6,023 research outputs found

    On the spherical convexity of quadratic functions

    Get PDF
    In this paper we study the spherical convexity of quadratic functions on spherically convex sets. In particular, conditions characterizing the spherical convexity of quadratic functions on spherical convex sets associated to the positive orthants and Lorentz cones are given

    Complementarity and related problems

    Get PDF
    In this thesis, we present results related to complementarity problems. We study the linear complementarity problems on extended second order cones. We convert a linear complementarity problem on an extended second order cone into a mixed complementarity problem on the non-negative orthant. We present algorithms for this problem, and exemplify it by a numerical example. Following this result, we explore the stochastic version of this linear complementarity problem. Finally, we apply complementarity problems on extended second order cones in a portfolio optimisation problem. In this application, we exploit our theoretical results to find an analytical solution to a new portfolio optimisation model. We also study the spherical quasi-convexity of quadratic functions on spherically self-dual convex sets. We start this study by exploring the characterisations and conditions for the spherical positive orthant. We present several conditions characterising the spherical quasi-convexity of quadratic functions. Then we generalise the conditions to the spherical quasi-convexity on spherically self-dual convex sets. In particular, we highlight the case of spherical second order cones

    Inhomogeneous extreme forms

    Get PDF
    G.F. Voronoi (1868-1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs. By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical coverings we consider lattices giving, at least locally, very uneconomical ones. We classify local covering maxima up to dimension 6 and prove their existence in all dimensions beyond. New phenomena arise: Many highly symmetric lattices turn out to give uneconomical coverings; the covering density function is not a topological Morse function. Both phenomena are in sharp contrast to the packing problem.Comment: 22 pages, revision based on suggestions by referee, accepted in Annales de l'Institut Fourie

    The S-Procedure via dual cone calculus

    Get PDF
    Given a quadratic function h that satisfies a Slater condition, Yakubovich’s S-Procedure (or S-Lemma) gives a characterization of all other quadratic functions that are copositive with hh in a form that is amenable to numerical computations. In this paper we present a deep-rooted connection between the S-Procedure and the dual cone calculus formula (K1∩K2)∗=K1∗+K2∗(K_{1} \cap K_{2})^{*} = K^{*}_{1} + K^{*}_{2}, which holds for closed convex cones in R2R^{2}. To establish the link with the S-Procedure, we generalize the dual cone calculus formula to a situation where K1K_{1} is nonclosed, nonconvex and nonconic but exhibits sufficient mathematical resemblance to a closed convex one. As a result, we obtain a new proof of the S-Lemma and an extension to Hilbert space kernels

    Estimation with Norm Regularization

    Full text link
    Analysis of non-asymptotic estimation error and structured statistical recovery based on norm regularized regression, such as Lasso, needs to consider four aspects: the norm, the loss function, the design matrix, and the noise model. This paper presents generalizations of such estimation error analysis on all four aspects compared to the existing literature. We characterize the restricted error set where the estimation error vector lies, establish relations between error sets for the constrained and regularized problems, and present an estimation error bound applicable to any norm. Precise characterizations of the bound is presented for isotropic as well as anisotropic subGaussian design matrices, subGaussian noise models, and convex loss functions, including least squares and generalized linear models. Generic chaining and associated results play an important role in the analysis. A key result from the analysis is that the sample complexity of all such estimators depends on the Gaussian width of a spherical cap corresponding to the restricted error set. Further, once the number of samples nn crosses the required sample complexity, the estimation error decreases as cn\frac{c}{\sqrt{n}}, where cc depends on the Gaussian width of the unit norm ball.Comment: Fixed technical issues. Generalized some result
    • …
    corecore