214 research outputs found

    Note on Marsaglia's Xorshift Random Number Generators

    Get PDF
    Marsaglia (2003) has described a class of Xorshift random number generators (RNGs) with periods 2^n - 1 for n = 32, 64, etc. We show that the sequences generated by these RNGs are identical to the sequences generated by certain linear feedback shift register (LFSR) generators using "exclusive or" (xor) operations on n-bit words, with a recurrence defined by a primitive polynomial of degree n.

    Randomness Quality of CI Chaotic Generators: Applications to Internet Security

    Full text link
    Due to the rapid development of the Internet in recent years, the need to find new tools to reinforce trust and security through the Internet has became a major concern. The discovery of new pseudo-random number generators with a strong level of security is thus becoming a hot topic, because numerous cryptosystems and data hiding schemes are directly dependent on the quality of these generators. At the conference Internet`09, we have described a generator based on chaotic iterations, which behaves chaotically as defined by Devaney. In this paper, the proposal is to improve the speed and the security of this generator, to make its use more relevant in the Internet security context. To do so, a comparative study between various generators is carried out and statistical results are given. Finally, an application in the information hiding framework is presented, to give an illustrative example of the use of such a generator in the Internet security field.Comment: 6 pages,6 figures, In INTERNET'2010. The 2nd Int. Conf. on Evolving Internet, Valencia, Spain, pages 125-130, September 2010. IEEE Computer Society Press Note: Best Paper awar

    An experimental exploration of Marsaglia's xorshift generators, scrambled

    Full text link
    Marsaglia proposed recently xorshift generators as a class of very fast, good-quality pseudorandom number generators. Subsequent analysis by Panneton and L'Ecuyer has lowered the expectations raised by Marsaglia's paper, showing several weaknesses of such generators, verified experimentally using the TestU01 suite. Nonetheless, many of the weaknesses of xorshift generators fade away if their result is scrambled by a non-linear operation (as originally suggested by Marsaglia). In this paper we explore the space of possible generators obtained by multiplying the result of a xorshift generator by a suitable constant. We sample generators at 100 equispaced points of their state space and obtain detailed statistics that lead us to choices of parameters that improve on the current ones. We then explore for the first time the space of high-dimensional xorshift generators, following another suggestion in Marsaglia's paper, finding choices of parameters providing periods of length 21024−12^{1024} - 1 and 24096−12^{4096} - 1. The resulting generators are of extremely high quality, faster than current similar alternatives, and generate long-period sequences passing strong statistical tests using only eight logical operations, one addition and one multiplication by a constant

    Improving random number generators by chaotic iterations. Application in data hiding

    Full text link
    In this paper, a new pseudo-random number generator (PRNG) based on chaotic iterations is proposed. This method also combines the digits of two XORshifts PRNGs. The statistical properties of this new generator are improved: the generated sequences can pass all the DieHARD statistical test suite. In addition, this generator behaves chaotically, as defined by Devaney. This makes our generator suitable for cryptographic applications. An illustration in the field of data hiding is presented and the robustness of the obtained data hiding algorithm against attacks is evaluated.Comment: 6 pages, 8 figures, In ICCASM 2010, Int. Conf. on Computer Application and System Modeling, Taiyuan, China, pages ***--***, October 201

    A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking

    Full text link
    In this paper, a new chaotic pseudo-random number generator (PRNG) is proposed. It combines the well-known ISAAC and XORshift generators with chaotic iterations. This PRNG possesses important properties of topological chaos and can successfully pass NIST and TestU01 batteries of tests. This makes our generator suitable for information security applications like cryptography. As an illustrative example, an application in the field of watermarking is presented.Comment: 11 pages, 7 figures, In WISM 2010, Int. Conf. on Web Information Systems and Mining, volume 6318 of LNCS, Sanya, China, pages 202--211, October 201

    Note on Marsaglia's Xorshift Random Number Generators

    Get PDF
    Marsaglia (2003) has described a class of Xorshift random number generators (RNGs) with periods 2n - 1 for n = 32, 64, etc. We show that the sequences generated by these RNGs are identical to the sequences generated by certain linear feedback shift register (LFSR) generators using "exclusive or" (xor) operations on n-bit words, with a recurrence defined by a primitive polynomial of degree n
    • 

    corecore