14,022 research outputs found

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201

    Spaceprint: a Mobility-based Fingerprinting Scheme for Public Spaces

    Get PDF
    In this paper, we address the problem of how automated situation-awareness can be achieved by learning real-world situations from ubiquitously generated mobility data. Without semantic input about the time and space where situations take place, this turns out to be a fundamental challenging problem. Uncertainties also introduce technical challenges when data is generated in irregular time intervals, being mixed with noise, and errors. Purely relying on temporal patterns observable in mobility data, in this paper, we propose Spaceprint, a fully automated algorithm for finding the repetitive pattern of similar situations in spaces. We evaluate this technique by showing how the latent variables describing the category, and the actual identity of a space can be discovered from the extracted situation patterns. Doing so, we use different real-world mobility datasets with data about the presence of mobile entities in a variety of spaces. We also evaluate the performance of this technique by showing its robustness against uncertainties

    Video analytics system for surveillance videos

    Get PDF
    Developing an intelligent inspection system that can enhance the public safety is challenging. An efficient video analytics system can help monitor unusual events and mitigate possible damage or loss. This thesis aims to analyze surveillance video data, report abnormal activities and retrieve corresponding video clips. The surveillance video dataset used in this thesis is derived from ALERT Dataset, a collection of surveillance videos at airport security checkpoints. The video analytics system in this thesis can be thought as a pipelined process. The system takes the surveillance video as input, and passes it through a series of processing such as object detection, multi-object tracking, person-bin association and re-identification. In the end, we can obtain trajectories of passengers and baggage in the surveillance videos. Abnormal events like taking away other's belongings will be detected and trigger the alarm automatically. The system could also retrieve the corresponding video clips based on user-defined query

    EEG Searchlight Decoding Reveals Person- and Place-specific Responses for Semantic Category and Familiarity.

    Get PDF
    Proper names are linguistic expressions referring to unique entities, such as individual people or places. This sets them apart from other words like common nouns, which refer to generic concepts. And yet, despite both being individual entities, one's closest friend and one's favorite city are intuitively associated with very different pieces of knowledge-face, voice, social relationship, autobiographical experiences for the former, and mostly visual and spatial information for the latter. Neuroimaging research has revealed the existence of both domain-general and domain-specific brain correlates of semantic processing of individual entities; however, it remains unclear how such commonalities and similarities operate over a fine-grained temporal scale. In this work, we tackle this question using EEG and multivariate (time-resolved and searchlight) decoding analyses. We look at when and where we can accurately decode the semantic category of a proper name and whether we can find person- or place-specific effects of familiarity, which is a modality-independent dimension and therefore avoids sensorimotor differences inherent among the two categories. Semantic category can be decoded in a time window and with spatial localization typically associated with lexical semantic processing. Regarding familiarity, our results reveal that it is easier to distinguish patterns of familiarity-related evoked activity for people, as opposed to places, in both early and late time windows. Second, we discover that within the early responses, both domain-general (left posterior-lateral) and domain-specific (right fronto-temporal, only for people) neural patterns can be individuated, suggesting the existence of person-specific processes

    Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area

    Full text link
    Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of general clustering of the cases.Comment: 21 pages including 4 figures and 5 tables; methods are implemented in the R package surveillance (https://CRAN.R-project.org/package=surveillance

    Spatio-temporal dynamics and laterality effects of face inversion, feature presence and configuration, and face outline

    Get PDF
    Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit
    • …
    corecore