1,990 research outputs found

    Fat 4-polytopes and fatter 3-spheres

    Full text link
    We introduce the fatness parameter of a 4-dimensional polytope P, defined as \phi(P)=(f_1+f_2)/(f_0+f_3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4-polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness \phi(P)>5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.Comment: 12 pages, 12 figures. This version has minor changes proposed by the second refere

    The EtE_t-Construction for Lattices, Spheres and Polytopes

    Full text link
    We describe and analyze a new construction that produces new Eulerian lattices from old ones. It specializes to a construction that produces new strongly regular cellular spheres (whose face lattices are Eulerian). The construction does not always specialize to convex polytopes; however, in a number of cases where we can realize it, it produces interesting classes of polytopes. Thus we produce an infinite family of rational 2-simplicial 2-simple 4-polytopes, as requested by Eppstein, Kuperberg and Ziegler. We also construct for each d3d\ge3 an infinite family of (d2)(d-2)-simplicial 2-simple dd-polytopes, thus solving a problem of Gr\"unbaum.Comment: 21 pages, many figure

    Six topics on inscribable polytopes

    Full text link
    Inscribability of polytopes is a classic subject but also a lively research area nowadays. We illustrate this with a selection of well-known results and recent developments on six particular topics related to inscribable polytopes. Along the way we collect a list of (new and old) open questions.Comment: 11 page

    Non-projectability of polytope skeleta

    Get PDF
    We investigate necessary conditions for the existence of projections of polytopes that preserve full k-skeleta. More precisely, given the combinatorics of a polytope and the dimension e of the target space, what are obstructions to the existence of a geometric realization of a polytope with the given combinatorial type such that a linear projection to e-space strictly preserves the k-skeleton. Building on the work of Sanyal (2009), we develop a general framework to calculate obstructions to the existence of such realizations using topological combinatorics. Our obstructions take the form of graph colorings and linear integer programs. We focus on polytopes of product type and calculate the obstructions for products of polygons, products of simplices, and wedge products of polytopes. Our results show the limitations of constructions for the deformed products of polygons of Sanyal & Ziegler (2009) and the wedge product surfaces of R\"orig & Ziegler (2009) and complement their results.Comment: 18 pages, 2 figure
    corecore