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ABSTRACT 
 

Combined Cooling, Heating and Power (CCHP) systems have great potential to recover low-grade thermal energy, 

resulting in higher energy efficiency, reduced emission rates, lower operating costs and a higher level of energy 

security. Effective optimization and control strategies are required to fully realize the benefits of CCHP systems in 

terms of reduced cost and carbon dioxide emissions. This work presents an approach for optimizing the operation of 

a campus CCHP system using a detailed network energy flow model solved by a genetic algorithm. The optimal 

energy dispatch algorithm provides operational signals associated with resource allocation ensuring that the systems 

meet campus electricity, heating, and cooling demands. The performance of the CCHP system is compared and 

evaluated in terms of economic and environmental benefits. This gives the decision maker more flexibility to 

examine and make clear judgement on the trade-offs involved between conflicting objectives for providing efficient 

and clean energy during the planning horizon. Example optimizations on cost and carbon dioxide emissions (CDE) 

were performed for a 24-hour period with known cooling, heating, and electricity demand on Purdue’s main 

campus, and based on actual real time prices (RTP) for purchasing electricity. The results suggest there exists a 

potential cost savings up to 14% when optimized for cost, and emissions reduction up to 30% when optimized for 

CDE compared to the current CCHP operation. Sensitivity of the optimized results to the cost of purchased 

electricity and CO2 emissions factor were performed to illustrate the operational switch between steam and electric 

driven components that occurs for optimal operation.  

  

1. INTRODUCTION 
 

Combined Cooling, Heating and Power (CCHP) systems, also known as trigeneration systems are very promising 

for distributed energy generation due to their higher energy conversion efficiency resulting in energy savings and 

consequent cost and emission reduction. These systems include different components relating to energy conversion, 

recovery and management with wide-ranging operational strategies to cater to multiple energy demands. It is very 

complex to effectively design optimal control strategies because of the stochastic behavior of energy loads and fuel 

prices, various component designs, diverse dynamic response characteristics at various time-scales, and operational 

limitations, as well as the mutual dependency of energy components. The potential benefits of CCHP systems can be 

assessed based on different aspects: 1) thermodynamics (maximum energy efficiency, minimum fuel consumption, 

minimum irreversibility), 2) economics (minimum operational cost), and 3) environmental (emissions reduction). 

Linear, nonlinear, mixed integer or evolutionary algorithms are used to find optimal solutions in terms of the above-

mentioned aspects to control and operate CCHP systems. Several analyses have been performed on cost oriented 

optimization; however, they do not reflect the implications related to environmental effects.  
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Environmental economic dispatch could be treated as a single objective optimization problem by treating gas 

emissions as a constraint with a permissible limit or by expressing pollution damage costs due to the emissions 

(Ahmadi and Dincer, 2010), or by using weighted sum methods (Bracco et al. 2013). However, it becomes very 

difficult to interrelate several objectives of different natures properly, thereby making the objective function lose its 

significance (Deb, 2001). Few papers have been published on optimizing the energetic, economic, and 

environmental impact objectives simultaneously using multi objective models (Shi et al., 2013 and Kavvadias and 

Maroulis, 2010). The interaction among different objectives gives rise to a set of compromised solutions, largely 

known as the trade-off, nondominated, noninferior or Pareto-optimal solutions. As a result, weights are applied by 

the decision maker to make a tradeoff between the criteria. The process is time consuming and sometimes, not all 

solutions are generated and important solutions can be overlooked in this method. 

 

Genetic algorithms have provided effective approaches for solving CCHP optimization problems due to their ability 

to handle functions containing non-linearities and both discrete and continuous decision variables. A few papers 

have been published on optimizing the economic and environmental performances of CCHP systems using genetic 

algorithms with weighted sum methods (Wang et al., 2010), and by the non-dominated Pareto-optimal approach 

(Guo et al., 2013). For most evolutionary algorithms, constraint handling becomes an important issue, where the 

methods used to handle the constraints always have a deep impact on the quality of the solutions obtained. A 

deterministic network flow model effectively illustrates the electric and thermal energy flows, energy supply and 

demand in the CCHP system and helps in building the constraints. Cho et al. (2009 & 2010) presented a network 

flow model for the optimization of a CCHP system based on operational cost, primary energy consumption and 

carbon dioxide emissions using linear programming.  

 

A well operated CCHP system should balance economical savings as well as net emission of pollutants. This paper 

is an extension and improvement of Ramaraj et al. (2016) where the economic and environmental performances of 

the CCHP system at Purdue were analyzed and compared based on a cost optimization. In the current paper, the 

deterministic network energy flow model of the CCHP system was optimized based on both operational cost and 

carbon dioxide emissions using a genetic algorithm. The energy dispatch algorithm provides control signals to the 

operation of CCHP components in two levels: the outermost supervisory control determines the equipment to be 

operated based on the energy (thermal and electric) demand, and in turn, the inner layer of associated components 

(pumps, fans, cooling tower and other auxiliaries) are activated. Results from the simulation are presented in the 

paper to demonstrate how optimizing one parameter affects the other. This gives the decision maker more flexibility 

to examine and make a clear judgement on the trade-offs involved between conflicting objectives for providing 

efficient and clean energy during the planning horizon. An example optimization on cost and carbon dioxide 

emissions (CDE) was performed for a 24-hour period with known cooling, heating, and electricity demand for the 

campus, and based on actual real time prices (RTP) for purchasing electricity. Simulations are extended for different 

electric, heating and cooling load scenarios of Purdue’s campus to examine the feasibility of the optimization 

algorithm for real-time operation. The sensitivity of the optimized results to purchased electricity cost and CO2 

emissions factor were analyzed to determine the operational switch between steam and electric driven components.  

 

2. CONTROL STRATEGY AND OPTIMIZATION SCHEME 
 

2.1 Energy Flow of CCHP system 
In this study, the CCHP operation of the Wade power plant at Purdue University is considered. Detailed information 

on the energy flow and operation of the power plant is described in Ramaraj et al. (2016). The CCHP system 

contains separate components for heating, cooling and electricity production to meet the campus energy 

demand. The steam generated from three natural gas boilers and one coal boiler is used for campus heating, 

power generation, chilled water production and in-plant auxiliary component usage. High pressure steam from the 

boilers is extracted from a combination of turbines and pressure reducing valves at different pressure levels (600 

psig, 125 psig and 15 psig) to run the necessary equipment and associated auxiliary components to produce adequate 

heating, cooling and power. Chilled water is produced using three steam driven chillers and a total of 10 electric 

chillers (four electric chillers at Wade power plant and six electric chillers at the Northwest Chiller plant). 

Electricity is generated using two steam turbine generators and the remainder is purchased from local electric 

utility to meet the campus electricity demand and to operate the other electric driven components within the 

power plant. Apart from these major components, there is other auxiliary equipment such as boiler fans, feed water 
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pumps, chilled water pumps, system pumps and cooling tower fans and pumps that are activated depending on the 

major components to which they are linked. These auxiliary components are driven by steam or electricity or both.  

 

2.2 Network Flow Model 
A deterministic network flow model connecting the supply to demand was developed based on the energy flows of 

steam and electricity for the Purdue CCHP system (Ramaraj et al., 2016). The network flow model for the CCHP 

system is depicted in Figure 1. The network flow model illustrates the interactions between electric and thermal 

energy flows through the components and the nodes in this network represent sources of energy and energy demand 

points. Mass and energy conservation has been applied to develop the energy dispatch algorithm in conjunction with 

the network flow model. It can be seen that the demand drives the activation of individual components throughout 

the network. Control of the CCHP system is realized through a hierarchical paradigm. The outermost supervisory 

control layer determines which components should be operating (on/off states) depending on the fuel cost and 

electric, cooling, and heating energy demands, together with the energy flow and efficiency constraints of each 

component. Depending on the results of this outer layer, the inner layer of component controllers activates other 

auxiliary equipment associated with the major components in the CCHP system. The thermal and electrical demand 

of campus is met by the combination of all components in the plant.  

 

 
 

Node B: Boilers Xs,b: Steam from boilers Etg: Electricity generated from turbine generators 

Node 600, 125, 15: 600, 125, 15 psig steam line Xs,tg: Steam to turbine generators EEc: Electricity to electric chillers 

Node: A: Auxiliaries Xs,tgo: Steam from turbine generators CEc: Cooling capacity from electric chillers 

Node TG: Turbine generators Xs,prv: Steam from /to PRV CSchr: Cooling capacity from steam chillers 

Node F-B: Steam driven fan of the boiler Xs,WSchr: Steam to steam chillers H: Heating capacity from 125/15 psig steam line 

Node FWP: Steam driven feed water pumps Xs,125l: 125 psig steam to campus SSf: Steam from/to steam driven F-B 

Node CWP: Steam driven chilled water pumps Xs,15l: 15 psig steam to campus SSfwp: Steam from/to steam driven FWP 

Node PRV: Pressure reducing valve XE: Electricity purchased SScwp: Steam from/to steam driven CWP 

Node EC: Electric chillers  Saux: Steam to auxiliaries 

Node C: Steam chillers  NG: Natural Gas 

Node 125#, 15#: Steam  line to campus   

Node EP: Electricity purchased   

Node DE, DC, DH: Electricity, Cooling, Heating demand  

Figure 1: Network energy flow model (Ramaraj et al., 2016). 

 

2.3 Optimization framework 
The network energy flow model described in the previous section facilitates setting up the objectives and 

constraints. Given the electrical and thermal (heating and cooling) load behavior of campus, the tariff structure for 

grid-supplied electricity, the price of primary fuel (e.g., natural gas & coal), the operating strategy and 

characteristics of the CCHP system, and an assumed set of installed CCHP system capacities (e.g., installed capacity 

of boilers, chillers and generators), operation of the CCHP plant in response to economic and environmental 

objectives can be analyzed.   The nomenclature for optimization of the CCHP plant operation is defined in Table 1.   
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The first objective function is to minimize the operational cost of running the CCHP system while satisfying the 

total energy demand:   

Minimize 
3

,
1

Cost( ) * * *C E E purNG NG C
i

fx c f c c x


    (1) 

The objective function for the algorithm shown in equation (1) can be modified to minimize the amount of carbon 

dioxide emissions (CDE) as: 

Minimize 
3

,
1

CDE( ) * * *C E E purNG NG C
i

fx e f e e x


    (2) 

Here the fuel consumption of natural gas and coal are the functions of their respective boiler steam loads. Since 

carbon dioxide is the main emission from the system, and is the primary contributor to global warming, it is 

regarded as the objective function to be minimized. 

  

Two types of constraints are considered in this problem, i.e. equality and inequality constraints. The former are the 

energy balance constraints while the latter constraints reflect the limits on heating, cooling and power generated by 

each unit. Equations (3)-(18) represent mass and energy balances across each node in Figure 1 and the impacts of 

those decisions on the supply of energy to meet the campus energy demands. 

 

, 1 , 2 , 3 , 4 , 1 , 2 2 4 , 1 1(1) S b S b S b S b S tg S tg Sfwp WScwp Sf Sf a S prv auxh x x x x x x s s s s x s             (3) 

, 1 , 2 4 , 1 , 1 , 2 , 3 1 4 , 2 ,125 2
(2)

S tg ao S tg ao Sfwp WScwp Sf a S prv S WSchr S WSchr S WSchr Sf Sf b S prv S l aux
h x x s s s x x x x s s x x s               (4) 

, 2 1 2 4 , 2 ,15 3
(3)

S tg bo Sf Sf Sf b S prv S l aux
h x s s s x x s        (5) 

, ,E , 1 , 2 , 3 , 4
(4)

W Sfwp W fwp S b S b S b S b
h x x x x x x       (6) 

, 1 , 1 , 1
(5)

S tg S tg ao S tg bo
h x x x    (7) 

, 2 , 2 , 2
(6)

S tg S tg ao S tg bo
h x x x    (8) 

 
, 1 1 , 2 2 , 3 3 , 4 4

, 1 , 2 , 3 , 4 600

(7) * * * *

*

S b b S b b S b b S b b

S b S b S b S b

h x h x h x h x h

x x x x h

   

   

 
(9) 

 
, 1 1 , 2 2 4 4

, 1 1 , 1 , 2 4 , 1 125

(8) * * * * *

* *

S tg ao tg ao S tg ao tg ao Sfwp Sfwp WScwp WScwp Sf a Sf a

S prv prv S tg ao S tg ao Sfwp WScwp Sf a S prv

h x h x h s h s h s h

x h x x s s s x h

    

      

 
(10) 

 
, 2 2 1 1 2 2 4 4 , 2 2

, 2 1 2 4 , 2 15

(9) * * * * *

*

S tg bo tg bo Sf Sf Sf Sf Sf b Sf b S prv prv

S tg bo Sf Sf Sf b S prv

h x h s h s h s h x h

x s s s x h

    

    

 
(11) 

,125 125(10) h lh D H   (12) 

,15 15
(11)

h l
h D H   (13) 

1 2 3(12) c EchrSchr Schr Schrh D CC C C     (14) 

, 1 2
(13)

e E pur tg tg
h D x E E     (15) 

where, 

125 125 ,125*l S lH h x  ; 
15 15 ,15*l S lH h x   (16) 

3

,

1

* *Schr S WSchr WSchr

i
Schr

cop x hC


 
;

E, E,* *Echr Echr WEchr Echr NWEchrC cop x cop x   
(17) 

1 ,1 tg1a , 1 ,1 tg1b , 1* * * *
tg tg S tg tg S tg boE h x h x     ; 

2 ,2 tg2 , 2 ,2 tg2b , 2* * * *
tg tg a S tg tg S tg boE h x h x      (18) 

 

Additional inequality constraints deal with peak capacity limitations of the components. The characteristic curves of 

all the components were determined from power plant operational data and/or manufacturer’s data. Lower and upper 

bounds on the decision variables are given as inputs to the model. Table 1 gives the list of decision variables and 

parameters used in this energy dispatch algorithm. The CCHP model is complex and involves 22 design variables 

with 13 equality constraints and 14 inequality constraints. This optimization problem has a non-linear objective 

function with linear and nonlinear, equality and inequality constraints and strong coupling to the three energy 

demand components (electricity, heating and cooling). Some of the design variables are continuous while others are 

discrete. Because of the multimodal and discontinuous nature of this problem, a genetic algorithm (GA) was chosen 
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as the solution methodology. Detailed explanation of the constrains and implementation of the genetic algorithm 

along with the energy dispatch algorithm is illustrated in Ramaraj et al. (2016). 

Table 1: Decision variables and other parameters 

Decision variables  Parameters 

E,NWEchrx

 

Electricity to North West electric 

chillers (kW) Cc  Fuel cost of Coal ($/ST) Cf  Amount of Coal consumed 

(ST) 

,E purx  Electricity purchased from utility 

(kW) E
c  

Cost of electricity purchased 

($/kWh) NGf  Amount of Natural Gas 

consumed (DTH) 

E,WEchrx

 

Electricity to Wade electric chillers 

(kW) NGc  Fuel cost of Natural Gas ($/DTH) 125H  Amount of heating provided by 

125 psig steam (kW) 

S,bx  Steam output from each boiler 

(kg/s) EchrC  Cooling capacity from electric 

chillers (kW) 15H  Amount of heating provided by 

15 psig steam (kW) 

,125S lx

 

125psig  Steam output to campus 

(kg/s) SchrC  Cooling capacity from steam 

chillers (kW) 
h  Enthalpy (kJ/kg) 

,15S lx  15psig  Steam output to campus 

(kg/s) 
Echrcop

 

Coefficient of performance of 

electric chillers (-) tgh  Enthalpy change across turbine 

generator (kJ/kg) 

,S prvx  Steam input to pressure reducing 

valve (kg/s) 
Schrcop

 

Coefficient of performance of 

steam chillers (-) WSchrh  Enthalpy change across turbine 

of steam chillers (kJ/kg) 

,S tgx  Steam input to turbine generator  

(kg/s) cD  Cooling Demand (kW) 125lh  Enthalpy change across 125 

psig steam line (kJ/kg) 

,S tgaox

 

Steam output  from stage 1 of  

turbine generator (kg/s) eD  Electricity Demand (kW) 15lh  Enthalpy change across 15 psig 

steam line (kJ/kg) 

,S tgbo
x

 

Steam output  from stage 2 of  

turbine generator (kg/s) hD  Heating Demand (kW) auxs  
Steam input to auxiliaries 

(kg/s) 

,S WSchrx

 

Steam input to Wade steam chillers 

(kg/s) Ce  Emissions factor of Coal (metric 

tons CO2/ST) Scwps  Steam input to steam-driven 

chilled water pump (kg/s) 

,EW fwpx

 

Water input to electric feedwater 

pump (kg/s) E
e  

Emissions factor of electricity 

purchased (metric tons CO2/kWh) Sfs  Steam input to steam-driven 

fan (kg/s) 

,W Sfwpx

 

Water input to steam-driven 

feedwater pump (kg/s) NGe  Emissions factor of Natural Gas 

(metric tons CO2/DTH) Sfwps  Steam input to steam-driven 

feedwater pump (kg/s) 

  tgE  Electricity generated by turbine 

generator (kW) 
tg  Turbine generator efficiency (-) 

 

2.4 Data required and assumptions for the model 
Data required for the CCHP cost and carbon dioxide emissions optimizations and performance evaluations that were 

available from Purdue Physical Facilities for this study are listed as follows: 

• Hourly load (demand) data of Purdue campus for electricity, heating, and cooling  

o End-use loads vary by application type, building size, location, season, work week, and hour 

• Utility electricity prices 

• Price of on-site fuel (e.g., natural gas, coal) 

• CO2 emission factors for natural gas, coal and purchased electricity 

• Range of “effective” operation of CCHP components for a given installed capacity 

 

3. SIMULATION RESULTS 

3.1 Single day simulation results 
An example optimization was performed for a 24-hour period with known cooling, heating, and electricity demand 

for the campus, and based on actual real time prices (RTP) for purchasing electricity. An hourly interval is assumed 

and no dynamics are considered in the plant modeling. Figure 2(a) represents thermal and electrical demand and 

Figure 2(b) shows the real-time price of electricity on Wednesday, 20th April, 2016. The price of natural gas is 

assumed to be 3.00 $/DTH and the cost of coal is 70.80 $/ST, which includes the cost of limestone, ash handling and 

so on. The CO2 emission factor for circulating fluidized bed coal is 2.33 metric tons CO2/ST and for natural gas is 

0.053 metric tons CO2 /DTH (U.S. Environmental Protection Agency, 2015). For Indiana, the emission factor for 

purchased electricity is 0.00089 metric tons CO2/kWh (85% of electricity is from coal, 8% from natural gas and 7% 

from other sources) and 6% transmission and distribution losses are considered (U.S. Energy Information 

Administration, 2018). These details were provided as inputs to the 24-hour model to compare the optimal 

performance with respect to cost and CDE with the actual operation of the plant. 
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(a) (b) 

Figure 2(a): Energy demand of Purdue campus; (b): Real time electricity price. 

 

Figure 3 compares the cost optimization and CDE optimization results with results determined using the end-use 

decisions from the actual plant data (e.g., electricity produced, electricity purchased, steam produced in each boiler, 

chilled water from electric chiller, chilled water from steam chillers) as inputs to the model to estimate total 

operational cost and CO2 emissions for the current control. From Figure 3(a), it can be seen that the total operational 

cost is significantly less for cost optimized control compared to current practices or CDE optimized control for most 

hours of the day.  It is also interesting to note that carbon dioxide emissions for cost optimized control are significant 

lower than current practice, as shown in Figure 3(b).  However, these results also show that significantly greater 

reductions in emissions are possible when employing CDE optimization.  Figure 3(c) shows comparisons of 

electricity produced and purchased for the actual operation with the cost and CDE optimum results. The optimum 

results predict that more electricity should be generated compared to the actual operation to meet the total electrical 

demand. However, the optimum still leads to purchasing of some electricity during peak hours of the day. Figure 

3(d) shows comparisons of cooling capacity produced by steam chillers and electric chillers. In the actual operation 

and CDE optimization, all the campus cooling demand was satisfied with the electric chillers. The cost optimum 

results predict the usage of both electric and steam chillers to meet the campus cooling load especially when the 

demand is high. Figure 3(e) shows the total amount of steam produced in the boilers for the actual operation and 

optimal results. It can be seen that more steam is produced in cost optimized operation with the additional steam 

used for both operation of turbine generators to generate more electricity and steam chillers. In the actual plant 

operation and CDE optimization, only two natural gas boilers were used, whereas the optimized results include the 

usage of a coal boiler along with the two natural gas boilers. The selection between coal and natural gas boilers 

depends on fuel cost, emissions factor, boiler efficiencies and their operating conditions which play a major role in 

assessing the economic and environmental benefits. The less steam production for CDE optimum contributes to 

more operational cost especially when the cooling demand is high. Table 2 gives a summary of comparisons 

between actual plant operation (reference data) and two optimized results for this 24-hour period. Cost optimization 

resulted in about 14% cost savings while CDE optimization led to almost 11% cost savings compared to the actual 

performance. The carbon dioxide emissions are reduced by about 18% when optimized for cost and 30% when 

optimized for CDE.  

Table 2: Comparison between current operation and optimized results 

For 24 Hours Plant data Cost Optimized  CDE Optimized 

Total steam produced [klb] 7254 10120 6145 

Total electricity generated [MWh] 422 847 512 

Total electricity purchased [MWh] 492 35 477 

Cooling from steam chillers [kTon-h] 0 139 0 

Cooling from electric chillers [kTon-h] 258 118 258 

Total cost of operation [$] 54006 46341 52739 

Total cost savings [$]  7665 [14.19%] 1266 [2.34%] 

Total CDE [metric tons CO2] 1320 1084 918 

Total CDE reduction [metric tons CO2]  237 [17.91%] 402 [30.45%] 
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Figure 3: (a) Total operational cost; (b) Total carbon dioxide emissions; (c): Amount of electricity generated and 

purchased; (d) Cooling capacity of steam and electric chillers; (e) Total steam produced in boilers  

 

3.2 Sensitivity to energy demand 
Simulations were performed to examine the sensitivity of the optimization results to differences in electric, heating 

and cooling demand. Variations in the energy load are primarily due to seasonal variations which depend on ambient 

temperature and worker/student schedules due to day and school session type (e.g., weekends, weekdays, holidays, 

semester, semester break, summer school, Maymester, etc). Three energy demand scenarios of Purdue’s campus for 

a particular peak hour during weekdays were considered for this case study [Case 1: high cooling load (summer), 

case 2: high heating load (winter), and case 3: high electrical demand (fall)] as shown in Table 3. The values 



 

 3649, Page 8 
 

5th International High Performance Buildings Conference at Purdue, July 9-12, 2018 

specified in the previous section were employed for the price of natural gas, coal and CO2 emissions factor for 

natural gas, coal and purchased electricity. However, the cost of purchased electricity was set as 4.50 ¢/kWh. 

 

Table 3: Purdue campus energy demand scenarios 

 Season 

School 

session 

type 

Date 

Outdoor air 

temperature 

(°F) 

Cooling Load 

kW (Tons) 
Heating Load 

kW (MMBtu/h) 
Electrical Load 

kW 

Case 1 Summer Weekday 08/30/2016 86 89354(25385) 28310(97) 29406 

Case 2 Winter Weekday 01/27/2016 26 22049(6264) 75056(256) 25495 

Case 3 Fall  Weekday 10/17/2016 75 55450(15752) 34040(116) 32432 

 

Optimization results were obtained using the two different objective functions for operational cost and CDE and are 

presented in Table 4. For the three cases considered, the total operational cost using cost optimization is 3%-5% 

lower compared to CDE optimization while the total carbon dioxide emissions using CDE optimization is 13%-15% 

lesser compared to the values from cost optimization. When the objective is cost minimization, most electricity is 

generated onsite to meet the electrical demand and hence, more steam is produced. The mutual dependency of 

electricity and steam production from the turbine generator has a limit on the electricity generated when the heating 

demand is met. The rest of the electricity is purchased in this case. However, when the objective function is with 

respect to CDE, use of the coal boiler is avoided and electricity is purchased to meet electrical demand. Also, it is 

interesting to observe that more cost and emissions reduction is possible with case 2 where the heating demand is 

higher. This is mainly because of the maximum usage of natural gas boilers to meet the high heating demand. 

 

Table 4: Simulation results for different energy demand 

 Total operational cost 

[$] 

Carbon dioxide emissions 

[metric tons CO2] 

 Cost Optim. CDE Optim. % Difference Cost Optim. CDE Optim. % Difference 

Case 1 2663.59 2760.39 3.51% 62.74 54.43 13.25% 

Case 2 2063.97 2162.40 4.55% 50.11 42.56 15.07% 

Case 3 2408.38 2507.24 3.94% 57.37 49.10 14.42% 

 

3.3 Sensitivity to fuel price and carbon dioxide emissions factor 

The primary energy usage of the CCHP plant depends on the decisions regarding generation and/or purchasing of 

electricity in response to minimizing operational costs or CO2 emissions while also meeting the time-varying 

campus electricity, heating and cooling demands. The sensitivity of the predicted results to the cost of purchased 

electricity and CO2 emissions factor were studied and typical results are presented in this section. The campus 

energy demand for a particular hour of a summer day was used for the sensitivity analysis, where the heating 

demand, Dh, was 97MMBtu (28,310 kW), cooling demand, Dc, was 25,385Tons (89,354 kW) and the electrical 

demand, De, was 29,406 kW. The cost of coal was set as 70.80 ($/ST) and the cost of natural gas was set as 3.00 

($/DTH) for the analysis. The CO2 emission factor for coal was 2.33 metric tons CO2/ST and for natural gas was 

0.053 metric tons CO2 /DTH.   

 

For studying the effect of electricity prices, the cost of purchased electricity was varied from 0 to 10 (¢/kWh) while 

the emission factor was set as 0.00089 metric tons CO2/kWh. Figure 4 shows the cost optimization results for 

varying the cost of purchased electricity. Figure 4(a) shows that the total operational cost of the plant increases 

monotonically when the price of electricity increases. This is because some amount of electricity is purchased apart 

from generation in order to meet the total electrical demand, while satisfying the thermal demand of campus. When 

rates are above 4.20 ¢/kWh, there is an increase in the carbon dioxide emissions as shown in Figure 4(b). This is 

because more steam is produced from the coal boiler.  The selection of the coal boiler over one of the natural gas 

boilers is because of its efficiency and operational conditions. Figure 4(c) shows comparisons of electricity 

generated and purchased for the varying cost of electricity. It can be seen that a higher quantity of electricity is 

purchased at lower costs of electricity. As the price of electricity increases above 4.20 ¢/kWh, there is a reduction in 

the purchase of electricity and an increase in the generation of electricity from the turbine generator 1 (TG-1). 

However, some amount of electricity is purchased during the day to meet the electrical demand of campus and all 

electricity cannot be generated because of limited availability of steam for TG-1 due to a low campus heating 

demand. Figure 4(d) shows comparisons of cooling capacity produced by steam chillers and electric chillers over the 
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range of electricity rates. The control switches from maximizing electric chiller operation at low rates, to using 

steam chillers when rates are above 4.20 ¢/kWh in order to meet the campus cooling demand. However, Wade 

electric chillers are operated on this summer day due to a high cooling demand. From Figure 4(e), we can see that as 

the price of electricity increases, more steam is produced to meet the steam demand of the turbine generators and 

steam chillers. At lower electricity prices, some amount of steam is still produced to meet the campus heating 

demand.  Boilers 1, 2 and 3 are natural gas boilers while boiler 4 is a coal boiler. The boilers are brought online 

depending upon their efficiency at different steam loads and operating conditions. Since it is obvious that the energy 

pricing affects only the economic objective function, a CDE-based optimization was not included in this sensitivity 

study. 
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(e) 

 

Figure 4: Cost optimization results for individual hour with varied electricity purchase cost:  (a) Total operational 

cost; (b) Total carbon dioxide emissions; (c): Amount of electricity generated and purchased; (d) Cooling capacity 

of steam and electric chillers; (e) Total steam produced in boilers  
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Figure 5: CDE optimization results for varied CO2 emissions factor of purchased electricity:  (a) Total carbon 

dioxide emissions; (b) Total operational cost; (c): Amount of electricity generated and purchased; (d) Cooling 

capacity of steam and electric chillers; (e) Total steam produced in boilers  

 

However, the variation in CO2 emissions factors due the mix of electricity from various sources affects the CDE 

objective. Indiana has a major contribution of electricity from coal power plants. The mix of electricity varies 

according to the fuel source (coal, natural gas, petroleum, nuclear, renewables and other sources) which affects its 

CO2 emissions factor. For states like California and Massachusetts, the CO2 emissions factor for electricity is as low 

as 0.0004 metric tons CO2/kWh (U.S. Energy Information Administration, 2018). So, for a second case study, the 

CO2 emissions factor for electricity was varied from 0.0003 to 0.0011 metric tons CO2/kWh and the cost of 

electricity was set as 4.50 ¢/kWh. Figure 5 shows CDE optimization results for varied CO2 emissions factors of 

purchased electricity. Figure 5(a) shows that the total CDE of the plant increases monotonically when the CO2 

emissions factor increases. This is because of the contribution from purchased electricity. When the emissions factor 

is above 0.00064 metric tons CO2/kWh, there is a decrease in the operational cost of the power plant as shown in 

Figure 5(b). This is because of the reduction in electricity purchase as shown in Figure 5(c) and more steam 

generation as depicted in Figure 5(e). Figure 5(d) shows that the CO2 emissions factor doesn’t affect the 
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performance of the chillers to meet the campus cooling demand and electrical chillers are run all the time. The 

restriction on running the steam chillers is due to the limitation on the turbine generator to extract steam to meet 

campus heating demand. Only natural gas boilers are run due to the high carbon dioxide emissions from the coal 

boiler. The reduction in emissions strongly depends on the total energy consumption and the emission conversion 

factor. The sensitivity analysis gives an idea about how the cost and emission factors drive the operational switch 

between steam and electric driven components. 

 

5. CONCLUSION 

 
A non-linear genetic algorithm (GA) was applied to a detailed network energy flow model of a large CCHP system 

in order to evaluate the economic and environmental benefits of optimal operation. The optimal energy dispatch 

algorithm provides operational signals associated with resource allocation ensuring that the systems meet campus 

electricity, heating, and cooling demands. Example optimizations for cost and carbon dioxide emissions (CDE) were 

performed for a 24-hour period with known cooling, heating, and electricity demand of Purdue’s campus, and based 

on actual real time prices (RTP) for purchasing electricity. The results suggest that there is a potential to achieve 

cost savings up to 14% when optimized for cost, and emissions reduction up to 30% when optimized for CDE 

compared to the current CCHP operation. A sensitivity analysis on the cost of purchased electricity and CO2 

emissions factor demonstrates the opportunity to make operational decisions and switch between the use of steam-

driven and electricity-driven components. This analysis gives the decision maker more flexibility to examine the 

optimal results and make a clear judgement on the trade-offs involved between conflicting cost savings and CDE 

reduction objectives for efficient and clean provision of energy during a planning horizon. Future work will focus on 

developing practical implementation approaches. 

 

NOMENCLATURE 
 

c cost ($)   

C Cooling capacity of chillers (kW) 

CCHP Combined Cooling, Heating and Power 

CDE Carbon Dioxide Emissions 

CO2 Carbon dioxide    

cop Coefficient of performance (–) 

D Energy demand (kW) 

DTH Dekatherm    

e Emissions factor (metric tons CO2)   

f Amount of fuel consumed (ST/DTH) 

H Amount of heating provided (kW) 

h Enthalpy (kJ/kg) 

s Steam input (kg/s) 

ST Short Ton  

x Decision variables  

η Efficiency (-) 

 

Subscript   

C          Coal 

c          Cooling 

chr          Chiller 

e          Electricity/electric 

E Electricity/electric 

NG          Natural Gas 

S          Steam 

tg          Turbine generator 

W          Water/Wade 

125          125 psig steam line 

15          15 psig steam line 
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