3 displays a system-level overview of the implemented VHDL window

filter.

Data enters the window filter as 16-bit fixed point real and imaginary samples. The

windowing coefficients will be generated in the microcontroller, truncated to 16-bits, and

then passed to the shared RAM that the microcontroller and the FPGA both have access to.

The Controller & Sample Counter in the window filter keeps track of the number of

samples that have been received, which coefficient is required next, and when the filter has

completed its cycle. The incoming real and imaginary samples are multiplied by the

recalled coefficients stored in the shared RAM. The two 16-bit multipliers yield 32-bit

fixed point results which are then truncated to 16-bit values and passed out of the block.

3.4 Fast Fourier Transform (FFT)

Since the Decimator uses a Xilinx Spartan-3 FPGA as one of its main computational

units, using a Xilinx FFT core would appear to be an obvious solution to pursue. The

various features of the Xilinx FFT core, along with a discussion of why it would most

likely function satisfactorily if used in the Decimator. In this section, the Xilinx FFT core

will be reviewed, and a number of simulations will be devised to test various features of

the core. The results of these simulations should show whether the core does in fact meet

the requirements of the Decimator, or whether another solution will be required.

3.4.1 Xilinx FFT Core

There are four basic architectures available for the Xilinx FFT core: Pipelined

streaming I/O; Radix-4 burst I/O; Radix-2 burst I/O; and Radix-2 Lite burst I/O [21]. Each

54

architecture calculates the FFT differently, offering a tradeoff between resource usage and

throughput. The details of the architectures are not as important to this thesis as their

resulting performances. These four basic architectures will be discussed along with

pertinent design considerations.

Figure 3.4 is a graph provided by Xilinx to illustrate the relationship between the four

architectures with respect to their performances. By far the most powerful architecture is

the Pipelined Streaming I/O FFT, but its resource usage is also the highest. There is no

added latency associated with loading and unloading the data frame with the Streaming

I/O architecture because it is capable of processing data in real time. It is also the only

architecture to use the DIF algorithm, but the output can either be in natural order or bit

reversed order. The processing engines used are Radix-2, so the point sizes supported

range from 8 to 65536 at multiples of 2N .

Radix-4 Burst I/O, along with both the Radix-2 and Radix-2 Lite architectures, use

55

Figure 3.4: Resource usage V.S. throughput for Xilinx architecture options [21].

the DIT FFT algorithm to process data. These architectures are labeled as “burst”

architectures because loading, calculating, and unloading the data happens separately.

Incoming data cannot be processed in real time as in the case of the Pipelined Streaming

architecture. The exception to this rule is that data load and unload operations can be

overlapped when the output is in bit reversed order. The processing engine is Radix-4

based which allows for computation of point sizes that are multiples of 4N . A Radix-2

engine is added to the architecture and this allows for point sizes of 64 to 65536 to be

processed by the Radix-4 Burst architecture in multiples of 2N .

The Radix-2 Burst I/O architecture and Radix-2 Lite Burst I/O both use one Radix-2

butterfly engine and both support point sizes from 8 to 65536. The difference in

performance is a result of the Lite architecture only having one input to the butterfly. The

real and imaginary samples are alternately fed into the butterfly of the Lite architecture,

which adds an extra clock cycle to complete each calculation.

The first consideration when implementing the FFT core is determining which

architecture should be used. While the Pipelined, Streaming I/O architecture is not

necessary and is most likely too large for the Spartan-3 FPGA, one of the Radix-4, Radix-

2, or the Radix-2 Lite architectures may operate satisfactorily and use an acceptable

number of resources. Each of the four architectures will be instantiated and their hardware

requirements and performances will be evaluated to determine the optimal solution.

One of the key features of the Xilinx FFT core is its ability to perform BFP

arithmetic. A Radix-2 1024-point FFT can grow by 10 bits, which is a factor of 1024

times the size of the original data. BFP arithmetic allows the data to be scaled only when

there is an overflow from one of the butterfly operations, which prevents truncation from

56

occurring unnecessarily. Unnecessary truncation is a major source of error with fixed-

point pre-determined scheduled scaling. BFP also keeps track of the number of times the

data is scaled so the output can be re-scaled once the output of the FFT has been passed to

the microcontroller. Simulations will be run to determine the feasibility of implementing

the FFT using BFP arithmetic. Simulations will also determine whether there is in fact a

reduction in truncation error.

The performance improvement of BFP will be determined by implementing the FFT

core using a scheduled scaling routine. After each butterfly, the data will be scaled by 1-

bit to ensure there are no overflows. The spectrum will then be compared to both the

Matlab simulation and the block floating point VHDL simulation. Measures of accuracy

will involve spectral peak error and Mean Squared Error (MSE) using the Matlab

simulation output as the benchmark. The loss of dynamic range that occurs with scaled

fixed point arithmetic may become apparent through these simulations. If it is, dynamic

range measurement will also be taken to quantify the results of the system.

3.5 Windowing and FFT VHDL Simulation

Testing the window filter and the FFT in an independent manner should help isolate

the exact locations of introduced errors. Independently testing the windowing and FFT

modules may not be necessary because they will never function independently from one

another in the Decimator. Testing the two systems together will yield the overall

performance of the two blocks as they will be operating when implemented within the

Decimator.

There will be two measures of accuracy to determine the performance of the

windowing filter and the FFT algorithm as they operate together in the FPGA. The first

57

measure is the spectral peak error. The signal that will be analyzed is a complex wave

with a carrier at +15 MHz. This means there will be one large spectral peak carrier signal.

The ratio between the error of the VHDL and Matlab implementations and the power of

the transmitted signal will show the amount of error at the peak of the transmitted signal.

This is an important measurement since many of the measurements taken from a spectrum

analyzer involve spectral peak values. The second measure of accuracy is mean error,

where the average difference between the VHDL implementation and the Matlab

implementation is calculated. The ratio between the power of the transmitted signal and

the average error of the VHDL implementation is then calculated to present the results in

Decibels. These two measurements will be performed at window and FFT lengths of 512,

2048, and 8192 to determine the affect of point size on these algorithm migrations. The

point sizes will be used to represent the entire range of point sizes the Decimator is capable

of handling.

Figure 3.5 shows the system level layout of the two blocks implemented in VHDL.

The input data and windowing coefficients must be supplied when simulating the system.

The input data will be obtained in the simulation by reading captured Decimator data from

a text file. The window coefficients will be generated in Matlab and truncated to 16-bit

values. The window coefficients will then be loaded into a block RAM that simulates the

shared RAM on the Decimator. The VHDL testbench can then obtain input samples of

real and imaginary data in real time while the window filter and FFT process the correct

samples of data based on their control signals.

58

Spectral output of the FFT will be written to a text file that can be analyzed in Matlab.

The Decimator displays the magnitude of the spectral data, so the real and imaginary

output must be processed by Equation (3.1) before it can be displayed. Calculating the

magnitude can be done on the microcontroller to save FPGA hardware resources. This

choice also brings about two major benefits; namely, the output of the FFT can be scaled

back to its actual level, and the required calculations to obtain the magnitude of I and Q

samples can both be performed using 32-bit floating point precision.

Magnitude=I 2Q2 (3.1)

3.5.1 Block Floating Point (BFP) Versus 32-bit Floating Point

The microcontroller is simulated using Matlab since both operate using 32-bit

floating point arithmetic. The output of the FFT core must be represented using 16-bits.

The blk_exp variable is incremented each time there is an overflow in one of the butterfly

calculations. The results of the Xilinx FFT core will be passed to the microcontroller for

further processing, which achieves benefits that were mentioned earlier. The FFT results

in the microcontroller may be expanded from their 16-bit representation to their actual

59

Figure 3.5: Window filter and FFT system level layout.

representation by multiplying each spectral bin by 2blk_exp . This expansion makes the

results of the Xilinx FFT core comparable with the Matlab FFT results since they have the

same scale.

3.5.2 16-bit Fixed Point Versus 32-bit Floating Point

A fully fixed point FFT simulation will be run for comparison with the previously

mentioned BFP FFT implementation. Implementing the fixed point FFT core requires a

pre-determined scaling schedule to be set in order to prevent butterfly overflows. The

scaling schedule that will be used is one bit (1-bit) per stage (butterfly). This is a fairly

aggressive setting to mitigate overflows, but it is necessary unless more advanced

knowledge about the input data is known. The results of the 16-bit fixed point FFT

implementation will be compared with the BFP results and the 32-bit floating point results.

The hardware usage for the fixed point FFT core will also be presented in the hardware

usage section of the results.

60

CHAPTER 4 : PRESENTATION of the RESULTS

4.1 Introduction

The system level designs for each part of this thesis were outlined in Chapter 3.

Testing methodologies were also outlined to verify the functionality and performance of

the outlined systems. The focus of this chapter is to present the results that were obtained

from the previously described simulations and discuss whether the results are in line with

the system requirements of the Decimator. At the conclusion of this chapter, there should

be a full understanding of the designs that were implemented, how the designs were tested,

and how well each design performed.

4.1.1 Stat Sources of Error

4.1.1.1 Coefficient Estimate Accuracy

There is always some error when calculating averages based on a finite data set.

Performing the simulation described in Section 3.2.2.1 allowed the determination of the

number of samples necessary to obtain accurate coefficient estimates. Figures 4.1 and 4.2

depict the number of samples used to calculate the coefficients versus the error in the

estimates. It is clear that using more samples yields a more accurate estimate. The gain

and phase estimates converge similarly, and it does not appear that more data is required

by one method than another to obtain an accurate result.

61

One of the important observations the simulation is that the results do not converge to

62

Figure 4.1: Error of gain coefficient estimate with respect to number of samples used.

Figure 4.2: Error of phase coefficient estimate with respect to number of samples used.

zero. There is always a small error present in the estimate regardless of the number of

samples used to calculate the estimates. There is little to no benefit using more than

150,000 samples for both gain and phase estimates. The simulations show acceptable

estimates are produced by using 100,000 samples. Choosing a point close to the corner of

the exponential curve is not prudent. Doing so could possibly compromise the accuracy of

the estimates because real transmitted signals may not converge quite as quickly as the

random data that was generated. Using 154,354 samples, the gain estimate average is off

by 0.029532 dB and the phase estimate average is off by 0.148969°.

4.1.1.2 32-Bit Floating Point Stat Performance

CAPTURE 1) Decimator_Time_Uncal The first data capture that was analyzed was

taken from an early version of the Decimator. It exhibits more gain error than is found in

the current version of the Decimator. This section discusses the performance of Stat, not

63

Figure 4.3: Capture 1 – Error visualized using best fit line estimate.

the Decimator, so the data still provides meaningful results. An x-y scatter plot of 1000

samples of the capture is seen in Figure 4.3. The 'x' markers indicate data points from the

original received data. The circle serves as a reference point since it is perfectly round.

Ideally, the received samples should be symmetrical about the circle.

It is clear that the received samples deviate from the circle because of both noise and I

and Q imbalances. The dashed line in Figure 4.3 is a best-fit estimate of the received

samples. The spectrum of the received data is seen in Figure 4.4. This zoomed view of

the spectrum of the received signal shows that there is an imbalance between the two

channels. Using 200,000 samples, Stat estimates the gain error to be 0.4940 dB, and the

phase error to be 2.9586° in this capture.

Figure 4.5 shows the scatter plot of the received data before and after the correction

64

Figure 4.4: Capture 1 – Spectral peaks before correction.

coefficients have been applied. The corrected data matches with the reference circle

whereas the original data showed a deviation from the reference circle, as shown in Figure

4.3. To visualize the gain imbalance, a zoomed spectral view of the capture is shown in

Figure 4.6. Using the Root Mean Squared (RMS) values of the two channels yields an

imbalance estimate of 0.4940 dB, which is the same as the estimate yielded by Stat.

The correction coefficients estimated by Stat were quite accurate When the

correction coefficients were applied to the data the gain and phase errors were greatly

reduced. The imbalance between the corrected signals is 0.0253 dB, which is an

improvement of 0.4687 dB. Stat estimates the imbalance between the corrected signals to

be 0.0253 dB as well. The phase imbalance of the received data is 2.9586° according to

Stat, and it becomes -0.0000813° after correction for an improvement of 2.95852°. This

Matlab simulation shows that Stat functioned effectively for this captured data.

65

Figure 4.5: Capture 1 - PSK modulated data with significant imbalances.

CAPTURE 2) CW512Samples+5 The second capture was obtained from a current

version of the Decimator, which has significantly reduced gain imbalances as compared to

the older version that was used for the first capture. Figure 4.7 shows a plot of the original

received data, along with the corrected Stat estimation and a reference circle. The capture

is of PSK modulated sine waves at 5 MHz above the center frequency. Figure 4.7 shows

that there is less imbalance present in this capture than there was in the first capture. Stat

estimates a gain imbalance of 0.0702 dB and a phase imbalance of -2.1949°. The gain is

considerably more accurate in this capture than it was with capture 1.

66

Figure 4.6: Capture 1 - Spectral peaks after correction.

Correcting the captured data and re-evaluating the errors yielded improved results.

The new gain imbalance is 0.0067 dB and the phase imbalance is 0.00007136°. These are

improvements of 0.0635 dB and 2.1948°, respectively. Once again, Stat corrected much of

the error that was introduced by the RF receiver.

CAPTURE 3) CW+15 The third capture was also obtained from a current version of

the Decimator. Figure 4.8 shows a plot of the original received data, along with the

corrected Stat estimation and a reference circle. The capture is of PSK modulated sine

waves at 15 MHz above the center frequency. The gain imbalance of the capture is 0.0985

dB and the phase imbalance is -0.3843°.

67

Figure 4.7: Capture 2 - PSK modulated received data.

After applying the correction coefficients, the gain imbalance improved to

0.00075114 dB and the phase imbalance improved to 0.00002459°. These are

improvements of 0.09775 dB and 0.38432°, respectively.

Several other data captures were analyzed similarly to the ones described above. The

results of these other captures functioned acceptably and no notable deviations in the

performance of Stat were observed.

In conclusion, Stat operates well in a 32-bit floating point environment and is able to

improve imbalanced data by at least a factor of 10. In several cases Stat improved the data

by much more than a factor of 10. Figure 4.9 outlines the results obtained from the

various Decimator data capture simulations.

68

Figure 4.8: Capture 3 - PSK modulated received data.

Capture Number Gain Improvement (dB) Phase Improvement (°)
1 0.4687 2.9585
2 0.0635 2.1948
3 0.0978 0.3844

Figure 4.9: Data capture results summary.

4.1.1.3 Fixed Point Precision Affect on Stat

The VHDL and Matlab implementations of Stat were simulated using the same data

to determine the performance degradation that will occur by implementing Stat in the

FPGA. The correction coefficients were varied while the same data set was passed

through the two Stat implementations. The arrangement allows for the direct comparison

of the two simulations and indicates whether the FPGA correction differs from the Matlab

correction simulations.

69

Figure 4.10: Spectral peak error comparison between Matlab and Xilinx ISE simulation.

1 2 3 4 5 6 7 8
-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Spectral Peak Correction: 32-bit Float VS 16-bit Fixed

32-bit Float Error
16-bit Fixed Error

Trial Run Number

E
rro

r (
dB

)

Figure 4.10 displays the results obtained from the Xilinx ISE and Matlab simulations.

The generated data was corrupted with a different set of correction coefficients in each

trial and the spectral peak error was used as a measure of how well the corrections

performed. Clearly the Stat algorithm is not adversely affected by the implementation

hardware. While there is some error present with each trial, the important point to note is

that the Matlab and Xilinx ISE simulations performed nearly the same. Empirically, the

results deviate from each other by an average of 0.002656 dB. The amount of error

introduced into the system from the fixed point arithmetic of the FPGA must therefore be

negligible because the differences between the two simulations are so minimal. It can be

concluded that the Matlab simulations presented previously provide a fairly accurate

representation of how well Stat will function in the FPGA.

4.1.1.4 Arcsin Affect on Phase Estimates

The phase errors typically found in the Decimator are well under +/- 4°. Even in

70

Figure 4.11: Arcsin Affect on Phase Coefficient Estimate

Capture 1, where the data was obtained from an older version of the Decimator, the phase

error is less than 3°. The results of this simulation are shown in Figs. 4.11 and 4.12. For

phase errors less than 4°, the difference in phase estimates is negligible. The Arcsin

function begins to alter the results of the estimator equations when the phase error is above

4°. At 5° the difference between the two estimates is about 1 dB, and at 10° the difference

is 4.57 dB. These results show that the error of the phase estimate increases exponentially

when the Arcsin is not used. The difference between the two estimators is quite minimal

when kept under 5°. The results of this simulation show that phase errors of 20° introduce

a considerable amount of error in the phase coefficient estimate. It is not clear from these

results how the 20° level was chosen in [13] to be the appropriate cutoff for Eq. (2.22).

The simulations confirm the suggestion in [13] to remove the Arcsin from the phase

coefficient estimation equation in order to conserve hardware resources. This conclusion

71

Figure 4.12: Error introduced in phase coefficient from not using Arcsin.

can be drawn based on the fact that phase errors in the front end receiver components in

the Decimator are typically much less than 5°, and errors under 5° contribute very little

error to the coefficient estimate.

4.1.2 VHDL Resource Requirements

The resource requirements of the VHDL programmed Stat algorithms are quite low

for all areas except one; 18 x 18 multipliers. Figure 4.13 depicts the resource requirements

for the current Decimator implementation as well as the additional resources that would be

used by the Stat I and Q imbalance correction module. It is apparent that the I and Q

imbalance module would fit in the Spartan 3 1500 alongside the current Decimator code.

The only concern with the Stat correction module is that it uses 5 of the total 32 18 x 18

multipliers on the FPGA. This means there would be 11 18 x 18 multipliers available on

72

Figure 4.13: Stat I and Q Imbalance VHDL Resource Requirements.

Slices Slice Ffs 4-Input LUTs Block RAMs 18x18 Multipliers
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

xc3s1500-4-fg320 stat I/Q Imbalance FPGA Resource Usage
IQ Imbalance
IADC

Resource Type

%
 U

se
d

the FPGA for other algorithms and future development.

4.1.3 Speed Requirements

The Decimator operates at 65 MHz near the front end of the Decimator where the

Stat module would be implemented. This means Stat must operate at least at 65 MHz to

be implemented seamlessly into the received data processing chain. The synthesis report

for the Stat module shows its maximum operating speed to be 64.574 MHz at a speed

grade of -4. This is close to the required speed, but it is not sufficiently close. The present

design of the I and Q correction module is not fast enough and will require modification to

make it viable for the Decimator.

Figure 3.1 should be reviewed in an attempt to locate the bottleneck in the I and Q

imbalance VHDL model. The “Channel Select” block acts as a switch and has a fairly

simple design. The subsequent gain and phase multiplications are straight forward and are

capable of operating at much higher speeds than 65 MHz, so the problem is most likely not

due to any of these operations. The “Multiply Accumulate” block could possibly be the

problem, but given its low level nature, this is unlikely. The most likely culprit is the

“State Machine” because there are a number of signals that drive the case statements in it.

Reviewing the HDL Synthesis report confirms these suspicions. The report indicates

that there is a latch in the “Multiply Accumulate” block and that it may be causing timing

problems. Even more critical are the warnings regarding the Synthesis of the “State

Machine.” According to the Xilinx ISE Synthesis report:

“INFO:Xst:2371 - HDL ADVISOR - Logic functions respectively driving the

data and gate enable inputs of this latch share common terms. This situation

will potentially lead to setup/hold violations and, as a result, to simulation

73

problems. This situation may come from an incomplete case statement (all

selector values are not covered). You should carefully review if it was in your

intentions to describe such a latch.”

This statement is an obvious red flag that indicates a flaw in the VHDL code. Although

the I and Q imbalance code simulated fine, it does not synthesize properly because the

timing of the system has been so adversely affected by the inferred latch. Correcting the

“State Maching” block is necessary before proceeding with further system integration.

4.2 Windowing and the Fast Fourier Transform (FFT)

4.2.1 Simulation Results

A number of simulations were performed using the same data capture that has a

carrier wave at 15 MHz above the baseband. Results were obtained from both the Xilinx

ISE Simulator and from Matlab. The simulations varied the type of window that was used

and the length of the window and FFT calculation that was performed. These results

display the error that can be attributed directly to the migration of these algorithms from

the floating point microcontroller to the fixed point FPGA. The microcontroller is

equivalent to the Matlab 32-bit floating point results, and the FPGA is equivalent to the

Xilinx ISE 16-bit fixed point results.

4.2.1.1 Block Floating Point (BFP) Versus Floating Point

The first set of simulations compares the error introduced by the window filter and

FFT core when the FFT core is implemented using BFP arithmetic. Figure 4.14 displays

the results of the simulation where the error is the average deviation in Decibels between

the fixed and floating point simulation results.

74

Figure 4.15 presents a similar comparison to that shown in Figure 4.14, however, only

the error of the peak spectral bin is evaluated. It is important to evaluate the peak spectral

bin because many of the measurements taken by the Decimator are of the peaks of

transmitted signals. It is clear that Figs. 4.14 and 4.15 appear to be similar, but it is also

important to note the magnitude of the error associated with each point on the graphs. The

spectral peak errors are much larger than the average spectral error which means there is

an above average error present at the peaks generated by the fixed point hardware. This is

a drawback associated with fixed point hardware but is still relatively insignificant.

75

Figure 4.14: Average FFT bin error VS length of FFT.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

Mean Error VS FFT Length

Rectangular
FlatTop
BlackmanHarris
Hanning
Hamming

FFT Length

M
ea

n
E

rr
or

 (d
B

)

Figures 4.14 and 4.15 have similar shapes to the graphs. An initial conclusion might

be to assume that the FlatTop and BlackmanHarris 512 point simulations are erroneous,

and that the others are correct. Upon further study of the spectrums of the simulation

results, it is apparent that the FlatTop and BlackmanHarris 512 point simulations are most

likely the correct results and the others are erroneous. Figure 4.16 shows the results of the

2048 point FlatTop windowed and FFTed data produced by the Xilinx and Matlab

simulations. While the results of the FlatTop and BlackmanHarris 512 point Xilinx

simulations compare quite accurately to their Matlab counterparts, the other simulations

look similar to those shown in Figure 4.16. The Xilinx results contain an added erroneous

signal that creates a spectral arc near the 15 MHz carrier wave. The results for the other

76

Figure 4.15: Carrier peak error VS length of FFT.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

Spectral Peak Error VS FFT Length

Rectangular
FlatTop
BlackmanHarris
Hanning
Hamming

FFT Length

E
rr

or
 (d

B
)

simulations are similar, however the arc becomes narrower with higher point sizes.

The spectral error as displayed in Figure 4.16 is either caused by the windowing

module that was developed, or by the Xilinx FFT core that was used for the simulations.

To determine where the error was originating, the output of the Xilinx window filter was

put through the Matlab FFT. The results are similar to those in Figure 4.16 which means

the error is caused by the window filter designed for the FPGA. It is not known why this

error is created only with certain windows and at certain point lengths. Reviewing the

Synthesis report did not yield any indications of an ill-designed block. Troubleshooting

the VHDL window filter will have to be a topic of further study.

The rectangular window in both Figs. 4.14 and 4.15 displays significantly lower error

values than their Hamming and Hanning windowed counterparts while maintaining a

77

Figure 4.16: Window and FFT calculated results: Matlab vs Xillinx.

similar shape. Although a large error has been discovered in the results of the window

filter block, the differences between the rectangular window and the Hamming and

Hanning windows ought to provide some insight into the performance of the Xilinx ISE

simulations. Incoming data samples are multiplied by one and passed to the FFT because

the rectangular window contains only ones as coefficients. This results is little to no

rounding error being introduced by the window filter.

The error that is present in the rectangular window simulations is entirely due to the

FFT calculation and the newly discovered error in the design of the window block.

Comparing the values of the rectangular window simulations with their Hamming and

Hanning counterparts, it is quite possible that the majority of the increased error in the

simulation was introduced by the window filter, and not the FFT. As an example, the

Hamming 2048 point simulation had on average 6.263 times the amount of error of the

rectangular 2048 point simulation. This means the average amount of error introduced by

the window filter stage of the hardware is over six times as much as the FFT stage of the

hardware. Therefore, the dominant source of error by migrating the windowing and FFT

algorithms to the FPGA will most likely come from the window filter. Of course, the

design flaw in the window filter means that this conclusion cannot be formally verified.

4.2.1.2 Fixed Point Versus BFP and Floating Point

The simulation comparing fixed point versus BFP and floating point is identical to the

one discussed previously in Section 4.2.1.1 except it includes results obtained from a fixed

point FFT implementation in Xilinx ISE. By comparing the BFP results to the fixed-point

results, the loss in precision by using fixed-point arithmetic over BFP were apparent.

78

Figure 4.17 displays the results of the simulations with the measure of error being

mean deviation from the 32-bit floating point arithmetic results in Decibels. As predicted

the fixed-point introduces a significant amount of extra error into the results of the

windowed and FFT calculated data. The 8192 length FFTs display some telling results. In

both cases the error introduced by the fixed point FFT arithmetic increased the total system

error by a factor of about three. This means that the error attributed only to the fixed point

FFT could potentially be twice that of the error introduced by the BFP FFT.

79

Figure 4.17: Loss of precision caused by BFP and fixed point arithmetic in the FFT.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

Mean Error: Block Floating Point and Fixed Point

FlatTop Fixed
FlatTop
BlackmanHarris
BlackmanHarris
Fixed

FFT Length

M
ea

n
E

rro
r (

dB
)

Figure 4.18 displays the 2048-point FlatTop window results of the BFP and Fixed-

point FFT core. The noise that is added to the system from the fixed-point scaling

schedule in the FFT is quite evident. Most notable is the loss in dynamic range of the FFT

when using fixed-point arithmetic. The fixed-point results bottom out at about 74 dB,

whereas the BFP results are able to resolve spectral data down to 30 dB. This is a

substantial loss in precision. The scaling schedule should help to quantify the reason for

this loss in precision and dynamic range. For a 2048 fixed-point FFT, such as what was

processed in Figure 4.18, there is a possible bit growth of 11-bits. The bit growth will

occur if there is an overflow caused by each butterfly in the FFT. The scaling schedule

that was used in this simulation was one bit per stage. The results of the FFT then need to

80

Figure 4.18: Block floating point VS fixed point FFT implementation. 2048-point

FlatTop window.

be scaled by 211 to be comparable to floating-point results. By contrast, the BFP FFT is

sufficiently intelligent to only scale after a butterfly when an overflow has occurred. At

the end of the FFT, the blk_exp indicates how many bits were lost during the FFT

processing. The blk_exp variable was 5 for this simulation, which means using the fixed

point pre-determined scaling schedule truncated 6-bits of data unnecessarily.

It was discussed previously that each extra bit used to represent the input and output

data of an FFT theoretically increases the dynamic range by about 6 dB. A rough estimate

of the loss of dynamic range experienced by the fixed point scaling result seen in Figure

4.18 is found by multiplying the unnecessary loss of bits by the affect each bit has on

dynamic range. Therefore, 6 dB /bit∗6 bits=36dB . Figure 4.18 shows a loss of 36 dB

between the smallest signal in the BFP simulation and the smallest signal in the scaled

fixed point simulation. Although the actual and theoretical values are equal, it cannot be

concluded that the theoretical prediction is 100% accurate at determining dynamic range

[25]. The estimate has provided a good indication of the loss of dynamic range in this

case.

The performance improvement by using BFP is certainly apparent from the

simulations that were performed. Of course, the tradeoff in using BFP arithmetic in the

FFT is an increase in hardware resource usage. The tradeoff will be discussed in the

hardware usage section that follows.

4.2.2 Hardware Usage

Migrating the window filter and FFT algorithms has proved to be functionally viable,

however, limited FPGA resources make these changes impossible to implement. Figure

4.19 shows the percentage of total FPGA resources needed for each FFT architecture type

81

along with the developed window filter. The “IADC” bar at the far right of each category

indicates the percentage of FPGA resources that are currently used by the Decimator.

Successfully migrating the windowing and FFT algorithms to the FPGA requires adding

one of the first four bars in each column with the “IADC” bar without exceeding 100%

resource usage in any column.

The “Block RAMs” column of Figure 4.19 shows the limiting factor of migrating

these algorithms to the FPGA. The current Decimator implementation utilizes 50% of the

available block RAMs on the Spartan 3 1500 but all FFT implementations require at least

56% of the block RAMs on the FPGA. As such, migrating the FFT algorithm to the FPGA

is impossible.

A possible solution to this problem is to reduce the maximum point size of the FFT

core to 4096. The window filter and FFT core were again instantiated and synthesized

using 4098 as the maximum point size supported in order to provide verification of this

82

Figure 4.19: Windowing and FFT Resource Usage

Slices Slice Ffs 4-Input LUTs Block RAMs 18x18 Multipliers
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

xc3s1500-4-fg320 FPGA Resource Usage

Radix-2 Lite, Burst I/O
Radix-2, Burst I/O
Radix-2, Burst I/O,
Fixed
Radix-4, Burst I/O
IADC

Resource Type

%
 U

se
d

point. While most of the resource requirements stayed near previous synthesis reports, the

number of block RAMs dropped to 9. This reduction of block RAMs by half would allow

the FFT to fit in the current Xilinx Spartan 3 chip. Unfortunately the loss of the 8192

window and FFT calculation would be required for the windowing and FFT operations to

be implemented in the FPGA.

The additional hardware requirements of the BFP over the fixed-point arithmetic in

the FFT are quite minimal. As Figure 4.19 shows, the only resource that the BFP core uses

more of than the fixed-point core is 4-input LUTs. The increase in 4-input LUTs is

minimal. The number of slices, block RAMs, and 18 x 18 multipliers all either remain the

same or increases a negligible amount. Slice flip flop usage is actually less in the BFP

FFT core implementation. Given the increase in precision that was shown previously in

Section 4.2.1.2 and the minimal change in FPGA resource requirements, it is concluded

that BFP ought to be used when implementing the FFT core in the FPGA.

4.2.3 Speed Requirements

The signal processing in the Decimator operates at 65 MHz, therefore the window

filter and FFT core must operate at least at this frequency to avoid a more complex

integration into the Decimator. According to the synthesis results, the window and FFT

blocks can operate at a maximum frequency of 99.463 MHz at a speed grade of -4. This

maximum speed remained constant despite varying the FFT architecture and various other

FFT settings. The synthesis report for the FFT core that was reduced to a 4096 maximum

point size also reported this same speed. Therefore the window filter and FFT core should

be more than capable of handling the 65 MHz clock in the signal processing section of the

Decimator.

83

CHAPTER 5 : CONCLUSIONS and RECOMMENDATIONS

5.1 Introduction

This thesis has focused on several key issues relating to a SED Systems product

called the Decimator. The first issue that was evaluated was whether or not it is possible to

correct the I and Q imbalance that is present in the analog RF receiver. The I and Q

imbalance error is one of the main sources of error in the Decimator, and as such, a method

of improving this error was sought. A general overview of the problem was presented, and

a suitable solution was found. The statistical I and Q imbalance correction algorithm

known as “Stat” was implemented in VHDL and in Matlab, and was simulated to verify its

performance in both of these architectures.

The second issue this thesis dealt with was the migration of two key signal processing

algorithms from the on-board microcontroller to the on-board FPGA. The first signal

processing algorithm that was migrated was the window filter. The window filter currently

implemented in the microcontroller was used as a reference design and a similar

instantiation of it was coded in VHDL. The second algorithm migration that was reviewed

was the FFT. Like the window filter, it was desired for the FFT processing to occur in the

FPGA rather than the microcontroller. While migrating these algorithms was desired for

speed and future consideration reasons, the microcontroller provides a 32-bit floating point

environment in which to perform these calculations. The FPGA, on the other hand, is

inherently fixed point in its arithmetic. Both algorithms were implemented in VHDL and

were simulated to help quantify the loss in precision that would occur if these algorithms

were migrated to the FPGA.

84

5.2 I and Q Imbalance

The I and Q correction scheme that was evaluated is called Stat. The results of the

simulations all showed that Stat is a viable option for correcting front-end receiver error.

The main issue that was discovered during the simulations is that the current VHDL

implementation of Stat cannot operate at the target speed of 65 MHz. The reasons for this

behavior is most likely due to the implementation of the “State Machine” block.

According to the synthesis report there were unintended latches in the design. Latches

often adversely affect the timing of a block. Removing the latches in the design of the

“State Machine” block would undoubtedly improve the maximum speed to well above the

65 MHz target speed.

An issue for further study is the response of Stat to transmitter I and Q imbalances.

This thesis has only exposed the correction algorithm to imbalances originating in the RF

receiver. Stat was not implemented and tested with the intent to correct transmitter I and Q

imbalances. There will most likely be instances where the Decimator is exposed to I and

Q imbalances that have originated in the transmitter. Therefore, quantifying the correction

ability of Stat with imbalances that originated in the transmitter would certainly be

beneficial.

5.3 Windowing

The basic window filter design in the microcontroller was used to develop a VHDL

window filter. The design performs most of the processing in the FPGA, but still obtains

its coefficients from the microcontroller. The window filter that was designed seemed to

operate properly, but later turned out to be introducing a substantial error into the

processed signals. The cause of this error was not determined. Without a fully operational

85

window block in VHDL, comparing the Matlab and Xilinx simulations is inconsequential.

One suggestion is that rounding be implemented rather than truncating, which may be

adding a bias to the resultant windowed signal.

5.4 Fast Fourier Transform (FFT)

The Xilinx FFT core was evaluated as a possible solution to the FFT migration to the

FPGA. The Xilinx FFT core offers a variety of settings to make it viable in a number of

different applications. Each architecture was implemented and simulated. The results of

these simulations showed that there would be a minute change in the fixed-point precision

error introduced into the system from the FFT. From a performance standpoint, the Xilinx

FFT core would operate fast enough and accurately enough to perform well in the

Decimator.

The number of block RAMs required for the lightest FFT architecture, Radix-2 Lite,

exceeds the number that are available in the Spartan 3 1500 FPGA. The only way to

reduce the number of required block RAMs is to reduce the maximum point size of the

FFT to 4096. The Decimator currently handles point sizes up to 8192, so reducing the

maximum available point size in order to migrate the FFT to the FPGA is an undesired

consequence. An area of future study is whether there are any other available FFT cores

that are free and would fit in the Spartan 3 1500. If there are no available FFT cores that

meet the block RAM constraints in the Spartan 3 1500, it may be possible to design and

implement a fully custom FFT that fits the requirements of the Decimator.

5.5 Conclusions

This thesis has focused on several issues related to the performance and

86

implementation of a device called the Decimator. From theory to bit accurate simulations,

these issues have been thoroughly investigated and meaningful conclusions have been

drawn from their results. The results of this thesis should provide SED Systems Ltd with

meaningful data to be of assistance with decision processes related to changes to the next

revision of the Decimator.

As is the case with all research, many venues were not fully explored and many new

questions came to light as a result of the research. While this thesis fell short of fully

integrating the described changes in the Decimator, many key questions regarding the

implementation of these changes have been answered. This thesis would undoubtedly be

of value to anyone working to improve the described issues in either the Decimator or in

any other similar system.

87

References

[1] A. V. Oppenheim and R. W. Schafer with J. R. Buck, Discrete-Time Signal Processing,

2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[2] A. V. Oppenheim and A. S. Willsky with S. H. Nawab, Signals & Systems, 2nd ed.

Upper Saddle River, NJ: Prentice Hall, 1997.

[3] P. P. Vaidyanathan, Multirate Systems and Filter Banks, 1st ed. Upper Saddle River,

NJ: Prentice Hall, 1993.

[4] A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th

ed. New York, NY: McGraw-Hill, 2002.

[5] M. Valkama and M. Renfors and V. Koivunen, “Advanced Methods for I/Q Imbalance

Compensation in Communication Receivers,” IEEE Transaction on Signal

Processing, Vol. 49, No. 10, pp. 2335-2344, October 2001.

[6] E. Cetin, I. Kale, and R. C. S. Morling, “Adaptive Digital Receivers for Analog Front-

End Mismatch Correction,” IEEE VTS 54th Vehicular Tech. Conf. (VTC 2001 Fall),

vol. 4, pp. 2519-2522, 2001.

[7] E. Cetin, S. Demirsoy, I. Kale, and R. Morling, “Efficient FPGA Implementation of an

Adaptive IQ-Imbalance Corrector for Communication Receivers Using Reduced

Range Multipliers,” Proc. European Signal Processing Conference (EUSIPCO '05).

Sept. 2005.

[8] P. Rykaczewski and F. Jondral, “Blind I/Q Imbalance Compensation in Multipath

Environments,” Proc. Int. Symp. Circuits and Systems, 2007. (ISCAS'07), New

Orleans, LA, pp. 29-32, May 2007.

[9] A. J. Bell and T. J. Sejnowski, “An Information-Maximisation Approach to Blind

Separation and Blind Deconvolution,” Neural Computation, Vol. 7, No. 6, pp. 1129-

1159, 1995.

[10] K. Torkkola, “Blind Separation of Convolved Sources Based on Information

88

Maximization,” IEEE Workshop Neural Networks for Signal Processing, Kyoto,

Japan, pp. 423-432, Sept 4-6, 1996.

[11] A. Celik, M. Stanacevic, and G. Cauwenberghs, “Mixed-Signal Real-Time Adaptive

Blind Source Separation,” Proc. Int. Symp. Circuits and Systems (ISCAS'04),

Vancouver, Vol 5, pp. 760-763, May 2004.

[12] F. Harris, S. Parekh, I. Gurantz, “I-Q Balancing Techniques for Broadband

Receivers,” in 2005 Software Defined Radio Technical Conference (SDR),

Proceedings, Hyatt Regency, CA, USA, Nov. 2005.

[13] M. Kocic, L. Martinot, Z. Zvonar, “Signal Processing Techniques for EDGE Wireless

Modem,” The Int'l Conference on “Computer as a Tool” (EUROCON '05), Belgrade,

Vol 1, pp. 131-134, Nov. 2005.

[14] P. Rykaczewski, M. Valkama, M. Renfors, and F. Jondral, “Non-Data-Aided I/Q

Imbalance Compensation Using Measured Receiver Front-End Signals,” in Proc. 17th

Annual IEEE Int'l Symp. On Personal Indoor and Mobile Radio Communications

(PIMRC), Helsinki, Finland, pp. 1-5, Sept. 2006.

[15] G. Gil, “Nondata-Aided I/Q Mismatch and DC Offset Compensation for Direct-

Conversion Receivers,” IEEE Trans. On Signal Proc., Vol 56, No. 7, pp. 2662-2668,

July 2008.

[16] L. Anttila and M. Valkama and M Renfors, “Blind Moment Estimation Techniques for

I/Q Imbalance Compensation in Quadrature Receivers,” IEEE Int. Symp. on Personal,

Indoor and Mobile Radio Comm. (PIMRC'06), Helsinki, pp. 1-5, Sept. 2006.

[17] L. Anttila and M. Valkama and M Renfors, “Circularity-Based I/Q Imbalance

Compensation in Wideband Direct-Conversion Receivers,” IEEE Transactions on

Vehicular Technology, Vol. 57, No. 4, pp. 2099-2113, July 2008.

[18] N. Moseley, and C. Slump, “A Low-Complexity Feed-Forward I/Q Imbalance

Compensation Aalgorithm.” In 17th Annual Workshop on Circuits, Veldhoven, The

Netherlands. pp. 158-164, Nov. 23-24 2006.

[19] M. Windisch and G. Fettweis, “On the Performance of Standard-Independent I/Q

89

Imbalance Compensation in OFDM Direct-Conversion Receivers,” Proceedings of

9th International OFDM Workshop (InOWo’04), Dresden, pp.57-61, Sept. 2004.

[20] M. Windisch and G. Fettweis, “Blind Estimation and Compensation of I/Q Imbalance

in OFDM Receivers with Enhancements through Kalman Filtering,” IEEE/SP 14th

Workshop on Statistical Signal Processing, pp.754-758, August 2007.

[21] Xilinx Inc., “Fast Fourier Transform v5.0 LogiCORE: Product Specification,”

document DS260, October 10, 2007.

[22] A. Oppenheim, and C. Weinstein, “Effects of Finite Register Length in Digital

Filtering and the Fast Fourier Transform,” Proceedings of the IEEE, Vol. 60, No. 8,

pp. 957-976, 1972.

[23] A. Mitra, “On Finite Wordlength Properties of Block-Floating-Point Arithmetic,” Int.

Journal of Signal Processing, Vol. 2, No. 2, pp. 120-125, 2006.

[24] E. O. Bringham, and L. R. Cecchini, “A Nomogram for Determining FFT System

Dynamic Range,” IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP '77), Vol. 21977, pp. 623-627, 1977.

[25] D. Formenti, “S&V Questions and Answers: Dynamic Range,” Sound and Vibration,

pp. 2-3, May 1999.

[26] Q. H. Nguyen, and I. Kollar, “Limited Dynamic Range of Spectrum Analysis Due to

Roundoff Errors of the FFT,” IEEE Instrumentation and Measurement Technology

Conference (IMTC '93), Irvine, CA, pp. 47-50 May 18-20, 1993.

[27] W. Chang, and T.Q. Nguyen, “On the Fixed-Point Accuracy Analysis of FFT

Algorithms,” IEEE Trans. On Signal Processing, Vol. 56, No. 10, pp. 4673-4682, Oct.

2008.

[28] X. Huang, “On Transmitter Gain/Phase Imbalance Compensation at Receiver,” IEEE

Communications on Letters, Vol. 4, No. 11, pp. 363-365, November 2000.

[29] J. J. de Witt and G. van Rooyen, “A Blind I/Q Imbalance Compensation Technique for

Direct-Conversion Digital Radio Transceivers,” IEEE Transactions on Vehicular

Technology, Vol. 58, Issue 4, pp. 2077-2082, May 2009.

90

	CHAPTER 1 : INTRODUCTION
	1.1 General
	1.2 The Decimator
	1.3 Known Decimator Issues
	1.3.1 I/Q Imbalance

	1.4 Other Decimator modifications
	1.4.1 Windowing
	1.4.2 Fast Fourier Transform

	1.5 Decimator Modification Overview
	1.6 Summary
	1.7 Thesis Outline

	CHAPTER 2 : LITERATURE REVIEW AND THEORY
	2.1 Introduction
	2.2 Direct Conversion Receivers
	2.3 I/Q Imbalance
	2.4 I/Q Imbalance Correction Schemes
	2.4.1 Non-Data-Aided (NDA) Correction Schemes
	2.4.1.1 Blind Source Separation (BSS)
	2.4.1.2 Interference Cancellation (IC)
	2.4.1.3 Adaptive Methodologies Summary
	2.4.1.4 Statistical Correction Method (“Stat”)
	2.4.1.5 Other Statistical Correction Schemes

	2.4.2 Data-Aided (DA) Correction Schemes
	2.4.3 I and Q Imbalance Conclusions

	2.5 Windowing
	2.5.1 Finite Register Length

	2.6 Fast Fourier Transform (FFT)
	2.6.1 FFT Background
	2.6.1.1 Decimation-in-Time (DIT) Algorithms
	2.6.1.2 Decimation-in-Frequency (DIF) Algorithms
	2.6.1.3 FFT Radix Size

	2.6.2 Finite Register Lengths
	2.6.2.1 Full Precision Unscaled
	2.6.2.2 Scaled Fixed Point
	2.6.2.3 Block Floating Point (BFP)

	2.6.3 Dynamic Range

	CHAPTER 3 : RESEARCH PROGRAM / METHODOLOGY
	3.1 Introduction
	3.2 I and Q Imbalance
	3.2.1 Stat Design Overview
	3.2.2 Stat Sources of Error
	3.2.2.1 Coefficient Estimate Accuracy
	3.2.2.2 32-Bit Floating Point Stat Performance
	3.2.2.3 Fixed Point Precision Affect on Stat
	3.2.2.4 Arcsin Affect on Phase Estimates

	3.2.3 Stat Resource Usage

	3.3 Windowing
	3.4 Fast Fourier Transform (FFT)
	3.4.1 Xilinx FFT Core

	3.5 Windowing and FFT VHDL Simulation
	3.5.1 Block Floating Point (BFP) Versus 32-bit Floating Point
	3.5.2 16-bit Fixed Point Versus 32-bit Floating Point

	CHAPTER 4 : PRESENTATION of the RESULTS
	4.1 Introduction
	4.1.1 Stat Sources of Error
	4.1.1.1 Coefficient Estimate Accuracy
	4.1.1.2 32-Bit Floating Point Stat Performance
	4.1.1.3 Fixed Point Precision Affect on Stat
	4.1.1.4 Arcsin Affect on Phase Estimates

	4.1.2 VHDL Resource Requirements
	4.1.3 Speed Requirements

	4.2 Windowing and the Fast Fourier Transform (FFT)
	4.2.1 Simulation Results
	4.2.1.1 Block Floating Point (BFP) Versus Floating Point
	4.2.1.2 Fixed Point Versus BFP and Floating Point

	4.2.2 Hardware Usage
	4.2.3 Speed Requirements

	CHAPTER 5 : CONCLUSIONS and RECOMMENDATIONS
	5.1 Introduction
	5.2 I and Q Imbalance
	5.3 Windowing
	5.4 Fast Fourier Transform (FFT)
	5.5 Conclusions

