144,501 research outputs found

    The cavity method for large deviations

    Full text link
    A method is introduced for studying large deviations in the context of statistical physics of disordered systems. The approach, based on an extension of the cavity method to atypical realizations of the quenched disorder, allows us to compute exponentially small probabilities (rate functions) over different classes of random graphs. It is illustrated with two combinatorial optimization problems, the vertex-cover and coloring problems, for which the presence of replica symmetry breaking phases is taken into account. Applications include the analysis of models on adaptive graph structures.Comment: 18 pages, 7 figure

    Complexity Analysis and Efficient Measurement Selection Primitives for High-Rate Graph SLAM

    Get PDF
    Sparsity has been widely recognized as crucial for efficient optimization in graph-based SLAM. Because the sparsity and structure of the SLAM graph reflect the set of incorporated measurements, many methods for sparsification have been proposed in hopes of reducing computation. These methods often focus narrowly on reducing edge count without regard for structure at a global level. Such structurally-naive techniques can fail to produce significant computational savings, even after aggressive pruning. In contrast, simple heuristics such as measurement decimation and keyframing are known empirically to produce significant computation reductions. To demonstrate why, we propose a quantitative metric called elimination complexity (EC) that bridges the existing analytic gap between graph structure and computation. EC quantifies the complexity of the primary computational bottleneck: the factorization step of a Gauss-Newton iteration. Using this metric, we show rigorously that decimation and keyframing impose favorable global structures and therefore achieve computation reductions on the order of r2/9r^2/9 and r3r^3, respectively, where rr is the pruning rate. We additionally present numerical results showing EC provides a good approximation of computation in both batch and incremental (iSAM2) optimization and demonstrate that pruning methods promoting globally-efficient structure outperform those that do not.Comment: Pre-print accepted to ICRA 201

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Ground state of the Bethe-lattice spin glass and running time of an exact optimization algorithm

    Get PDF
    We study the Ising spin glass on random graphs with fixed connectivity z and with a Gaussian distribution of the couplings, with mean \mu and unit variance. We compute exact ground states by using a sophisticated branch-and-cut method for z=4,6 and system sizes up to N=1280 for different values of \mu. We locate the spin-glass/ferromagnet phase transition at \mu = 0.77 +/- 0.02 (z=4) and \mu = 0.56 +/- 0.02 (z=6). We also compute the energy and magnetization in the Bethe-Peierls approximation with a stochastic method, and estimate the magnitude of replica symmetry breaking corrections. Near the phase transition, we observe a sharp change of the median running time of our implementation of the algorithm, consistent with a change from a polynomial dependence on the system size, deep in the ferromagnetic phase, to slower than polynomial in the spin-glass phase.Comment: 10 pages, RevTex, 10 eps figures. Some changes in the tex
    • …
    corecore