9,266 research outputs found

    Robust Control Structure Selection

    Get PDF
    Screening tools for control structure selection in the presence of model/plant mismatch are developed in the context of the Structured Singular Value (μ) theory. The developed screening tools are designed to aid engineers in the elimination of undesirable control structure candidates for which a robustly performing controller does not exist. Through application on a multicomponent distillation column, it is demonstrated that the developed screening tools can be effective in choosing an appropriate control structure while previously existing methods such as the Condition Number Criterion can lead to erroneous results

    Robust control of ill-conditioned plants: high-purity distillation

    Get PDF
    Using a high-purity distillation column as an example, the physical reason for the poor conditioning and its implications on control system design and performance are explained. It is shown that an acceptable performance/robustness tradeoff cannot be obtained by simple loop-shaping techniques (using singular values) and that a good understanding of the model uncertainty is essential for robust control system design. Physically motivated uncertainty descriptions (actuator uncertainties) are translated into the H∞/structured singular value framework, which is demonstrated to be a powerful tool to analyze and understand the complex phenomena

    Stabilization of Networked Control Systems with Sparse Observer-Controller Networks

    Full text link
    In this paper we provide a set of stability conditions for linear time-invariant networked control systems with arbitrary topology, using a Lyapunov direct approach. We then use these stability conditions to provide a novel low-complexity algorithm for the design of a sparse observer-based control network. We employ distributed observers by employing the output of other nodes to improve the stability of each observer dynamics. To avoid unbounded growth of controller and observer gains, we impose bounds on their norms. The effects of relaxation of these bounds is discussed when trying to find the complete decentralization conditions

    A Fast Algorithm for Sparse Controller Design

    Full text link
    We consider the task of designing sparse control laws for large-scale systems by directly minimizing an infinite horizon quadratic cost with an 1\ell_1 penalty on the feedback controller gains. Our focus is on an improved algorithm that allows us to scale to large systems (i.e. those where sparsity is most useful) with convergence times that are several orders of magnitude faster than existing algorithms. In particular, we develop an efficient proximal Newton method which minimizes per-iteration cost with a coordinate descent active set approach and fast numerical solutions to the Lyapunov equations. Experimentally we demonstrate the appeal of this approach on synthetic examples and real power networks significantly larger than those previously considered in the literature

    Robust Loopshaping for Process Control

    Get PDF
    Strong trends in chemical engineering and plant operation have made the control of processes increasingly difficult and have driven the process industry's demand for improved control techniques. Improved control leads to savings in resources, smaller downtimes, improved safety, and reduced pollution. Though the need for improved process control is clear, advanced control methodologies have had only limited acceptance and application in industrial practice. The reason for this gap between control theory and practice is that existing control methodologies do not adequately address all of the following control system requirements and problems associated with control design: * The controller must be insensitive to plant/model mismatch, and perform well under unmeasured or poorly modeled disturbances. * The controlled system must perform well under state or actuator constraints. * The controlled system must be safe, reliable, and easy to maintain. * Controllers are commonly required to be decentralized. * Actuators and sensors must be selected before the controller can be designed. * Inputs and outputs must be paired before the design of a decentralized controller. A framework is presented to address these control requirements/problems in a general, unified manner. The approach will be demonstrated on adhesive coating processes and distillation columns

    A survey of methods for control structure design

    Get PDF
    corecore