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ABSTRACT 
For the classical statistical classification algorithms the 
probability distribution models are known. However, in many real 
life applications, such as speech recognition, there is not enough 
information about the probability distribution function. This is a 
very common scenario and poses a very serious restriction in 
classification. Support Vector Machines (SVMs) can help in such 
situations because they are distribution free algorithms that 
originated from statistical learning theory and Structural Risk 
Minimization (SRM). In the most basic approach SVMs use 
linearly separating Hyperplanes to create classification with 
maximal margins.  
 
However in application, the classification problem requires a 
constrained nonlinear approach to be taken during the learning 
stages, and a quadratic problem has to be solved. For the case 
where the classes cannot be linearly separable due to overlap, the 
SVM algorithm will transform the original input space into a 
higher dimensional feature space, where the new features are 
potentially linearly separable. In this paper we present a study on 
the performance of these classifiers when applied to speech 
classification and provide computational results on phonemes 
from the TIMIT database.  

Categories and Subject Descriptors 
I.5.1 [Pattern Recognition]: Models – Statistical.  

General Terms 
Algorithms, Performance, Theory. 

Keywords 
Speech recognition, Statistical Learning Theory, Support Vector 
Machine (SVM). 

1. INTRODUCTION 
In many practical learning algorithms we find many difficulties 
which manifest themselves in misclassifications during the 
learning phases[1]. Some of these complications are:  
(i) The inefficiency of the learning algorithm itself, for example, 
the convergence to a local minima in gradient-descent based 
algorithms.  
(ii) The size of the hypothesis that can become very large, thus 
requiring a large computational time making the solution 
impractical.  

(iii) The available training set can be small. In this case the 
hypothesis class will become too rich, which leads to overfitting 
and hence poor generalization performance.  
(iv) For a multidimensional search space, the learning algorithm 
requires a large number of parameters to be tuned, making the 
system difficult to use. 

Support Vector Machines are learning systems that utilize a 
hypothesis space of linear functions in the implicitly defined 
feature space, trained using an algorithm from optimization theory 
that calculates a learning bias resulting from the statistical 
learning theory. The use of a kernel function ensures that the high 
dimensional feature space is used efficiently. The overfitting 
problem in the high dimensional feature space requires a learning 
bias which can be derived from the statistical learning theory. 
Optimization theory provides a clear characterization of the 
properties of the solution which leads to the implementation of 
efficient learning algorithms and makes sure that the hypothesis is 
represented in compact form. The convex learning bias will also 
ensure that local minima are not present so a solution can always 
be found efficiently even for training sets with thousands of 
examples[1].   

The structure of this paper is as follows: In section 2 we present 
the theory behind the linear Support Vector Machine. This is 
followed by the concepts of the nonlinear Support Vector 
Machine in section 3. Finally sections 4 and 5 present some 
experimental results and a conclusion respectively. 

2. LINEAR SVM 
The reason behind using Support Vector Machines for 
classification is to find an efficient way of learning by separating 
Hyperplanes in the high dimensional feature space. The 
Hyperplanes must optimize the generalization bounds and the 
learning algorithm must be capable of dealing with thousands of 
training examples. The generalization theory gives a clear set of 
instructions on how to prevent overfitting by controlling the 
Hyperplane margin measures. Optimization theory can then be 
applied to give the necessary mathematical analysis to find the 
Hyperplanes which optimize these measures.  
The Maximal Margin Classifier is the simplest Support Vector 
Machine[1]. It is based on the linear separability of the data in the 
high dimensional feature space and thus cannot be used in many 
real life applications. The Maximal Margin Classifier forms the 
basic building block of Support Vector Machines, i.e. to find the 
most separating Hyperplane in a proper kernel-induced feature 
space. This method is implemented by using a convex 
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optimization problem, minimizing a quadratic problem under 
linear inequality constraints.  
Suppose that we have N training data points given by 

1 1 2 2( , ),( , ),...,( , )N Nx y x y x y  where the input d
ix R∈  and the 

output { 1}iy ∈ ± . The input is assigned a positive class if f(x) ≥ 0, 
and a negative class otherwise. Considering the case where f(x) is 
a linear function of x, f(x) can be written as, 

( )f x w x b= ⋅ +                                         (1) 

where ( , ) nw b R R∈ × are the parameters that control the decision 
function, and the decision rule is given by sgn(f(x)). As shown in 
Figure 1, a geometric interpretation of this hypothesis is that the 
input space is split into two parts by the Hyperplane, 

0w x b⋅ − =                                       (2)  

The vector w defines a direction perpendicular to the Hyperplane 
while changing the value of b moves the Hyperplane parallel to 
itself. The parameters w and b are referred to as the weight and 
the bias terms respectively.  

 
Figure 1. A Hyperplane (w, b) separating two classes 
 
Further, we want this Hyperplane to have the maximum 
separating margin with respect to the two classes. 
Mathematically, we want to find the Hyperplane, 

                                       : 0H w x b⋅ − =                                    (3) 

and another two Hyperplanes, 
                           (4)

               (5)    

parallel to it, with the restriction that there are no points between 
H1 and H-1, and that the distance between H1 and H-1 is a 
maximum. Figure 2 shows an example for such a scenario where 
some positive examples are on Hyperplane H1 while some 
negative examples are on Hyperplane H-1. These examples are 
called Support Vectors because they define the separating 
Hyperplane. 
The distance of a point on H1 to H is given by:  

                               (6) 
 

Therefore in order to maximize the distance separating the two  

 
Figure 2. Maximal Margin Classifier 
 

classes, we need to minimize Tw w w=  with the condition that 
no example is between the two Hyperplanes H1 and H-1. 
Therefore, 

                        (7) 

                        (8) 
Combining these two conditions we get, 

                (9) 
Now our problem can be written as, 

               1min  subject to ( ) 1
2

T
i iw w y w x b⋅ − ≥                        (10) 

However this is a convex, quadratic programming problem in a 
convex set. We can transform this optimization problem into its 
corresponding dual form by first considering the primal 
Lagrangian[1], 
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where 0iα ≥  are the Lagrange multipliers. Instead of solving this 
equation, we can solve the Wolfe dual form by maximizing the 
function ( , , )L w b α  subject to the constraint that the gradients of 

( , , )L w b α with respect to the primal variables w and b vanish, that 
is: 

                          (12)
                       

                                     (13) 
 

and the Lagrange multipliers 0α ≥ . Solving equations (12) and 
(13), we get, 
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Substituting equations (14) and (15) into the function ( , , )L w b α  
we find: 
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1
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= − ⋅∑ ∑                            (16) 

In this form the primal variables w and b have been eliminated 
and we end up with only one variable α. When the Lagrange 
multipliers are solved, we can go back to (14) to determine w, and 
we can classify an example x with: 

                         
1
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N
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f x y x x bα
=
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3. NONLINEAR SVM 
In cases where the surface which separates the two classes is not 
linear, we have to implicitly transform the data examples into 
another high dimensional space such that the data points will be 
linearly separable in that space. Let the transformation into the 
high dimension feature space be ( )Φ ⋅ . The dual problem now 
becomes[1]: 

                   
1 ,

1 ( ) ( )
2

N

i i j i j i j
i i j

L y y x xα α α
=

= − Φ ⋅Φ∑ ∑                   (18) 

The dot product in the high dimensional space is equivalent to a 
kernel function of the input space, 

         (19) 
Therefore, we do not need be explicit about the 
transformation ( )Φ ⋅ . There are many kernel functions that can be 
used to solve this such as the radial basis function: 
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SVMs can also be extended to allow for noise or imperfect 
separation, hence the name soft margin Support Vector Machines. 
We do not strictly require the total absence of points between the 
Hyperplanes H1 and H-1, but we penalize the examples that cross 
the boundaries with the finite penalty factor C. We have also 
introduced a positive slack variable 0iξ ≥ in an attempt to include 
points which lie outside the Hyperplane separating their family. 
Figure 3 illustrates graphically the concept of slack variables 
introduced for an imperfect separation. Therefore, the separating 
Hyperplanes become: 

                   (21) 
                  (22) 

     (23) 
We add the penalizing term to the objective function, so that it 
becomes: 

           1min  subject to ( ) 1 0
2

T T
i i i i

i
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With this change the corresponding Lagrangian becomes[1]: 
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The Wolfe dual problem can now be stated as: 
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subject to, 
                                   (27)  
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The Lagrange multipliers are now bounded by C instead of 
infinity. The solution is again given by: 
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Figure 3. Slack Variable classification 
 

4. EXPERIMENTAL RESULTS 
Phonemes from the TIMIT database were segmented into frames 
of length 20 ms with a frame shift of 10 ms and filtered using a 
Hamming window. A Daubechies 10 filter was used to create a 
four level wavelet packet. The energies of the wavelet packets 
were calculated, thus obtaining a 16 dimensional feature vector. 
The complete vowel dataset consisting of 20 phonemes from the 
TIMIT database were used for our experiments. The 20 class 
problem thus consisted of: /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/, /ay/, 
/ah/, /ao/, /oy/, /ow/, /uh/, /uw/, /ux/, /er/, /ax/, /ix/, /axr/, and /ax-
h/. 10, 000 samples were used to train the SVMs while 2,000 
samples were used for testing. 
During our experimentation the penalization factor C of the SVM 
was set to 60 while the value of σ for the radial basis kernel was 
set to 4. Table 1 presents some of the results showing the 
performance of the Support Vector Machine when vowels from 
the TIMIT Database were combined as many binary problems.   

These results show that SVMs provide a good solution towards 
classification of binary phonemes. SVMs were also tested for 
multiclass applications, where the whole 20 phoneme set was 
used, but the results obtained were far from ideal. Further 
investigation in optimizing these tools is still necessary to apply 
satisfactorily these algorithms for speech recognition. 
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Table 1. Phonemes from TIMIT Database trained as Binary 
problems 

Binary Problem Precision(%) 

‘iy’ − ‘ih’ 68.7 − 70.65 

‘ey’ − ‘aw’ 86.1 − 93.5 

‘ih’ − ‘aa’ 97.1 − 95.2 

‘iy’ − ‘ow’ 96.5 − 95.2 

‘uw’ − ‘ax’ 76.1 − 75.1 

‘ae’ − ‘aa’ 94.0 − 84.1 

‘ao’ − ‘aa’ 78.1 − 78.6 

‘ax’ − ‘ix’ 89.1 − 87.5 

 

5. CONCUSION 
In this paper we evaluate the performance of a Support Vector 
Machine for phoneme recognition. The results obtained clearly 
show the classification power of Support Vector Machines in this 
application.  Although good results have been achieved in the 
case of binary problems, future research work is required to 
extend these Learning systems for multiclass classification. 
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