9,119 research outputs found

    On the stability of two-chunk file-sharing systems

    Full text link
    We consider five different peer-to-peer file sharing systems with two chunks, with the aim of finding chunk selection algorithms that have provably stable performance with any input rate and assuming non-altruistic peers who leave the system immediately after downloading the second chunk. We show that many algorithms that first looked promising lead to unstable or oscillating behavior. However, we end up with a system with desirable properties. Most of our rigorous results concern the corresponding deterministic large system limits, but in two simplest cases we provide proofs for the stochastic systems also.Comment: 19 pages, 7 figure

    Mode-Suppression: A Simple, Stable and Scalable Chunk-Sharing Algorithm for P2P Networks

    Full text link
    The ability of a P2P network to scale its throughput up in proportion to the arrival rate of peers has recently been shown to be crucially dependent on the chunk sharing policy employed. Some policies can result in low frequencies of a particular chunk, known as the missing chunk syndrome, which can dramatically reduce throughput and lead to instability of the system. For instance, commonly used policies that nominally "boost" the sharing of infrequent chunks such as the well known rarest-first algorithm have been shown to be unstable. Recent efforts have largely focused on the careful design of boosting policies to mitigate this issue. We take a complementary viewpoint, and instead consider a policy that simply prevents the sharing of the most frequent chunk(s). Following terminology from statistics wherein the most frequent value in a data set is called the mode, we refer to this policy as mode-suppression. We also consider a more general version that suppresses the mode only if the mode frequency is larger than the lowest frequency by a fixed threshold. We prove the stability of mode-suppression using Lyapunov techniques, and use a Kingman bound argument to show that the total download time does not increase with peer arrival rate. We then design versions of mode-suppression that sample a small number of peers at each time, and construct noisy mode estimates by aggregating these samples over time. We show numerically that the variants of mode-suppression yield near-optimal download times, and outperform all other recently proposed chunk sharing algorithms

    A Stable Fountain Code Mechanism for Peer-to-Peer Content Distribution

    Full text link
    Most peer-to-peer content distribution systems require the peers to privilege the welfare of the overall system over greedily maximizing their own utility. When downloading a file broken up into multiple pieces, peers are often asked to pass on some possible download opportunities of common pieces in order to favor rare pieces. This is to avoid the missing piece syndrome, which throttles the download rate of the peer-to-peer system to that of downloading the file straight from the server. In other situations, peers are asked to stay in the system even though they have collected all the file's pieces and have an incentive to leave right away. We propose a mechanism which allows peers to act greedily and yet stabilizes the peer-to-peer content sharing system. Our mechanism combines a fountain code at the server to generate innovative new pieces, and a prioritization for the server to deliver pieces only to new peers. While by itself, neither the fountain code nor the prioritization of new peers alone stabilizes the system, we demonstrate that their combination does, through both analytical and numerical evaluation.Comment: accepted to IEEE INFOCOM 2014, 9 page

    Statistical Modelling of Information Sharing: Community, Membership and Content

    Full text link
    File-sharing systems, like many online and traditional information sharing communities (e.g. newsgroups, BBS, forums, interest clubs), are dynamical systems in nature. As peers get in and out of the system, the information content made available by the prevailing membership varies continually in amount as well as composition, which in turn affects all peers' join/leave decisions. As a result, the dynamics of membership and information content are strongly coupled, suggesting interesting issues about growth, sustenance and stability. In this paper, we propose to study such communities with a simple statistical model of an information sharing club. Carrying their private payloads of information goods as potential supply to the club, peers join or leave on the basis of whether the information they demand is currently available. Information goods are chunked and typed, as in a file sharing system where peers contribute different files, or a forum where messages are grouped by topics or threads. Peers' demand and supply are then characterized by statistical distributions over the type domain. This model reveals interesting critical behaviour with multiple equilibria. A sharp growth threshold is derived: the club may grow towards a sustainable equilibrium only if the value of an order parameter is above the threshold, or shrink to emptiness otherwise. The order parameter is composite and comprises the peer population size, the level of their contributed supply, the club's efficiency in information search, the spread of supply and demand over the type domain, as well as the goodness of match between them.Comment: accepted in International Symposium on Computer Performance, Modeling, Measurements and Evaluation, Juan-les-Pins, France, October-200

    A stochastic epidemiological model and a deterministic limit for BitTorrent-like peer-to-peer file-sharing networks

    Get PDF
    In this paper, we propose a stochastic model for a file-sharing peer-to-peer network which resembles the popular BitTorrent system: large files are split into chunks and a peer can download or swap from another peer only one chunk at a time. We prove that the fluid limits of a scaled Markov model of this system are of the coagulation form, special cases of which are well-known epidemiological (SIR) models. In addition, Lyapunov stability and settling-time results are explored. We derive conditions under which the BitTorrent incentives under consideration result in shorter mean file-acquisition times for peers compared to client-server (single chunk) systems. Finally, a diffusion approximation is given and some open questions are discussed.Comment: 25 pages, 6 figure

    A New Stable Peer-to-Peer Protocol with Non-persistent Peers

    Full text link
    Recent studies have suggested that the stability of peer-to-peer networks may rely on persistent peers, who dwell on the network after they obtain the entire file. In the absence of such peers, one piece becomes extremely rare in the network, which leads to instability. Technological developments, however, are poised to reduce the incidence of persistent peers, giving rise to a need for a protocol that guarantees stability with non-persistent peers. We propose a novel peer-to-peer protocol, the group suppression protocol, to ensure the stability of peer-to-peer networks under the scenario that all the peers adopt non-persistent behavior. Using a suitable Lyapunov potential function, the group suppression protocol is proven to be stable when the file is broken into two pieces, and detailed experiments demonstrate the stability of the protocol for arbitrary number of pieces. We define and simulate a decentralized version of this protocol for practical applications. Straightforward incorporation of the group suppression protocol into BitTorrent while retaining most of BitTorrent's core mechanisms is also presented. Subsequent simulations show that under certain assumptions, BitTorrent with the official protocol cannot escape from the missing piece syndrome, but BitTorrent with group suppression does.Comment: There are only a couple of minor changes in this version. Simulation tool is specified this time. Some repetitive figures are remove
    • …
    corecore