
Ground state of the Bethe-lattice spin glass and running time of an exact

optimization algorithm

Frauke Liers,1, � Matteo Palassini,2, y Alexander K. Hartmann,3, z and Michael Juenger1, x

1Universit�at zu K�oln, Institut f�ur Informatik, Pohligstra�e 1, 50969 K�oln, Germany
2University of California San Francisco, 3333 California Street, Suite 415, San Francisco, CA 94118, USA

3Institut f�ur Theoretische Physik, Universit�at G�ottingen, Bunsenstr. 9, 37073 G�ottingen, Germany
(Dated: May 19, 2003)

We study the Ising spin glass on random graphs with �xed connectivity z and with a Gaussian
distribution of the couplings, with mean � and unit variance. We compute exact ground states
by using a sophisticated branch-and-cut method for z = 4; 6 and system sizes up to 1280 spins, for
di�erent values of �. We locate the spin-glass/ferromagnet phase transition at � = 0:77�0:02 (z = 4)
and � = 0:56 � 0:02 (z = 6). We also compute the energy and magnetization in the Bethe-Peierls
approximation with a stochastic method, and estimate the magnitude of replica symmetry breaking
corrections. Near the phase transition, we observe a sharp change of the median running time of
our implementation of the algorithm, consistent with a change from a polynomial dependence on
the system size, deep in the ferromagnetic phase, to slower than polynomial in the spin-glass phase.

I. INTRODUCTION

Recent years have seen an increasing interaction be-
tween the �elds of combinatorial optimization and sta-
tistical physics1{3. On one hand, several problems in
the statistical physics of disordered systems have been
mapped onto combinatorial problems, for which fast com-
binatorial optimization algorithms are available4,5. This
has provided valuable insights into questions that are
hard to investigate with traditional techniques, such as
Monte Carlo simulations. On the other hand, concepts
and methods from statistical physics are increasingly ap-
plied to combinatorial optimization3.

Easy/hard thresholds analogous to phase transitions
have been observed in random instances of optimization
and decision problems, including satis�ability (SAT )6,7,
vertex-cover8 (VC ), number partitioning9, and others.
There is currently much interest in understanding how
phase transitions a�ect the performance of combina-
torial algorithms, following the observation10 that the
average11 or typical (i.e. median) running time of some
algorithms exhibits a sharp change in the vicinity of a
phase transition. For example, in 3SAT, a special case
of SAT, and in VC, the typical running time of exact
backtracking algorithms changes12,13 from a polynomial
dependence on the input size in the "solvable" region, to
exponential dependence in the "unsolvable" region. This
provides an insight into the performance of algorithms
that goes beyond the worst-case running time tradition-
ally considered in complexity theory. (Note, however,
that from the behavior of individual algorithms, strictly
speaking, one cannot draw conclusions about the \typ-
ical hardness" of a problem itself). Recently, statistical
physics techniques have been fruitfully applied to study
easy/hard transitions and algorithmic performance3.

In this paper, we apply a branch-and-cut algorithm,
a technique developed in combinatorial optimization, to
�nd the ground state of the Ising spin glass on random
graphs with �xed coordination number (also called Bethe

lattices).

Our motivation is twofold. The �rst goal is algo-
rithmic: we want to characterize the typical running
time of our algorithm, notably its behavior across the
zero-temperature spin-glass/ferromagnet phase transi-
tion that occurs when varying the mean of the random
couplings. The interest of this stems from the importance
of branch-and-cut as a general technique in combinatorial
optimization, and from the fact that �nding the ground
state of a spin glass is a prominent example of a hard
optimization problem arising from statistical physics (in
general, it is NP-hard14, see Section III). The perfor-
mance of branch-and-cut for this application has not been
investigated in detail before (see, however, Refs. 15, 16
and 17), and here we �ll this gap. An interesting aspect is
that, unlike in SAT, VC and other classical combinatorial
problems, here averaging over random instances is physi-
cally motivated. To our knowledge, the only other study
relating a \physical" phase transition to algorithmic per-
formance is that of Middleton18, which investigates the
typical running time of the matching algorithm for the
random-�eld Ising model, which however is polynomial
everywhere in the parameter space.

We �nd that the median running time of our algorithm
varies sharply near the spin-glass/ferromagnet transition,
indicating a change from polynomial time deep in the fer-
romagnetic phase, to slower than polynomial in the spin
glass phase. We also observed a similar behavior for spin
glasses on regular lattices in two and three dimensions,
but will not report it here.

The second motivation for the present work lies
in the ground-state properties of the Bethe-lattice
spin glass, which recently have attracted a renewed
interest19{22. Using branch-and-cut, we compute the
ground state energy and magnetization, and locate the
spin-glass/ferromagnet phase transition. This provides
a useful test of recently developed analytical methods
to treat diluted spin glass models19,20,23. We solve the
model in the Bethe-Peierls (BP) approximation (equiv-
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alent to the replica symmetric approximation in the
replica formalism) using a stochastic approach proposed
in Refs.20,24. By comparing the branch-and-cut re-
sults with the BP results, we estimate the magnitude of
the replica symmetry breaking corrections to the ground
state energy and magnetization, �nding that they are
small.
The rest of the paper is organized as follows. In Sec-

tion II, we introduce the Bethe-lattice spin glass model.
In Section III, we describe the branch-and-cut algorithm
used to calculate the exact ground states of the model. In
Section IV, we describe the Bethe-Peierls approximation
and the stochastic procedure used to solve it. In Sec-
tion V, we present our branch-and-cut and BP results
for the ground state energy and the zero temperature
phase transition. In Section VI, we show that this tran-
sition coincides with a change of the typical running time.
Finally, Section VII summarizes our results.

II. MODEL

The system considered consists of N Ising spins Si =
�1 sitting on the nodes of a graph G = (V;E), where
V = f1; : : : ; Ng is the set of nodes and E = f(i; j)g �
V �V is the set of edges of the graph. The energy of the
system is given by

H = �
X

(i;j)2E

JijSiSj (1)

where the couplings Jij are independent, identically dis-
tributed random variables drawn from a Gaussian distri-
bution P (�) with mean � and unit variance,

P (J) =
1p
2�

exp[�(J � �)2=2] (2)

We consider the case in which G is a random graph
with �xed connectivity z, or z-regular graph, where each
spin interacts with exactly z neighbors. This provides
a convenient realization of a Bethe lattice, which avoids
some complications associated to the usual construction
of a Bethe lattice from a Cayley tree19. Frustration is
induced by large loops, the typical size of a loop being
of order log(N). Small loops are rare, giving the graph a
local tree-like structure, and therefore the mean �eld ap-
proximation is exact. A related model is the Viana-Bray
model25, in which the connectivity is a Poisson variable
with �nite mean. Finite-connectivity or \diluted" mod-
els provide a better approximation to �nite-dimensional
spin glasses than the in�nitely-connected Sherrington-
Kirkpatrick model. Furthermore, they are directly re-
lated to optimization problems such as graph partition-
ing and coloring.
Although it has long been known that replica sym-

metry is broken in these two models25{27, until re-
cently a replica symmetry broken solution could be
found only in some limit cases. M�ezard and Parisi

recently introduced19,20 a \population dynamics" algo-
rithm which allows a full numerical solution at the level
of one step of replica symmetry breaking. Explicit re-
sults were derived for the Bethe-lattice spin glass with
the symmetric �J disorder distribution, but not for the
Gaussian distribution considered here or for a non-zero
mean. Previous numerical studies of this model can be
found in Refs. 22,28,29. For a complete discussion of
the Bethe-lattice spin glass, see Ref. 19 and references
therein.

III. BRANCH-AND-CUT ALGORITHM

The problem of �nding a ground state of the Hamil-
tonian in Eq. (1) is in general computationally demand-
ing. For a generic graph G, it is NP-hard5,14. For NP-
hard problems, currently only algorithms are available,
for which the running time increases faster than any poly-
nomial in the system size, in the worst case (see Section
VI for a brief description of complexity classes). In the
special case of a planar system without magnetic �eld,
e.g. a square lattice with periodic boundary conditions in
at most one direction, eÆcient polynomial-time matching
algorithms30 exist. For the square lattice with periodic
boundaries in both directions, polynomial algorithms ex-
ist for computing the complete partition function for the
�J distribution31 and for the case in which the coupling
strenghts are bounded by a polynomial in the system
size32. In practice, both algorithms can only reach rela-
tively small system sizes.
For the Bethe lattice considered here (and for reg-

ular lattices in dimension higher than two), no poly-
nomial algorithm is known. Heuristic algorithms
recently used include simulated annealing33, \multi-
canonical" simulation34, genetic algorithms35,36, ex-
tremal optimization22, a hierarchical renormalization-
group based approach37, and the cluster-exact approx-
imation algorithm38. Here, however, we are interested
in investigating the running time of an exact, determin-
istic algorithm, since in this case the running time to
�nd the exact ground state is a well de�ned quantity.
We study the branch-and-cut method15,39 (see Ref. 40
for a tutorial on optimization problems and techniques,
including branch-and-bound and branch-and-cut), which
is currently the fastest exact algorithm for computing
spin glass ground states17, with the exception of the
polynomial-time special cases mentioned above. As the
branch-and-cut method is basically branch-and-bound
with cutting planes, we also did some experiments with
a pure branch-and-bound algorithm41,42, which however
can only deal with much smaller system sizes, �nding a
qualitatively similar, but less pronounced, variation of
the running time across the transition.
In the rest of this Section, we repeat a short description

of the branch-and-cut method already given in Ref. 17,
to the bene�t of the reader. It is convenient to map the
problem of minimizing the Hamiltonian in Eq.(1) into a



maximum cut problem. Consider a graph G = (V;E),
and let assign weights fKijg to the edges. Given a parti-
tion of the node set V into a subset W � V and its com-
plement V nW , the cut Æ(W ) associated to W is the set
of edges with one endpoint in W and the other endpoint
in V nW , namely Æ(W ) = f(ij) 2 E j i 2W; j 2 V nWg.
The weight of Æ(W ) is de�ned as the sum of the weights
of the cut edges,

P
(ij)2Æ(W )Kij . The maximum cut is

a node partition with maximum weight among all parti-
tions. It can be shown39 that minimizing the Hamilto-
nian in Eq.(1) is equivalent to �nding a maximum cut of
G with the assignment Kij = �Jij .
The branch-and-cut algorithm solves the maximum cut

problem through simultaneous lower and upper bound
computations. By de�nition, the weight of any cut gives a
lower bound on the optimal cut value. Thus, we can start
from any cut and iteratively improve the lower bound us-
ing deterministic heuristic rules (local search and other
specialized heuristics, see Ref. 43 for details). How do
we decide when a cut is optimal? This can be done by
additionally maintaining upper bounds on the value of
the maximum cut. Upon iteration of the algorithm, pro-
gressively tighter bounds are found, until optimality is
reached.
Since the availability of upper bounds marks the dif-

ference between a heuristic and an exact solution, we
now summarize how the upper bound is computed (for
more details, see Ref. 43.) To each edge (ij) we associate
a real variable xij and to each cut Æ(W ) an incidence

vector �Æ(W ) 2 RE with components �
Æ(W )
ij associated

to each edge (ij), where �
Æ(W )
ij = 1 if (ij) 2 Æ(W ) and

�
Æ(W )
ij = 0 otherwise. Denoting by PC(G) the convex

hull of the incidence vectors, it can be shown that a basic
optimum solution44 of the linear program

maxf
X

(ij)2E

Jijxij j x 2 PC(G)g: (3)

is a maximum cut. In order to solve (3) with linear pro-
gramming techniques we would have to express PC(G) in
the form

PC(G) = fx 2 RE j Ax � b; 0 � x � 1g (4)

for some matrix A and some vector b. Whereas the exis-
tence of A and b are theoretically guaranteed, even sub-
sets of Ax � b known in the literature contain a huge
number of inequalities that render a direct solution of
(3) impractical.
Instead, the branch-and-cut algorithm proceeds by op-

timizing over a superset P containing PC(G), and by it-
eratively tightening P , generating in this way progres-
sively better upper bounds. The supersets P are gener-
ated by a cutting plane approach. Starting with some P ,
we solve the linear program maxfP(ij)2E Jijxij j x 2 Pg
by Dantzig's simplex algorithm44. Optimality is proven
if either of two conditions is satis�ed: (i) the optimal

value equals the lower bound; (ii) the solution vector �x
is the incidence vector of a cut.
If neither is satis�ed, we have to tighten P by solving

the separation problem. This consists in identifying in-
equalities that are valid for all points in PC(G), yet are
violated by �x, or reporting that no such inequality ex-
ists. The inequalities found in this way are added to the
linear programming formulation, obtaining a new tighter
partial system P 0 � P which does not contain �x. The
procedure is then repeated on P 0 and so on.
At some point, it may happen that (i) and (ii) are not

satis�ed, yet the separation routines do not �nd any new
cutting plane. In this case, we branch on some fractional
edge variable xij (i.e. a variable xij 62 f0; 1g), creating
two subproblems in which xij is set to 0 and 1, respec-
tively. We then we apply the cutting plane algorithm
recursively for both subproblems.

IV. BETHE-PEIERLS APPROXIMATION

We recall here the zero-temperature formulation of the
BP approximation, loosely following Ref. 20. We consider
the Hamiltonian Eq.(1) on a random graph with �xed
connectivity z = k + 1, in which however some spins Si
(cavity spins) have only k neighbors. The random cou-
plings are drawn from a distribution P (J). The BP ap-
proximation consists in assuming that the ground state
energy of this system is given by E = const: �Pi hiSi,
where the sum runs over all cavity spins. The cavity �elds
hi, implicitly de�ned by this relation, are independent,
identically distributed random variables when considered
as a function of the random couplings. Their distribution
P (h) is the central object of interest, and satis�es a re-
cursion relation derived as follows. Suppose we add a new
spin S0 to the system, which interacts with k pre-existing
cavity spins S1; : : : ; Sk through couplings J1; : : : ; Jk, and
we minimize the energy with respect to S1; : : : ; Sk. Now
S0 is a cavity spin, and it is easily shown that its cavity
�eld h0 is given by

h0 =
kX
i=1

u(Ji; hi) ; (5)

where u(Ji; hi) =
1
2 (jhi + Jij � jhi � Jij). This provides

a recursion relation for P (h) as the J 's uctuate accord-
ing to P (J).
Given a spin S0 interacting with k + 1 neighbors with

couplings J1; : : : ; Jk+1, the internal �eld H acting on S0
is

H =

k+1X
i=1

u(Ji; hi) : (6)

Therefore, if we know P (h) we can determine the proba-
bility distribution P (H), and the magnetization

mBP = lim
�!0+

Z
dH P (H) sgn(H) ; (7)



where sgn(x) is the sign function and � is a small �eld that
breaks the symmetry of Eq.(5) with respect to changing
the sign of all cavity �elds.
The knowledge of P (h) is also suÆcient to determine

the ground state energy of the system. As shown in
Ref. 20, this can be expressed as

eBP = [�E(1)]� k + 1

2
[�E(2)] ; (8)

where [� � �] is the expectation value with respect to P (J)
and P (h), and the quantities �E(1);�E(2) are given by

�E(1) = �
k+1X
i=1

a(Ji; hi)� j
k+1X
i=1

u(Ji; hi)j (9)

and

�E(2) = �max
Si;Sj

(hiSi + hjSj + JijSiSj) ; (10)

where a(Ji; hi) = 1
2 (jhi + Jij+ jhi � Jij) and Si; Sj in

Eq.(10) are two randomly chosen cavity spins which we
connect with the coupling Jij .
The BP recursion, especially at �nite temperature,

has been studied extensively (see Ref. 19 and references
therein). In particular, M�ezard and Parisi20 have given
an analytic expression of P (h) for a binary P (J). Klein
et al.45 solved the �nite temperature BP recursion for
Gaussian couplings with � = 0 in the vicinity of the
spin-glass/paramagnet transition. No analytical solution
has been derived for Gaussian couplings at T = 0, to
our knowledge, although Klein et al.45 derived an ana-
lytic solution near the spin-glass/ferromagnet transition
� = �c within the mean random-�eld approximation.
Here, we employ the stochastic iterative procedure pro-

posed by M�ezard and Parisi20 for the more general one-
step replica symmetry broken case (see also Ref. 27 for a
previous application of a similar method). We consider
a population of N sites, to which we associate N cav-
ity �elds, which are initially assigned at random (with a
small positive bias). We then select k sites at random,
extract k couplings from P (J), compute h0 from Eq.(5),
and assign h0 as the new cavity �eld of a randomly chosen
site. We iterate this procedure M times per site. After
a certain number of iterations, the distribution P (h) will
satisfy Eq.(5). At each iteration, by merging k + 1 ran-
domly chosen sites we compute the internal �eld H with
Eq.(6), and �E(1) with Eq.(9), and by merging two sites
we compute �E(2) with Eq.(10). After discarding the
�rst M=4 iterations, by averaging sgn(H), �E(1) and
�E(2) over the remaining iterations we compute the es-
timates of mBP and eBP from Eqs.(7) and (8), and their
statistical error from a binning procedure. We repeated
the procedure for many values of �, choosing M = 104

and N between 103 and 105, the larger population being
for � near the transition point �c. With N = 105, the
iteration requires about one hour of computer time.
We note that the BP approximation is known to be

wrong, being equivalent to the replica symmetric solu-
tion which is unstable. We have not attempted to use

the generalization of the above procedure to one step of
replica symmetry breaking19, since for the Gaussian case
considered it would require a signi�cant computing time,
and since the BP approximation gives suÆciently accu-
rate results for our purposes.

V. RESULTS

We have studied the Ising spin glass on random graphs
with �xed connectivity z = 4 and z = 6. The instance
generator �rst builds a random regular graph with the
algorithm described in Ref. 46. We then assign the cou-
plings Jij according to the distribution P (J) in Eq.(2).
Using the branch-and-cut approach we were able to

study graph sizes up to N = 400 for z = 4 and � � 0:9,
and up to N = 200 for z = 6 and � � 0:7. For larger
values of �, we considered sizes up to N = 1280. The
ground states for the smallest systems can be obtained
within a second, while the longest computations lasted at
most one day on a typical workstation. Incidentally, for
Ising spin glasses on a regular grid, specialized heuristics
exist that exploit the grid structure, making it possible
to consider larger system sizes than for the model re-
ported here. More one timing issues, in relation to the
spin-glass/ferromagnet phase transition, is presented in
Section VI.
All the results were averaged over many samples (a

sample, or instance, is a realization of the random graph
with a realization of the couplings). The largest number
of samples were considered in the vicinity of the phase
transition, where the uctuations of the magnetization
are larger. Near the transition, for sizes N � 240 (z = 4)
and N � 160 (z = 6) we computed around 5000 samples
for each value of �; for N = 400 (z = 4) and N = 200
(z = 6), around 500 samples for each value of �. For
sizes larger than these, we computed up to 280 samples
for each �. In the following analysis of the ground state
energy and magnetization, we consider only sizes up to
N = 400 (z = 4) and N = 200 (z = 6), since for larger
sizes the statistical error is quite large. In the analysis of
running times we will include all sizes.

A. Ground state energy

We start by showing, in Fig. 1, the average ground
state energy E(�;N), divided by zN , as a function of
� for z = 4; 6 and two di�erent system sizes. For suf-
�ciently large �, the system is completely magnetized,
therefore the ground state energy depends linearly on �,
E(�;N)=N � z�, as visible in the �gure. For small � the
system is frustrated, hence the energy saturates. Note
that E(0; N) scales as

p
z, not as z, therefore the two

curves diverge at small �. The lines in Fig. 1 represent
the numerical solution of the BP recursion obtained with
a population sizeN = 103 (we veri�ed that withN = 105

the results are unchanged) andM = 104 iterations of the



FIG. 1: Normalized average ground state energy as a func-
tion of the mean coupling strength, �. The symbols represent
the results of the branch-and-cut algorithm. Their statistical
errors are smaller than the symbol sizes. The lines represent
the results of the BP recursion. They are obtained by con-
necting points spaced by �� = 0:005 (�� = 0:001 near the
transition). Their statistical error is comparable to the line
thickness.

stochastic algorithm. Clearly, the branch-and-cut results
agree well with the BP approximation.
We extrapolate the branch-and-cut results to N = 1

by �tting the data with the form E=N = e1 + bN�2=3.
As shown in Fig. 2, the �nite size corrections are well de-
scribed by a N�2=3 dependence for small �, although an
N�! correction �ts reasonably well the data for other val-
ues of ! between 0.6 and 1 as well. For large �, the �nite
size corrections are very small. A N�2=3 correction was
also found to �t well the numerical data by Boettcher22,
who computed the average ground state energy of the
�J model for z up to z = 26 and N up to N = 2048
using a heuristic algorithm. In Ref. 19, the �nite-size
dependence of the energy at T = 0:8 was studied, for
the �J distribution and z = 6, �nding a �nite-size expo-
nent ! = 0:767(8), not far from 2/3. For the Viana-Bray
model with uctuating connectivity with mean z = 6, the
value ! = 0:62�0:05, compatible with 2/3, was found47,
also using a heuristic algorithm.
Fig. 2 also shows that the extrapolated energy, e1, is

very close to the BP result, eBP , in the whole range of
�. Of course, the agreement is not surprising for large
�, where replica symmetry holds. For smaller �, the ob-
served agreement indicates that replica symmetry break-
ing corrections to the ground state energy are small (less
than 1%). A similar conclusion was reached in Ref. 20
for the �J distribution with zero mean.
In particular, for � = 0 we obtain e1 = �1:38� 0:04

(z = 4) and e1 = �1:72 � 0:02 (z = 6), where the
errors take into account the uncertainty on the correc-

FIG. 2: Size dependence of the ground state energy, for z = 4
and di�erent values of �. The lines represent the best �ts
with the form E=N = e1+bN�2=3. The N =1 data (origin
of the x�axis) are obtained in the BP approximation.

tion exponent !, to be compared with our BP result
eBP = �1:351�0:002 (z = 4) and eBP = �1:737�0:002
(z = 6). It is also interesting to compare this with the
ground state energy per spin found in two48 and three
dimensions35 (which have coordination number z = 4
and z = 6, respectively) with Gaussian couplings and
� = 0, which is e1 = �1:31453(3) and e1 = �1:7003(1)
respectively.

B. Ground state magnetization

In Figs. 3 and 4 the symbols show, for z = 4 and
6 respectively, the average ground state magnetization
m = [M ]J , where M = 1

N

P
i Si and [: : :]J denotes the

sample average, as a function of � for di�erent system
sizes N . The lines show the N = 1 result in the BP
approximation. For small �, the magnetization vanishes
as 1=

p
N . For large �, the �nite-N data agree with the

BP result within the error bars, with negligible �nite-size
corrections (again, we recall that the BP approximation
is exact for suÆciently large �, hence the agreement is
expected). From the point at which the BP magnetiza-
tion vanishes, we estimate the critical coupling strength
�c = 0:742�0:005 (z = 4) and �c = 0:546�0:005 (z = 6).
Note that recursion relation Eq.(5) admits two symmet-
ric solutions for � > �c. Hence, in the stochastic pro-
cedure the magnetization will oscillate between positive
and negative values, with an oscillation \time" (number
of iterations)M0 that increases with the population size
N and with �. Therefore, to compute the magnetization
correctly, we need M0 � M. To do this, we increased
the size of the population progressively from N = 103 to



FIG. 3: Average ground state magnetization as a function
of �, for z = 4. Symbols: branch-and-cut results (statisti-
cal errors are smaller than the symbols). Line: BP results
with a population size ranging from N = 103 (away from the
transition) to N = 105 (near the transition), and with and
M = 104 iterations of the stochastic algorithm.

N = 105 as � approached �c. (Residual oscillations very
close to �c introduce a small systematic error

50, which is
reected in the errors for �c quoted above.)
Another estimate of �c can be obtained from the

Binder cumulant49

g(�) =
1

2

�
3� [M4]

[M2]2

�
; (11)

where [� � �] is now the \time" average. In the limit
N ! 1, g(�) = 0 for � < �c and g(�) = 1 for � > �c,
hence g(�) can be used to locate �c. As shown in Fig. 5,
the variation of the Binder cumulant with � sharpens as
N increases, an e�ect of the sign oscillations of the mag-
netization, which become less important as N increases.
From N = 105 we estimate

�BPc = 0:743� 0:005 (z = 4)

�BPc = 0:547� 0:005 (z = 6)

which agrees with the above estimate from the average
magnetization. We also veri�ed that with these values of
�c, the magnetization obeys mBP = a(� � �c)

� for � '
�c, with the mean-�eld exponent � = 1=2 and a ' 0:23.
Klein et al.45 solved the BP recursion in the vicinity of

�c using the mean random �eld approximation (MRF).
Their results �MRF

c = 0:775 (z = 4) and �MRF
c = 0:587

(z = 6) (obtained after rescaling their value by an appro-
priate normalization factor

p
z) are slightly larger than

our result �BPc .
In order to obtain an estimate of �c from the �nite-N

branch-and-cut data, we computed the Binder cumulant

FIG. 4: Same as Fig. 3 but for z = 6.

FIG. 5: Binder cumulant from the stochastic solution of the
BP ansatz, for three di�erent sizes of the stochastic popula-
tion N .

g(�;N), de�ned as in Eq.(11) but with the time average
replaced by the sample average. According to �nite-size
scaling, the curves for g(�;N) as a function of � for var-
ious N must cross at the critical point � = �c. In Fig. 6
we plot the Binder cumulant in the vicinity of the in-
tersection point (note that the horizontal scale is much
larger than that of Fig. 5), from which we obtain

�c = 0:77� 0:02 (z = 4)

�c = 0:56� 0:02 (z = 6):

This agrees with �BPc within the error bars, suggesting
that also for the magnetization replica symmetry break-



FIG. 6: Binder cumulant as a function of � for various system
sizes. Only the region around the phase transition is shown.
The lines are only a guide to the eye.

FIG. 7: Scaling plot for the Binder cumulant. The symbols
are the same as in the corresponding panels in Figure 6. Note
the steeper shape of the scaling function for z = 6.

ing corrections are small, causing a shift of �c of less than
3 � 4%. Replica symmetry breaking corrections are ex-
pected to increase with z. In the Sherrington-Kirkpatrick
model (which is the z ! 1 limit of the present model),
corrections shift �c from 1.25 to 1. Although our numeri-
cal estimate of �c is slightly larger than �

BP
c instead, this

could be a statistical uctuation or a �nite-size e�ect.
The small size of replica-symmetry-breaking corrections
to �c suggests that the mixed ferromagnetic spin-glass
phase is narrow for these values of z, as also recently
indicated for the three-dimensional Ising spin glass51.

FIG. 8: Scaling plot for the ground state magnetization. The
symbols are the same as in Fig. 6.

The Binder cumulant is expected to satisfy the follow-
ing �nite-size scaling relation52 for � ' �c:

g(�;N) = ~g(N1=(du�)(�� �c)) (12)

where du is the upper critical dimension, which for the
Ising spin glass is du = 6. As usual, by plotting g(�;N)
against N1=(du�)(���c) with correct parameters �c and
�, the data points for di�erent system sizes should col-
lapse onto a single curve near (� � �c) = 0. As shown
in Fig. 7, using the estimates of �c obtained above and
the mean-�eld exponent � = 1=2 we obtain a good data
collapse, showing that �nite size scaling is well satis�ed
in our range of sizes.
In Fig. 8 we also show scaling plots for the average

magnetization m(�;N) = [M ]J , whose scaling form is

m(�;N) = N��=(du�) ~m(N1=(du�)(�� �c)) ; (13)

with the mean �eld exponent � = 1=2. The data show a
good scaling collapse for � � �c.

VI. TYPICAL RUNNING TIME OF OUR

BRANCH AND CUT ALGORITHM

In this section we study the running time of our pro-
gram as a function of the mean coupling strength �. In
computer science the complexity of a problem is classi-
�ed in terms of the worst-case running time of its solution
algorithms53,54. Central notions here are the complexity
classes P and NP. Informally, the class P consists of all
decision problems (namely, problems whose solution can
only be \yes" or \no") for which at least one algorithm is
known that can generate an answer in polynomial time,
even in the \worst case". The class NP consists of all



decision problems for which, if for a given instance the
answer is \yes", then there is a certi�cate from which
the correctness of the answer can be veri�ed in poly-
nomial time. For example, the question \Given a spin
glass instance, is there a spin con�guration with energy
less than or equal to E0?" belongs to NP. If for a given
instance the answer is positive, then there is a spin con-
�guration with correct energy, and its correctness can be
veri�ed in polynomial time. Only the existence of such
a certi�cate (spin con�guration, in the above example)
is required, not the ability to �nd it in polynomial time.
The class NP contains P, but it might be larger (many
believe it is larger, and answering the question whether
P = NP is an important open problem). NP-complete
problems are the \most diÆcult" in the class NP, in the
sense that no polynomial algorithm is known for solving
them, and if a polynomial algorithm could be found for
one of them, this would imply that all of them are poly-
nomially solvable55. The classes P and NP are de�ned
for decision problems, but similar ideas apply to combi-
natorial optimization problems as well. Informally, an
optimization problem is called NP-hard, if it is at least
as diÆcult as every NP-complete problem. In particular,
an optimization problem is NP-hard if the associated de-
cision problem is NP-complete. This is true for many
optimization problems, e.g. the maximum cut problem
or the travelling salesman problem.

In practice, the running time can vary greatly from an
instance of the problem to another, and the worst-case
running time might very rarely occur. Recent work has
therefore focused on the average running time with re-
spect to random instances drawn from some probability
distribution. Instead of the average one can also ana-
lyze the median, or typical running time, which has the
advantage of being less inuenced by the occurrence of
exponentially rare samples with huge running times.

It should be noted that, unlike the worst-case complex-
ity classi�cation discussed above, which is an algorithm-
independent feature of the problem itself, in general the
typical running time can be di�erent for di�erent algo-
rithms and implementations that solve the same problem.

Returning to our problem, as mentioned in Section III,
�nding the ground state of the Bethe-lattice spin glass is
an NP-hard problem. For all values of � the possible
realizations of the disorder are the same as for � = 0.
Hence, the algorithm has an exponential worst-case run-
ning time even on instances deep in the ferromagnetic
phase. However, for large � highly frustrated realizations
are very unlikely to appear, hence the typical running
time will decrease as � increases. The question we ask
here is whether, for large N , the running time undergoes
a sharp transition as a function of � and, if so, whether
the transition coincides with the spin-glass/ferromagnet
phase transition.

One may use the CPU time as a measure of the running
time. However, the CPU time is machine-dependent,
hence it is not suitable when di�erent computers are used.
Furthermore, it is hard to separate out the inuence of
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FIG. 9: Median running time (measured in number of solved
linear problems) as a function of � for di�erent system sizes.
Inset shows the same for z = 6 and N = 200; 140; 100; 50.

size-dependent hardware e�ects on the CPU time (for ex-
ample, small problems can be fully stored in the cache
and therefore run faster). To avoid these problems, in the
following we use the number of linear problems solved,
nlps, as a measure of the running time17.
In Fig. 9 we show the median running time so de-

�ned as a function of � for z = 4; 6 and di�erent sys-
tem sizes. Clearly, ground states are calculated quickly
in the ferromagnetic region, while in the spin-glass phase
the running time increases dramatically (note the loga-
rithmic scale on the vertical axis), and is approximately
constant within the entire spin glass phase. The variation
becomes more pronounced as N increases, suggesting a
sharp discontinuity in the N ! 1 limit around � � 0:8
(z = 4) and � � 0:6 (z = 6), which is close to the spin-
glass/ferromagnet transition point �c determined in Sec-
tion V.
As shown in Fig. 10, deep in the ferromagnetic phase

the data is consistent with a polynomial increase of the
running times with N . For smaller values of �, the curves
are bending upwards, indicating that the running time
increases faster than any polynomial. This is also the case
for � = 0:8 (z = 4) and for � = 0:6 (z = 6, not shown).
Hence from this data, it seems that the change in the
typical running time occurs at a value of � larger than
�c, although it is diÆcult to locate a precise transition
point. A mismatch between phase transition and change
of the running time has been observed before, e.g. for a
simple algorithm solving vertex cover13.
We have �tted the data in Fig. 10 with a function

of the form nlps(N) � exp(bNc). For � = 0, we �nd
b = 0:026(9), c = 0:87(5) for z = 4, and b = 0:007(3) and
c = 1:24(8) for z = 6, but the data exhibits in both cases
a considerable scatter around the �tting region, prohibit-
ing to conclude in a de�nite way that the typical running
time is exponential. Nevertheless, the data strongly sug-
gest so.
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FIG. 10: Median running time as a function of N for di�erent
coupling strengths � in logarithmic scale. The straight lines
represent power-laws c �N� with � = 0:699 (z = 4; � = 1:2),
� = 0:677 (z = 4; � = 1:6) and � = 0:709 (z = 6; � = 1:6),
respectively, showing that in the ferromagnetic phase the me-
dian running time is polynomial.

VII. CONCLUSIONS

We have studied the ground state of a diluted mean-
�eld Ising spin glass model with �xed connectivities
z = 4; 6 and Gaussian distribution of the couplings, with
mean � and unit variance. We have applied a branch-
and-cut algorithm, a sophisticated technique originat-
ing in combinatorial optimization which guarantees to
�nd exact ground states. Our motivation was to study
the spin-glass/ferromagnet transition and relate it to the
change in the typical running time of our algorithm.
From the study of the Binder cumulant, we have

obtained values for the critical coupling strength, �c.
We have also solved the model in the Bethe-Peierls
approximation, using an iterative stochastic procedure.
In this approximation we obtain a critical coupling
strength, �BPc , which agrees with the branch-and-cut
estimate within the error bars of the latter, indicating
that replica symmetry breaking e�ects are quantitatively

small. Finite-size scaling is well satis�ed for systems of
size larger than N � 30.
We have also analyzed the ground state energy, and

shown that the branch-and-cut results, extrapolated
to the thermodynamic limit, are in very good agree-
ment with the Bethe-Peierls results, again indicating
that replica symmetry breaking e�ects are quantitatively
small. In the spin glass region, �nite-size corrections are
well described by a N�2=3 dependence.
We have investigated the typical running time of our

implementation of the branch-and-cut algorithm, which
we de�ned as the median number of linear programs
needed to �nd the ground state, with respect to a uni-
form distribution over the space of instances. We have
shown that �nding ground states is \hard" in the spin-
glass phase, and \easy" deep in the ferromagnetic region,
with a sharp variation at a value of � slightly larger than
�c. The data indicate that while the worst-case running
time is always exponential in the system size, the typical
running-time is polynomial in the ferromagnetic phase
and super-polynomial in the spin-glass phase.
Our understanding of what makes a problem compu-

tationally hard is still very weak. In this paper, we have
shown that in a standard hard problem from physics,
the Ising spin glass, a \physical" phase transition has a
dramatic e�ect on the performance of a solution algo-
rithm. Although in principle the \typical hardness" is
algorithm-dependent, it is reasonable to expect that the
phase transition will inuence to some extent the running
time of many other solution algorithms. Furthermore, we
expect that similar phenomena occur in other well-known
physical models.
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