78 research outputs found

    The Research on the L(2,1)-labeling problem from Graph theoretic and Graph Algorithmic Approaches

    Get PDF
    The L(2,1) -labeling problem has been extensively researched on many graph classes. In this thesis, we have also studied the problem on some particular classes of graphs. In Chapter 2 we present a new general approach to derive upper bounds for L(2,1)-labeling numbers and applied that approach to derive bounds for the four standard graph products. In Chapter 3 we study the L(2,1)-labeling number of the composition of n graphs. In Chapter 4 we consider the Cartesian sum of graphs and derive, both, lower and upper bounds for their L(2,1)-labeling number. We use two different approaches to derive the upper bounds and both approaches improve previously known bounds. We also present new approximation algorithms for the L(2,1 )-labeling problem on Cartesian sum graphs. In Chapter 5, we characterize d-disk graphs for d\u3e1, and give the first upper bounds on the L(2,1)-labeling number for this class of graphs. In Chapter 6, we compute upper bounds for the L(2,1)-labeling number of total graphs of K_{1,n}-free graphs. In Chapter 7, we study the four standard products of graphs using the adjacency matrix analysis approach. In Chapter 8, we determine the exact value for the L(2,1)-labeling number of a particular class of Mycielski graphs. We also provide, both, lower and upper bounds for the L(2,1)-labeling number of any Mycielski graph

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time

    Get PDF
    We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Br\'azdil, Jan\v{c}ar, and Ku\v{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.Comment: Corrected proof of Lemma 6.2 (thanks to Dmitry Chistikov for spotting an error in the previous proof

    A survey of χ\chi-boundedness

    Full text link
    If a graph has bounded clique number, and sufficiently large chromatic number, what can we say about its induced subgraphs? Andr\'as Gy\'arf\'as made a number of challenging conjectures about this in the early 1980's, which have remained open until recently; but in the last few years there has been substantial progress. This is a survey of where we are now

    A Potpourri of Partition Properties

    Get PDF
    The cardinal characteristic inequality r <= hm3 is proved. Several partition relations for ordinals and one for countable scattered types are given. Moreover partition relations for lexicographically ordered sequences of zeros and ones are given in a no-choice context
    • …
    corecore