32,626 research outputs found

    Reverse-Safe Data Structures for Text Indexing

    Get PDF
    We introduce the notion of reverse-safe data structures. These are data structures that prevent the reconstruction of the data they encode (i.e., they cannot be easily reversed). A data structure D is called z-reverse-safe when there exist at least z datasets with the same set of answers as the ones stored by D. The main challenge is to ensure that D stores as many answers to useful queries as possible, is constructed efficiently, and has size close to the size of the original dataset it encodes. Given a text of length n and an integer z, we propose an algorithm which constructs a z-reverse-safe data structure that has size O(n) and answers pattern matching queries of length at most d optimally, where d is maximal for any such z-reverse-safe data structure. The construction algorithm takes O(n ω log d) time, where ω is the matrix multiplication exponent. We show that, despite the n ω factor, our engineered implementation takes only a few minutes to finish for million-letter texts. We further show that plugging our method in data analysis applications gives insignificant or no data utility loss. Finally, we show how our technique can be extended to support applications under a realistic adversary model

    Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

    Full text link
    Given a graph GG and a parameter kk, the Chordal Vertex Deletion (CVD) problem asks whether there exists a subset UV(G)U\subseteq V(G) of size at most kk that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161log58k)O(k^{161}\log^{58}k), and asked whether one can design a kernel of size O(k10)O(k^{10}). While we do not completely resolve this question, we design a significantly smaller kernel of size O(k12log10k)O(k^{12}\log^{10}k), inspired by the O(k2)O(k^2)-size kernel for Feedback Vertex Set. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution

    A randomized polynomial kernel for Subset Feedback Vertex Set

    Get PDF
    The Subset Feedback Vertex Set problem generalizes the classical Feedback Vertex Set problem and asks, for a given undirected graph G=(V,E)G=(V,E), a set SVS \subseteq V, and an integer kk, whether there exists a set XX of at most kk vertices such that no cycle in GXG-X contains a vertex of SS. It was independently shown by Cygan et al. (ICALP '11, SIDMA '13) and Kawarabayashi and Kobayashi (JCTB '12) that Subset Feedback Vertex Set is fixed-parameter tractable for parameter kk. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where SS is a set of edges. In a first step we show that Edge Subset Feedback Vertex Set has a randomized polynomial kernel parameterized by S+k|S|+k with O(S2k)O(|S|^2k) vertices. For this we use the matroid-based tools of Kratsch and Wahlstr\"om (FOCS '12) that for example were used to obtain a polynomial kernel for ss-Multiway Cut. Next we present a preprocessing that reduces the given instance (G,S,k)(G,S,k) to an equivalent instance (G,S,k)(G',S',k') where the size of SS' is bounded by O(k4)O(k^4). These two results lead to a polynomial kernel for Subset Feedback Vertex Set with O(k9)O(k^9) vertices

    On Minimum Average Stretch Spanning Trees in Polygonal 2-trees

    Full text link
    A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. We consider the problem of computing a minimum average stretch spanning tree in polygonal 2-trees, a super class of 2-connected outerplanar graphs. For a polygonal 2-tree on nn vertices, we present an algorithm to compute a minimum average stretch spanning tree in O(nlogn)O(n \log n) time. This algorithm also finds a minimum fundamental cycle basis in polygonal 2-trees.Comment: 17 pages, 12 figure
    corecore