6,033 research outputs found

    Quasi-Cyclic Asymptotically Regular LDPC Codes

    Full text link
    Families of "asymptotically regular" LDPC block code ensembles can be formed by terminating (J,K)-regular protograph-based LDPC convolutional codes. By varying the termination length, we obtain a large selection of LDPC block code ensembles with varying code rates, minimum distance that grows linearly with block length, and capacity approaching iterative decoding thresholds, despite the fact that the terminated ensembles are almost regular. In this paper, we investigate the properties of the quasi-cyclic (QC) members of such an ensemble. We show that an upper bound on the minimum Hamming distance of members of the QC sub-ensemble can be improved by careful choice of the component protographs used in the code construction. Further, we show that the upper bound on the minimum distance can be improved by using arrays of circulants in a graph cover of the protograph.Comment: To be presented at the 2010 IEEE Information Theory Workshop, Dublin, Irelan

    Decoding of Convolutional Codes over the Erasure Channel

    Full text link
    In this paper we study the decoding capabilities of convolutional codes over the erasure channel. Of special interest will be maximum distance profile (MDP) convolutional codes. These are codes which have a maximum possible column distance increase. We show how this strong minimum distance condition of MDP convolutional codes help us to solve error situations that maximum distance separable (MDS) block codes fail to solve. Towards this goal, we define two subclasses of MDP codes: reverse-MDP convolutional codes and complete-MDP convolutional codes. Reverse-MDP codes have the capability to recover a maximum number of erasures using an algorithm which runs backward in time. Complete-MDP convolutional codes are both MDP and reverse-MDP codes. They are capable to recover the state of the decoder under the mildest condition. We show that complete-MDP convolutional codes perform in certain sense better than MDS block codes of the same rate over the erasure channel.Comment: 18 pages, 3 figures, to appear on IEEE Transactions on Information Theor

    Decoding of MDP Convolutional Codes over the Erasure Channel

    Full text link
    This paper studies the decoding capabilities of maximum distance profile (MDP) convolutional codes over the erasure channel and compares them with the decoding capabilities of MDS block codes over the same channel. The erasure channel involving large alphabets is an important practical channel model when studying packet transmissions over a network, e.g, the Internet

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    On the Minimum Distance of Generalized Spatially Coupled LDPC Codes

    Get PDF
    Families of generalized spatially-coupled low-density parity-check (GSC-LDPC) code ensembles can be formed by terminating protograph-based generalized LDPC convolutional (GLDPCC) codes. It has previously been shown that ensembles of GSC-LDPC codes constructed from a protograph have better iterative decoding thresholds than their block code counterparts, and that, for large termination lengths, their thresholds coincide with the maximum a-posteriori (MAP) decoding threshold of the underlying generalized LDPC block code ensemble. Here we show that, in addition to their excellent iterative decoding thresholds, ensembles of GSC-LDPC codes are asymptotically good and have large minimum distance growth rates.Comment: Submitted to the IEEE International Symposium on Information Theory 201

    Quantum convolutional data-syndrome codes

    Full text link
    We consider performance of a simple quantum convolutional code in a fault-tolerant regime using several syndrome measurement/decoding strategies and three different error models, including the circuit model.Comment: Abstract submitted for The 20th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2019

    Concatenation of convolutional and block codes Final report

    Get PDF
    Comparison of concatenated and sequential decoding systems and convolutional code structural propertie

    Good Concatenated Code Ensembles for the Binary Erasure Channel

    Full text link
    In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.Comment: To appear in IEEE Journal on Selected Areas in Communications, special issue on Capacity Approaching Code
    • …
    corecore