13,569 research outputs found

    Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

    Get PDF
    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.7041.Comment: 40 Pages + 25 Pages of Appendices. 38 figures. Typos and bibliographic amendments and minor correction

    Extended two-stage adaptive designswith three target responses forphase II clinical trials

    Get PDF
    We develop a nature-inspired stochastic population-based algorithm and call it discrete particle swarm optimization tofind extended two-stage adaptive optimal designs that allow three target response rates for the drug in a phase II trial.Our proposed designs include the celebrated Simon’s two-stage design and its extension that allows two target responserates to be specified for the drug. We show that discrete particle swarm optimization not only frequently outperformsgreedy algorithms, which are currently used to find such designs when there are only a few parameters; it is also capableof solving design problems posed here with more parameters that greedy algorithms cannot solve. In stage 1 of ourproposed designs, futility is quickly assessed and if there are sufficient responders to move to stage 2, one tests one ofthe three target response rates of the drug, subject to various user-specified testing error rates. Our designs aretherefore more flexible and interestingly, do not necessarily require larger expected sample size requirements thantwo-stage adaptive designs. Using a real adaptive trial for melanoma patients, we show our proposed design requires onehalf fewer subjects than the implemented design in the study

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table
    • …
    corecore