24 research outputs found

    On the use of support vector machines for phonetic classification

    Full text link

    Syllable classification using static matrices and prosodic features

    Get PDF
    In this paper we explore the usefulness of prosodic features for syllable classification. In order to do this, we represent the syllable as a static analysis unit such that its acoustic-temporal dynamics could be merged into a set of features that the SVM classifier will consider as a whole. In the first part of our experiment we used MFCC as features for classification, obtaining a maximum accuracy of 86.66%. The second part of our study tests whether the prosodic information is complementary to the cepstral information for syllable classification. The results obtained show that combining the two types of information does improve the classification, but further analysis is necessary for a more successful combination of the two types of features

    The application of support vector machine for speech classification

    Get PDF
    For the classical statistical classification algorithms the probability distribution models are known. However, in many real life applications, such as speech recognition, there is not enough information about the probability distribution function. This is a very common scenario and poses a very serious restriction in classification. Support Vector Machines (SVMs) can help in such situations because they are distribution free algorithms that originated from statistical learning theory and Structural Risk Minimization (SRM). In the most basic approach SVMs use linearly separating Hyperplanes to create classification with maximal margins. However in application, the classification problem requires a constrained nonlinear approach to be taken during the learning stages, and a quadratic problem has to be solved. For the case where the classes cannot be linearly separable due to overlap, the SVM algorithm will transform the original input space into a higher dimensional feature space, where the new features are potentially linearly separable. In this paper we present a study on the performance of these classifiers when applied to speech classification and provide computational results on phonemes from the TIMIT database.peer-reviewe

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    Telephone speech recognition via the combination of knowledge sources in a segmental speech model

    Get PDF
    The currently dominant speech recognition methodology, Hidden Markov Modeling, treats speech as a stochastic random process with very simple mathematical properties. The simplistic assumptions of the model, and especially that of the independence of the observation vectors have been criticized by many in the literature, and alternative solutions have been proposed. One such alternative is segmental modeling, and the OASIS recognizer we have been working on in the recent years belongs to this category. In this paper we go one step further and suggest that we should consider speech recognition as a knowledge source combination problem. We offer a generalized algorithmic framework for this approach and show that both hidden Markov and segmental modeling are a special case of this decoding scheme. In the second part of the paper we describe the current components of the OASIS system and evaluate its performance on a very difficult recognition task, the phonetically balanced sentences of the MTBA Hungarian Telephone Speech Database. Our results show that OASIS outperforms a traditional HMM system in phoneme classification and achieves practically the same recognition scores at the sentence level
    corecore