2,208 research outputs found

    When Hillclimbers Beat Genetic Algorithms in Multimodal Optimization

    Full text link
    It has been shown in the past that a multistart hillclimbing strategy compares favourably to a standard genetic algorithm with respect to solving instances of the multimodal problem generator. We extend that work and verify if the utilization of diversity preservation techniques in the genetic algorithm changes the outcome of the comparison. We do so under two scenarios: (1) when the goal is to find the global optimum, (2) when the goal is to find all optima. A mathematical analysis is performed for the multistart hillclimbing algorithm and a through empirical study is conducted for solving instances of the multimodal problem generator with increasing number of optima, both with the hillclimbing strategy as well as with genetic algorithms with niching. Although niching improves the performance of the genetic algorithm, it is still inferior to the multistart hillclimbing strategy on this class of problems. An idealized niching strategy is also presented and it is argued that its performance should be close to a lower bound of what any evolutionary algorithm can do on this class of problems

    When hillclimbers beat genetic algorithms in multimodal optimization

    Get PDF
    This paper investigates the performance of multistart next ascent hillclimbing and well-known evolutionary algorithms incorporating diversity preservation techniques on instances of the multimodal problem generator. This generator induces a class of problems in the bitstringdomain which is interesting to study from a theoretical perspective in the context of multimodal optimization, as it is a generalization of the classical OneMax and TwoMax functions for an arbitrary number of peaks. An average-case runtime analysis for multistart next ascent hill-climbing is presented for uniformly distributed equal-height instances of this class of problems. It is shown empirically that conventional niching and mating restriction techniques incorporated in an evolutionary algorithm are not sufficient to make them competitive with the hillclimbing strategy. We conjecture the reason for this behaviour is the lack of structure in the space of local optima on instances of this problem class, which makes an optimization algorithm unable to exploit information from one optimum to infer where another optimum might be. When no such structure exist, it seems that the best strategy for discovering all optima is a brute-force one. Overall, our study gives insights with respect to the adequacy of hillclimbers and evolutionary algorithms for multimodal optimization, depending on properties of the fitness landscape.info:eu-repo/semantics/publishedVersio

    Autonomous virulence adaptation improves coevolutionary optimization

    Get PDF

    GNBG: A Generalized and Configurable Benchmark Generator for Continuous Numerical Optimization

    Full text link
    As optimization challenges continue to evolve, so too must our tools and understanding. To effectively assess, validate, and compare optimization algorithms, it is crucial to use a benchmark test suite that encompasses a diverse range of problem instances with various characteristics. Traditional benchmark suites often consist of numerous fixed test functions, making it challenging to align these with specific research objectives, such as the systematic evaluation of algorithms under controllable conditions. This paper introduces the Generalized Numerical Benchmark Generator (GNBG) for single-objective, box-constrained, continuous numerical optimization. Unlike existing approaches that rely on multiple baseline functions and transformations, GNBG utilizes a single, parametric, and configurable baseline function. This design allows for control over various problem characteristics. Researchers using GNBG can generate instances that cover a broad array of morphological features, from unimodal to highly multimodal functions, various local optima patterns, and symmetric to highly asymmetric structures. The generated problems can also vary in separability, variable interaction structures, dimensionality, conditioning, and basin shapes. These customizable features enable the systematic evaluation and comparison of optimization algorithms, allowing researchers to probe their strengths and weaknesses under diverse and controllable conditions

    Econometric and Environmental Optimization of Combined Cooling, Heating and Power Plant Operation

    Get PDF
    Combined Cooling, Heat and Power (CCHP) systems have great potential to recover low-grade thermal energy, resulting in higher energy efficiency, reduced emission rates, lower operating costs and a higher level of energy security. In order to fully realize the benefits of CCHP systems in terms of reduced cost and carbon dioxide emissions, effective optimization and control strategies are required. This work presents an approach for optimizing the operation of the CCHP system using a detailed network energy flow model solved by genetic algorithm. The optimal energy dispatch algorithm provides operational signals associated with resource allocation ensuring that the systems meet campus electricity, heating, and cooling demands. The performance of the system will be compared and evaluated with respect to economic and environmental benefits
    corecore