8,341 research outputs found

    Innovation and Employability in Knowledge Management Curriculum Design

    Get PDF
    During 2007/8, Southampton Solent University worked on a Leadership Foundation project focused on the utility of the multi-functional team approach as a vehicle to deliver innovation in strategic and operational terms in higher education (HE). The Task-Orientated Multi-Functional Team Approach (TOMFTA) project took two significant undertakings for Southampton Solent as key areas for investigation, one academic and one administrative in focus. The academic project was the development of an innovative and novel degree programme in knowledge management (KM). The new KM Honours degree programme is timely both in recognition of the increasing importance to organisations of knowledge as a commodity, and in its adoption of a distinctive structure and pedagogy. The methodology for the KM curriculum design brings together student-centred and market-driven approaches: positioning the programme for the interests of students and requirements of employers, rather than just the capabilities of staff; while looking at ways that courses can be delivered with more flexibility, e.g. accelerated and block-mode; with level-differentiated activities, common cross-year content and material that is multi-purpose for use in short courses. In order to permit context at multiple levels in common, a graduate skills strand is taught separately as part of the University’s business-facing education agenda. The KM portfolio offers a programme of practically-based courses integrating key themes in knowledge management, business, information distribution and development of the media. They develop problem-solving, communications, teamwork and other employability skills as well as the domain skills needed by emerging information management technologies. The new courses are built on activities which focus on different aspects of KM, drawing on existing content as a knowledge base. This paper presents the ongoing development of the KM programme through the key aspects in its conception and design

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Improved risk analysis for large projects: Bayesian networks approach

    Get PDF
    PhDGenerally risk is seen as an abstract concept which is difficult to measure. In this thesis, we consider quantification in the broader sense by measuring risk in the context of large projects. By improved risk measurement, it may be possible to identify and control risks in such a way that the project is completed successfully in spite of the risks. This thesis considers the trade-offs that may be made in project risk management, specifically time, cost and quality. The main objective is to provide a model which addresses the real problems and questions that project managers encounter, such as: • If I can afford only minimal resources, how much quality is it possible to achieve? • What resources do I need in order to achieve the highest quality possible? • If I have limited resources and I want the highest quality, how much functionality do I need to lose? We propose the use of a causal risk framework that is an improvement on the traditional modelling approaches, such as the risk register approach, and therefore contributes to better decision making. The approach is based on Bayesian Networks (BNs). BNs provide a framework for causal modelling and offer a potential solution to some of the classical modelling problems. Researchers have recently attempted to build BN models that incorporate relationships between time, cost, quality, functionality and various process variables. This thesis analyses such BN models and as part of a new validation study identifies their strengths and weaknesses. BNs have shown considerable promise in addressing the aforementioned problems, but previous BN models have not directly solved the trade-off problem. Major weaknesses are that they do not allow sensible risk event measurement and they do not allow full trade-off analysis. The main hypothesis is that it is possible to build BN models that overcome these limitations without compromising their basic philosophy
    corecore