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Abstract

Proper names are linguistic expressions referring to unique entities,
such as individual people or places. This sets them apart from other words
like common nouns, which refer to generic concepts. And yet, despite both
being individual entities, one’s closest friend and one’s favourite city are
intuitively associated with very different pieces of knowledge - face, voice,
social relationship, autobiographical experiences for the former, mostly
visual and spatial information for the latter. Neuroimaging research has
revealed the existence of both domain-general and domain-specific brain
correlates of semantic processing of individual entities; however, it re-
mains unclear how such commonalities and similarities operate over a
fine-grained temporal scale. In this work we tackle this question using
EEG and multivariate (time-resolved and searchlight) decoding analy-
ses. We look at when and where we can accurately decode the semantic
category of a proper name, and whether we can find person- or place-
specific effects of familiarity, which is a modality-independent dimension
and therefore avoids sensorimotor differences inherent among the two cat-
egories. Semantic category can be decoded in a time window and with
spatial localization typically associated with lexical semantic processing.
Regarding familiarity, our results reveal that it is easier to distinguish pat-
terns of familiarity-related evoked activity for people, as opposed to places,
in both early and late time windows. Second, we discover that within the
early responses, both domain-general (left posterior-lateral) and domain-
specific (right fronto-temporal, only for people) neural patterns can be
individuated, suggesting the existence of person-specific processes.
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1 Introduction

Proper names refer to individual entities, also called unique entities or individ-
ual concepts– personally and socially relevant entities such as people, places,
pets, or works of art (Jeshion, 2009; Semenza, 2009, 2022). In cognitive neuro-
science, people and geographical places are the two semantic categories whose
proper names seem to most clearly involve entity-specific semantic processes in
the brain, differing from those involved with generic (non-individual) entities
(Martins & Farrajota, 2007; Desai, Tadimeti, & Riccardi, 2022).

Theories of individual entities proposed in cognitive neuroscience, building
on decades of results (reviewed in (O’Rourke & de Diego Balaguer, 2020; Se-
menza, 2022; Kaminski, Bowren Jr, Manzel, & Tranel, 2022)), state that all
proper names, no matter whether they refer to people or places, involve the same
kind of semantic processing in the brain, specific to unique entities - ‘individual
semantics’ (Semenza, 2009) - as opposed to words referring to generic semantic
knowledge such as common nouns. This proposal links back to a tradition in
philosophy of language and semantics which emphasizes that, whereas common
nouns refer to classes of entities, proper names refer to individual members of
those classes and therefore involve special referential processes (Cumming, 2019;
Murez & Recanati, 2016; Michaelson & Reimer, 2022). For instance, the com-
mon noun philosopher refers to the generic concept “a person who studies or
writes about philosophy”1. Such a concept can apply to many referents, such as
the individuals called Plato, William of Ockham, Gilles Deleuze. By contrast,
the proper name Socrates in a context such as “Socrates is the protagonist
of many of Plato’s dialogues” only refers to the one and only original Greek
philosopher.

However, other semantic theories in neuroscience have proposed that, when
processing semantic information related to people, the brain makes use of ded-
icated and possibly prioritary processes, pathways or resources, different from
those employed for individual entities from other domains such as places. Such
accounts are rooted in evolutionary (Miceli et al., 2000; Mahon & Caramazza,
2011) or social (Olson, McCoy, Klobusicky, & Ross, 2013) considerations: neu-
ral pathways specific to people would have emerged in the brain from the need
to quickly and accurately bind together multimodal (the physical traits of a
person, their voice), affective (the emotions they generate), and social (the rela-
tionship in which they stand with you) information, as well as episodic (shared
autobiographic experiences) and other (e.g. what they like doing, where they
worked) memories.

We can find functional magnetic resonance imaging (fMRI) evidence com-
patible with both views: some studies report common neural bases for people
and places (Kaminski et al., 2022) whereas others report differences (Morton,
Zippi, Noh, & Preston, 2021). The brain areas that appear to be activated for
individual entities of both types are mainly the temporal poles and orbital pre-
frontal cortex (O’Rourke & de Diego Balaguer, 2020). These locations have been

1Definition retrieved from https://www.oxfordlearnersdictionaries.com/definition/

american english/philosopher
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associated with entity-level, amodal, domain-general semantic representations
(Gorno-Tempini et al., 1998; Leonardelli, Fait, & Fairhall, 2019). Category-
specific areas have been explained as reflecting access to domain-specific knowl-
edge. For people, they consist of an anterior temporal network including the
inferior temporal and orbitofrontal cortices, as well as the amygdala. For places,
by contrast, it’s a posterior medial network involving the angular gyrus, the pre-
cuneus and the parahippocampal cortex (Morton et al., 2021).

A temporal perspective on individual entity processing One gap com-
mon to most existing literature is the lack of evidence about the temporal as-
pect of individual entity processing. Most studies employed fMRI, which offers
great spatial but little temporal detail. Therefore, at the moment it is unclear
to what extent temporal processing of entity-level semantic information shows
similar patterns for the two semantic categories. Filling this gap was one of the
main objectives of this study. In order to study the temporal characteristics
of neural processing of individual concepts, in this work we used high-density
128-channels electroencephalography (EEG), because of its excellent temporal
resolution and insightful spatial detail. Furthemore, we employed multivari-
ate pattern analyses (time-resolved and searchlight Representational Similarity
Analysis decoding), which provide excellent sensitivity without requiring to fit
a model (Anderson, Zinszer, & Raizada, 2016; Morton et al., 2021).

We also used names instead of images, in contrast with previous work on
individual entities. In the vast majority of cases (an exception is, for instance,
(Leonardelli et al., 2019)), pictures are used as input to activate semantic pro-
cessing. This is usually done to ensure a stronger signal in the brain data
than the one elicited by written text (Shinkareva, Malave, Mason, Mitchell, &
Just, 2011; Simanova, Hagoort, Oostenveld, & Van Gerven, 2014). However, as
pointed out for instance in (Just, Cherkassky, Aryal, & Mitchell, 2010; Simanova
et al., 2014), this choice in experimental design has the main disadvantage of
capturing entity representations biased towards a given modality. By using
pictural stimuli, the recorded brain activity will inevitably represent specific
instances of the picture presented, with strong dominance of its visual features.
What’s more, this effect is particularly strong for EEG signals. First, notable
differences in timing of semantic activation across the written and the picto-
rial modality emerge (Simanova, Van Gerven, Oostenveld, & Hagoort, 2010;
Leonardelli et al., 2019). Secondly, low-level categorical differences in visual
features across distinct categories, such as people and places, are particularly
salient - in other words, processing a face and a scene are quite different pro-
cesses (de Beeck, Pillet, & Ritchie, 2019). Therefore, we decided to use names
as inputs, in order to be able to capture semantic information about individual
entities whose activation is independent of sensory modalities.

Familiarity We investigated temporal and spatial commonalities and differ-
encies within brain processing for different types of individual concepts through
the lens of familiarity, which is considered to be a fundamental component
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of semantic representations of individual entities in the brain (Gainotti, 2015;
Schweinberger & Neumann, 2016). Familiarity is an ideal dimension to com-
pare brain processing of people and places for two reasons. First of all, it is not
modality-specific - that is, it allows to compare semantic processing for people
and places without the inevitable confounds which are related to sensorimotor
differences in the representation of the two categories (Morton et al., 2021).
Secondly, it is an open question whether there exist person-specific familiarity
effects on ERPs, given their special cognitive salience (Scott, Tanaka, Sheinberg,
& Curran, 2006; Pierce et al., 2011; Ross & Olson, 2012; Devillez et al., 2019;
Klink, Kaiser, Stecher, Ambrus, & Kovacs, 2023). Tackling this question lets
us, in turn, provide original evidence with respect to which elements of entity
representations in the brain are domain-specific (Gorno-Tempini et al., 1998;
Fairhall, Anzellotti, Ubaldi, & Caramazza, 2014; Leonardelli et al., 2019).

To this aim, we collected and analyzed evoked responses to a balanced set
of famous and personally familiar people and places from thirty-three subjects.
We chose to use famous entities as counterparts to personally familiar enti-
ties, instead of completely unknown entities, because of our focus on semantic
processing. For semantic processing to take place, subjects need to be able to
retrieve some previously acquired knowledge about the entity - something which
would be impossible with unknown entities. At the same time, we wanted to
ensure enough quantitative differences could emerge between personally familiar
and famous stimuli. As a consequence of this, we selected for our set of stimuli
famous entities which are moderately, but not extremely well known (see Sec-
tion 2.1). In this respect we build on (Wiese et al., 2021) . There, it was shown
that even if ERPs for personally familiar and famous faces show qualitatively
similar responses (i.e. they affect the same ERP components), they can be
successfully teased apart quantitatively (i.e. in terms of response magnitude).
In other words, we assume, after (Wiese et al., 2021) , that familiarity effects
on ERPs are graded. In this view, in terms of familiarity, entities are placed
along a continuum from completely unknown to personally familiar entities -
and ERP correlates of familiarity reflect this gradient. Selecting famous enti-
ties with whom subjects are only moderately familiar allows to elicit semantic
processing, while maintaining a clear quantitative distinction with a subject’s
closest personally familiar people and places.

More specifically, we looked at the first 800 milliseconds after stimulus pre-
sentation, where previous work on identity recognition from faces, as well as
lexical and memory retrieval, has found significant effects. We also consider
time frames previously associated with face processing, despite using names as
stimuli, for two reasons. First of all, these are ERP components where non-
visual, higher level semantic processing is thought to take place. If this is the
case, then we can expect to find brain activity related to person semantic knowl-
edge in those time ranges, even when using as stimuli person names instead of
faces. Secondly, as it is not clear whether effects in such components are domain-
specific or not - i.e. whether they hold also for other types of individual entities
such as places, our experiments allow to test this hypothesis.

The first effect is the N250, happening between 200-300ms, which has been
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proposed as the main early marker of face familiarity (Tacikowski, Jednoróg,
Marchewka, & Nowicka, 2011; Schweinberger & Neumann, 2016).

The second is the N400, found between 300 and 500ms. The N400 has
been found to be reliably modulated by a large number of semantic phenomena.
These can be linguistic (among others: word expectancy, priming, repetition,
frequency, concreteness - both for words in isolation and within sentences) as
well as non-linguistic (e.g. images, sounds) (Kutas & Federmeier, 2011) . Since
the range of semantic phenomena affecting the N400 is extremely broad, a uni-
fied theoretical account of the N400 as a marker of semantic processing is still
missing (Rabovsky, Hansen, & McClelland, 2018; Delogu, Brouwer, & Crocker,
2019; Eddine, Brothers, & Kuperberg, 2022; Šoškić, Jovanović, Styles, Kappen-
man, & Ković, 2022) . However, crucially for our focus, a number of previous
studies found that the time range of the N400 can be modulated by various types
of aspects of semantic processing of individual entities - including the ones mod-
ulated in our experiment: categorical information (Bruera & Poesio, 2022) ; face
familiarity, since a familiarity-induced counterpart of the N400, the FN400, has
also been observed (Curran & Hancock, 2007) (although it’s not clear whether
the two are actually functionally identical or not (Voss & Federmeier, 2011;
Bridger, Bader, Kriukova, Unger, & Mecklinger, 2012; Leynes, Bruett, Krizan,
& Veloso, 2017)) ; and additionally, the difference between proper names and
common nouns (Proverbio, Lilli, Semenza, & Zani, 2001; Proverbio, Mariani,
Zani, & Adorni, 2009; Adorni, Manfredi, & Proverbio, 2014; Sulpizio & Job,
2018) .

In a later time window (500-800ms) two ERP components have been ob-
served. First, the Sustained Familiarity Effect (SFE), peaking at around 600ms
(Wiese et al., 2019; Dalski, Kovács, & Ambrus, 2022; Li, Burton, Ambrus, &
Kovács, 2022), which has been put forward as the most solid effect for face
familiarity. Secondly, the late positive component (LPC), between 500-800ms,
has been consistently associated with explicit access to semantic information,
such as access to episodic memory (Rugg & Curran, 2007; Renoult et al., 2016;
Dimsdale-Zucker, Maciejewska, Kim, Yonelinas, & Ranganath, 2022).

Decoding analyses We ran two sets of decoding analyses.
First, we wanted to obtain direct indication of the spatio-temporal loci where

the two semantic categories can be distinguished. To do so, we looked at when
and where we can decode whether a brain response was evoked by the name of a
person or a place. Furthermore, we did so separately for famous and personally
familiar entities, providing initial evidence with respect to the interplay between
familiarity and categorical information.

We expected, according to previous literature (Proverbio et al., 2001; Bruera
& Poesio, 2022) , to be able to decode information about semantic categories
for both people and places within the N400 time range, distributed over centro-
temporal electrodes.

Then, we delved deeper into the interaction between semantic category and
familiarity by flipping the direction of the decoding. In this second analysis
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we tried to correctly classify responses according to whether they were evoked
by personally familiar or famous entities, comparing decoding performance for
people and places.

We predicted that we would be able to find information related to stimulus
familiarity across all time ranges for the components described in the ERP lit-
erature, with varying spatial distributions over the scalp - right fronto-temporal
and occipito-temporal for the N250 (Tacikowski et al., 2011; Schweinberger &
Neumann, 2016) ; centro-temporal for the F/N400 (Curran & Hancock, 2007) ;
posterior-temporal for the SFE/LPC (Rugg & Curran, 2007; Wiese et al., 2019)
. Based on (Tanaka, Curran, Porterfield, & Collins, 2006) , and consistently with
cognitive theories regarding proper names and individual entities(Kaminski et
al., 2022; Semenza, 2022) , we further hypothesized that people and places
should exhibit similar patterns in terms of decoding across all time ranges.

In this respect, such similarities in decoding patterns of familiarity among
people and places would support the existence of domain-general (irrespective of
semantic category) responses to familiarity; on the contrary, differences would
highlight domain-specific (either person- or place-) processing related to famil-
iarity with the stimuli.

Results Our decoding analyses reveal both domain-general and domain-specific
markers of processing of familiarity.

Regarding the former, information related to familiarity can be decoded in
all time windows, and in overlapping spatial clusters of electrodes, from both
people and places.

For the latter, easier processing of individual identity for people is indicated
by two factors: consistently higher decoding scores and more wide-spread spatial
clusters where decoding is significantly above chance. Furthermore, person-
specific clusters are found in right fronto-temporal and temporo-parietal areas,
especially in the early N250 time range.

Such interaction between familiarity and semantic categories in brain rep-
resentations of individual entities is also confirmed when decoding information
related to semantic categories.

The semantic category of a stimulus can be decoded from ERPs within time
and spatial ranges where processing of lexical semantics has been shown to take
place (300-800ms, in centro-parietal and bilateral fronto-temporal electrodes).
We nevertheless find that the less familiar the individual entities, the harder
it is to carry out the decoding. In particular, exploiting spatially distributed
patterns is crucial to find categorical semantic information in brain activity for
famous entities - something which is not required for personally familiar entities.
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Figure 1: Schematic diagram of the experimental setup. Our stimuli
were divided into two sets. The first set were proper names for sixteen famous
individual entities (eight people and eight places), selected by controlling for
familiarity, imageability and name length. The second set were sixteen proper
names for personally familiar people and places (eight names for each category),
which were obtained by asking each participant to provide the names themselves.
Then we collected the EEG data, and carried out separately for each participant
two decoding analyses - first, decoding semantic category (person vs place) and
then decoding familiarity (personally familiar vs famous).
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2 Methods

2.1 Stimuli

Famous entities We selected eight famous people and eight famous places
to be used as stimuli across all participants (see Figure 1, left). These stimuli
are balanced in terms of name length, familiarity, and imageability. We selected
them from a larger set of 100 stimuli for which we obtained familiarity and
imageability ratings from separate sets of subjects (33 subjects for familiarity
and 30 for imageability). All subjects for the norming experiments were native
speakers of Italian, and none of them took part to the EEG experiment. The
final list of famous stimuli, as well as the familiarity and imageability norms,
can be found together with the publicly available code.

Name length is overall 13.5 on average; average person name length is 14.1,
while average place name length was 13, and the difference across categories
is not significant (t = 0.68, p = 0.5). Before the EEG experiment took place,
we ensured that, for all famous entities, our subjects had not either personally
known the person or visited the place. Only two subjects had visited one of the
famous places selected as experimental stimuli. In those cases we substituted the
names with other place names matched for length, familiarity and imageability.

Familiarity with an entity was defined in the same way as in (Moore &
Valentine, 2020) - a quantification on a scale from 1 to 5 of the number of
cumulative encounters with an individual entity, across time and media. The
average familiarity overall is 3.59; average familiarity for people is 3.75, while for
places it is 3.44, and the difference across categories is not statistically significant
(t = 1.42, p = 0.18). As discussed above (see Section 1) we decided to select as
stimuli entities which are moderately well known, but not extremely so. This
was done in order to ensure a clear-cut quantitative difference in familiarity
between personally familiar and famous individual entities.

Imageability was measured in a separate norming experiment. Following
(Paivio, Yuille, & Madigan, 1968), imageability was defined as the ease or diffi-
culty of arousing a mental image. We chose to control imageability since, during
the experiment, subjects were asked to read a name and picture their referent
mentally (see Section 2.2). We used a scale from 1 to 7, which is the most com-
mon one in imageability rating experiments (Rofes et al., 2018). The average
imageability across all entities is 4.97. Average imageability for people is 5.17,
while average imageability for places is 4.78. The difference between the two is
not statistically significant (t = 0.88, p = 0.39).

Personally familiar entities Before starting the EEG experiment, we asked
participants to provide the names for eight people and eight places (see Figure
1, left). For people, we followed research on social circles (Dunbar, 1998; Zhou,
Sornette, Hill, & Dunbar, 2005) and focused, in our definition, on members
of the so-called ‘support clique’, which consists of people with whom one has
a positive relationship, is in touch regularly, and from whom one would seek
personal advice or help (Hill & Dunbar, 2003). For places, given a lack of
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relevant literature, we tried to mirror as closely as possible the definition given
for people – in this sense, ‘support places’ are places with which an individual
has a special, positive relationship, and where one would (if possible) return to
when in a situation of distress.2. Notice that participants were not only asked
to provide names, but also to provide either the person’s occupation or the type
of place (i.e. monument, city, river, etc.), to be used during the experimental
paradigm (see below). Also, subjects were asked to respond to a questionnaire,
that will be analyzed in future work.

In the case of personally familiar names, we could not control name length,
since participants came up themselves with the names. Therefore, we implement
in the analyses a procedure for explicitly removing all variance associated with
name length from the EEG data, described below in Section 2.4.

Additionally, we were not able to control for familiarity and imageability for
personally familiar names. For both variables, we assumed that no significant
differences would be present within such small sets of personally familiar enti-
ties and we decided not to remove the variance associated with them from the
data. We took this choice because of two reasons. First of all, we reckoned that
the way in which we elicited the stimuli would act as a ‘soft’ way of controlling
these variables: having only eight exemplars ensures that only the participants’
closest - and therefore extremely imageable and familiar - people and places be-
long to these sets. This reduces dramatically their variance in both imageability
and familiarity, both within and across semantic categories, without enforcing
a ‘hard’ confound control procedure. In other words, we assume that, because
of this ‘soft’ confound control, for both personally familiar people and places,
imageability and familiarity scores would be around the ceiling value. Secondly,
the confound removal procedure should be limited as much as possible since it
is extremely aggressive, in that it removes all information correlated with each
variable (Snoek, Miletić, & Scholte, 2019; More, Eickhoff, Caspers, & Patil,
2021) , thus also inadvertently cancelling non-confounded parts of the signal.
Therefore we chose to limit our confound removal procedure to word length.
The variance for the names’ lengths would inevitably be much bigger than the
variance for imageability or familiarity, as it could not be controlled at all (nei-
ther in a ‘soft’ nor in a ‘hard’ fashion). Also, the effect of word length on ERPs is
notoriously dominant when left uncontrolled (Hauk, Davis, Ford, Pulvermüller,
& Marslen-Wilson, 2006).

2.2 Experiment

Thirty-three right-handed subjects (age from 20 to 31 years old, with 21 female
participants) took part to the experiment. No participant was excluded from
the analyses, since task accuracy was always extremely high (see Section 3.1).
As the experiment was conducted in Italian, all the subjects were native Italian
speakers. All experimental procedures were approved by the Ethical Committee

2We provide together with the code the text of the specific instructions given to the sub-
jects, translated to English

10



of the institution where the data were collected, and subjects gave their written
informed consent.

2.2.1 Sample sizes

The number of subjects (thirty-three) was chosen following (Boudewyn, Luck,
Farrens, & Kappenman, 2018) . There, the authors investigated the effects of
the amount of subjects in a study on the power to detect a significant effect in
an ERP study. Considering thirty-two participants as their upper limit, they
found that as the amount of subjects increased, statistical power dramatically
improved. Therefore, we took their upper limit as our estimated required sample
size (thirty-three). Additionally, as reported in (Šoškić et al., 2022) , only 2.27%
of all the EEG studies investigating the N400 had more than 31 subjects -
making our sample size very high when contrasted to similar studies.

The number of stimuli and the number of trials for each stimulus were cho-
sen following recommendations relevant for our multivariate analyses (decoding
using a model based on Representational Similarity Analysis - see Section 2.4).

Regarding the number of trials, as described in (Grootswagers, Wardle, &
Carlson, 2017) , in EEG a higher number of trials per stimulus entails higher
decoding performance. This is because trial-specific random noise can be ef-
fectively cancelled out by averaging multiple trials together. As indicated in
(Grootswagers et al., 2017) , optimal increase in performance against increase
in the number of trials is obtained by using between sixteen and thirty-two
trials. Therefore we opted for twenty-four trials.

The remaining choice was the number of stimuli, which we set to thirty-two
in total, having eight stimuli per sub-category (personally familiar people, per-
sonally familiar places, famous people, famous places). This number had to be
limited because of three factors. First, we could not run multiple sessions per
participant, thus forcing us to limit as much as possible the amount of stimuli
per condition. Secondly, we wanted to have a set of personally familiar indi-
vidual entities with whom a subject would have little variability in terms of
familiarity. As an empirical guideline to estimate the size of this set, we looked
at research on social circles (Dunbar, 1998; Hill & Dunbar, 2003; Zhou et al.,
2005) . There it was found that the two closest social circles for individuals, the
so-called support circle and the sympathy group, whose definitions we employed
to elicit the personally familiar names (see Section 2.1), count on average re-
spectively 5 and 12 persons. This provided us with approximate boundary sizes
for each set of personally familiar entities (people and places) . Finally, for
Representational Similarity Analysis, the minimum recommended number of
stimuli per experimental condition is seven (Nili et al., 2014) . Considering all
these constraints, we chose to have eight stimuli for each of the four conditions
(subcategories), resulting in thirty-two stimuli per subject overall.
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2.2.2 Experimental paradigm

Before the EEG experiment, participants provided names and occupations or
types of places for sixteen personally familiar people and places (eight names
for each category). These names were then used as one half of the experimental
stimuli, the other half being the set of sixteen names for famous people and
places previously selected (see Section 2.1). While recording EEG data, par-
ticipants took part to twenty-four experimental runs, during which each name
would appear once, in randomized order.

Within each run, names were preceded by a fixation cross. They appeared
on screen for 500 milliseconds, followed by a fixation cross lasting 1 second.
Subjects were instructed to think about the referent of the proper name, as in
(Pereira et al., 2018), and mentally picture it. As in (Bruera & Poesio, 2022) ,
mental imagery was added to the task in order to improve entity-specific signal
across trials in recorded brain activity. Making subjects focus on visual features,
which are crucial in mental representations of individual entities (Anzellotti
& Caramazza, 2017; Tsantani, Kriegeskorte, McGettigan, & Garrido, 2019;
Semenza, 2022) , makes subjects avoid mind wandering and allows to capture
more coherent entity representations. Importantly, this (thinking of a name’s
referent and picturing it) is the only evoked response (ERP) which is being
analyzed in decoding: t = 0ms is the time where the fixation cross appears after
the name has been presented, and the last time point considered, t = 800ms,
still falls within the fixation cross’ time on screen.

After this, a randomized binary yes/no question appeared on screen, to which
subjects had to answer using two keys (’k’ for yes, ’d’ for no; this mapping was
used for the whole experiment). Questions were added to keep subjects attentive
to the stimuli and on their meaning, while collecting additional data regarding
semantic processing of individual entities (see Section 3.1 for the results). To
avoid systematic confounds in the ERPs that could be due to both strategic
preparation from the participants and motor activity triggered by pressing a
key, questions were randomly sampled. Also, participants were instructed to
respond as accurately as possible, and that there was no time pressure. The
randomization procedure involved two types of questions – coarse-category ques-
tions such as ‘is it a person/place?’, and fine-grained questions such as ‘does the
name refer to a student?’ or ‘does the name refer to a city?’, a methodology
previously used in (Leonardelli et al., 2019; Bruera & Poesio, 2022). In the case
of fine-grained questions, also the occupation or place type was randomized.
Questions were balanced between yes/no answers.

At the end of the experiment, each name had been repeated twenty-four
times, and twenty-four ERPs for each individual entities had been obtained. Be-
fore entering the analyses, all the ERPs for each individual entity were averaged
to improve the signal-to-noise ratio - following common practice in decoding
studies for EEG, as discussed above (Grootswagers et al., 2017) .
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2.3 EEG data collection and preprocessing

The EEG data was collected using a BIOSEMI ActiveTwo system with 128
channels, recording unfiltered signals at a sampling rate of 2048Hz. We also
collected signals from two electro-oculogram channels (EOG) so as to be able
to use them later for artifact rejection with Independent Component Analysis
(ICA; details below). For preprocessing, we adapted an automated procedure
using MNE (Gramfort et al., 2013), which was validated in (Jas et al., 2018) and
whose main steps we briefly report here. The full implementation is available
together with the code provided.

First, we set the montage to the MNE default for the 128-channel BIOSEMI
system.3 Then we applied a low-pass filter to the ERP data to 80Hz, we epoched
the data and subsampled it to 256hz (Luck, 2014). To remove eye-movement
artifacts, we used the ICA-based artifact rejection procedure of (Jas et al., 2018).
We computed the independent components from the evoked data, and then
removed the components with the highest correlation with the EOG channels.
We applied baseline correction computing the average of the signal between -
100 and 0 ms before stimulus appearance. Finally, we identified bad epochs
and interpolated bad channels using the autoreject algorithm (Jas, Engemann,
Bekhti, Raimondo, & Gramfort, 2017). Before entering the analyses, we set the
reference for the EEG data to the grand average.

The final preprocessing step was removing all the variance associated with
word length from the EEG signal using cross-validated confound regression,
which was validated in (Todd, Nystrom, & Cohen, 2013; Snoek et al., 2019) and
whose implementation is publicly available.

2.4 Decoding

We ran two decoding analyses – namely, two classification tasks where the target
labels are two sets of binary categories. We learned to classify evoked responses
into patterns of brain activity related to 1. people as opposed to places, then
2. famous as opposed to personally familiar entities. We also looked at the
interaction between familiarity and semantic category by running the classifica-
tion separately within each subset of stimuli (for instance, learning to classify
responses to personally familiar entities only into person- or place- related).

Following customary practice in EEG decoding (Grootswagers et al., 2017) ,
analyses were carried out separately for each individual subject (within-subject
decoding analysis). In this framework, a measurement of the overall accuracy
is obtained by averaging subject-level average accuracies. Measures of accuracy
for decoding analyses can be interpreted as reflecting non-standardized effect
sizes (Hebart & Baker, 2018). Since no procedure for the standardization of
effect sizes for multivariate decoding is available, it is important to underline
that decoding scores are not directly comparable across studies.

3A visualization of the montage, together with the codes for the channels, is included in
the publicly available code and can be retrieved at https://www.biosemi.com/pics/cap 128

layout medium.jpg.
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Representational Similarity Decoding
As a methodology for decoding we used the Representational Similarity

Analysis (RSA) decoding approach of (Anderson et al., 2016). RSA decod-
ing does not require fitting a model: it just relies on pairwise similarities among
representations, as in the more general RSA framework (Kriegeskorte, Mur, &
Bandettini, 2008). This methodology has many advantages when compared to
approaches requiring to fit a model: it is computationally extremely lightweight,
it avoids the risk of overfitting, it is straightforwardly interpretable within the
general RSA framework and it provides excellent performance (Anderson et al.,
2016). The goal of RSA is to compare, given a set of stimuli, the so-called ‘rep-
resentational structures’ or ‘spaces’ (Kriegeskorte et al., 2008; Diedrichsen &
Kriegeskorte, 2017) of brain and model representations, quantifying how simi-
lar the two are with one another. The fundamental intuition behind the original
RSA is that the representational structures of both brain and model represen-
tations can be captured in a common way by looking at pairwise similarities
between stimuli.

To provide an example for our case, in our model based on semantic cate-
gories each stimulus is associated with a set of discrete and mutually exclusive
labels (e.g. either person or place). Such labels can be transformed into num-
bers via numerical coding (person = 1, place = 0). This allows to represent
numerically distances (and similarities) straightforwardly: if two stimuli both
refer to a person, their distance will be 0 (because dist = abs(1 − 1) = 0),
and their similarity 1 (because sim = 1 − dist = 1); and vice versa. In the
terminology of RSA presented above, this can be used to define the repre-
sentational space for a set of stimuli in terms of all possible pairwise simi-
larities/distances. Suppose we take a toy example involving as stimuli a =
Marseille, b = Trieste, c = Lise Meitner, d = Toni Morrison. Its represen-
tational space in terms of semantic categories (person = 1, place = 0) would be
given by [sim(a, b), sim(a, c), sim(a, d), sim(b, c), sim(b, d), sim(c, d)] = [1, 0, 0, 0, 0, 1].
An equivalent approach can be taken for ERPs. The only difference is that each
pairwise distance/similarity is then defined as Pearson correlation among re-
sponses evoked by different stimuli (for example, using fictional similarities,
[0.8, 0.1, 0.15, 0.2, 0.08, 0.75]).

RSA decoding (Anderson et al., 2016) expands on this hunch by adapting it
to a machine learning approach (Pereira, Mitchell, & Botvinick, 2009) . In this
framework, the goal is learning to classify multivariate brain patterns evoked
by experimental stimuli into their categories (e.g. learning to recognize whether
a given ERP was evoked by a person or a place). The ability to carry out
such classification (decoding) is interpreted as indicating the presence of the
relevant information in patterns of brain activity - for instance, information
regarding specific semantic categories (Naselaris, Kay, Nishimoto, & Gallant,
2011) . Such a multivariate classification approach, therefore, is naturally suited
to our research question - finding out where and when different types of semantic
information about individual entities can be found in ERPs.

In RSA decoding, given a set of stimuli of size N for which matched ERPs
and labels are available, first they are split them into a train set of size N−i and
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a test set of size i. In a typical brain decoding setting, a decoding model (e.g.
a regularized linear regression model) would be trained to learn, based on the
items in the training set, a linear transformation from the brain responses to the
corresponding labels for the items in the test set (Pereira et al., 2009; Naselaris et
al., 2011) . By contrast, in RSA decoding all that is used to decode information
from the brain are pairwise similarities between a test item and all items in the
training data (Anderson et al., 2016) . Each item from the test set (both in the
input space - the brain - and the target space - the labels) is transformed to the
vector of its pairwise similarities to all items in the train set. In the example
above, if a is a test item, and the training set is made of {b, c, d}, then the
transformed representation of a would be â = [sim(a, b), sim(a, c), sim(a, d)]
- both in the input and target spaces. This allows to compare directly the
transformed test items in the input (brain) and target (label) spaces through
Pearson correlation, as now they have the same dimensionality (in our example,
3). In turn, the results can be interpreted in terms of success at decoding, and
evaluated using an appropriate evaluation metric (in our case we used a pairwise
metric; see below for details).

Leave-two out pairwise evaluation As an evaluation metric, we employed
a leave-two-out pairwise evaluation, which is the original metric validated
in (Anderson et al., 2016) and that is often used in brain decoding settings
with limited training data such as ours (Mitchell et al., 2008; Pereira et al.,
2018). In this evaluation, the size of the test set is 2, and the size of the
training set is therefore N − 2. Suppose splitting our toy training/test sets
in a leave-two-out fashion as follows: test = {a, c}, training: train = {b, d}.
Given the two test items, they are first transformed to their pairwise simi-
larities to all items in training set, as described above, both in input (brain;
âinput, ĉinput) and target (labels; âtarget, ĉtarget) spaces. In our example,
â = [sim(a, b), sim(a, d)], and ĉ = [sim(c, b), sim(c, d)]. Then, Pearson cor-
relations among all possible pairs of transformed input and target test items
are computed: sim(âinput, âtarget); sim(âinput, ĉtarget); sim(ĉinput, âtarget);
sim(ĉinput, ĉtarget). Finally, decoding is considered correct (accuracy = 1) if
the sum of the correlations between the correctly matched brain and labels vec-
tors: match = sim(âinput, âtarget) + sim(ĉinput, ĉtarget) is bigger than that of
the mismatching vectors: mismatch = sim(âinput, ĉtarget)+ sim(ĉinput, âtarget)
–i.e. accuracy = 1 if match > mismatch, else accuracy = 0.

This evaluation is carried out for all possible pairs of stimuli (all possible
leave-two-out test sets), and results are averaged in order to provide an evalua-
tion for within-subject decoding accuracy. Since the evaluation is binary (either
1 or 0), the random baseline, which would reflect absence of information relevant
for decoding in the brain, is 0.5.

As anticipated in Sections 2.1 and 2.3 we employed a cross-validated con-
found regression procedure, validated and shown to be unbiased in (Snoek et
al., 2019), in order to control for name length for personally familiar people and
places. This method computes, for each train-test split, the variance associated
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with the confound variable from the train set, and removes it from both the
train and the test data.4.

Time-resolved decoding First we looked at the temporal development of
brain processing using a time-resolved approach. Time-resolved decoding for
EEG consists in running the decoding analyses using all of the electrodes, once
for every time point (Grootswagers et al., 2017). Time points where decoding
is above chance with statistical significance contain information relevant for
decoding (e.g. information about the semantic category of a stimulus). In doing
so, it exploits large-scale, distributed patterns among electrodes – affording
excellent sensitivity, at the expense of local spatial information.

Spatio-temporal searchlight
We also implemented a searchlight decoding analysis in order to look at

where on the scalp categorical and familiarity information can be found. The
searchlight approach in cognitive neuroscience was introduced as a data-driven,
bottom-up approach for multivariate analyses to find clusters of brain activity
selectively associated with a certain experimental condition. The main intu-
ition was that of treating brain activity as data over which minimal assump-
tions should be done: since stimulus-related brain activity is smoothed across
recorded units, this could be exploited to find out, without recurring to regions
of interest defined on the basis of human anatomy, which clusters of recorded
units reflect activity evoked by a given stimulus. The searchlight approach was
originally proposed for fMRI , where the investigated clusters are spatial (vox-
els). However, since brain activity is also smoothed in time, it was recently
adapted to EEG data (Su, Fonteneau, Marslen-Wilson, & Kriegeskorte, 2012),
where clusters of brain activity can take into account both the spatial and the
temporal dimensions. In this approach, spatio-temporal clusters include multi-
ple electrodes and time points, effectively allowing to account for interactions
across these two dimensions. The searchlight approach is in fact rather simple:
it consists of running the multivariate analysis (in our case, decoding) multiple
times, once for every cluster of recorded units (here, spatio-temporal clusters
of electrodes and time points) in the brain. Clusters affording higher decoding
scores can be said to be associated with processing of the given experimental
condition.

This approach provides two main advantages. First of all, it allows to dis-
cover clusters of brain activity which may not be predictable in advance. This
overcomes the limitations of the top-down analytical approach looking only at
regions of interest defined a priori – that can be either spatial (an anatomical
brain area) or temporal (e.g. an ERP component). Secondly, by running a
multivariate analysis within a cluster, it offers more sensitivity than univariate
analyses. A univariate approach considers only the difference in intensity of the
signal for a single variable (e.g. brain or time location), which may result in

4We use the original python implementation retrieved from https://github.com/

lukassnoek/MVCA
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missing or obscuring important pieces of information (Etzel, Zacks, & Braver,
2013; Kriegeskorte, Goebel, & Bandettini, 2006).

Notice that the size of the clusters is arbitrary and is derived from previous
work. Here we used a temporal radius of 50ms (considering 100ms at a time) and
a spatial radius of 30mm, following (Collins, Robinson, & Behrmann, 2018).5

Statistical testing and corrections for multiple comparisons For both
the time-resolved and searchlight decoding we first computed t- and p-values
using one-tailed t-tests. We tested the hypothesis that scores are reliably above
chance (0.5) across subjects. We compared decoding scores for each time-
point (time-resolved decoding) and spatio-temporal cluster (searchlight) against
chance, for all time points between 0ms and 800ms. Given that we ran numerous
statistical significance tests, incurring in the risk of false positives, we controlled
the risks of multiple comparisons using the TFCE procedure (Smith & Nichols,
2009; Latinus, Nichols, & Rousselet, 2015; Grootswagers et al., 2017). TFCE
accounts for temporal (time-resolved) and spatio-temporal (searchlight) clus-
ters in the computation of the corrected p-values, providing strict control while
maximizing sensitivity.

3 Results

3.1 Behavioural results

3.1.1 Accuracy

Participant accuracy on the behavioural task (randomized semantic categoriza-
tion using yes/no questions, with chance performance at 50%; see Section 2.2)
was extremely high: overall accuracy was 98.2%, and with very little variation
across categories and levels of familiarity (people: 98%, places: 98.3%, person-
ally familiar: 98.8%, famous: 97.4%).

3.1.2 Response times

We also measured choice response times (RTs), corresponding to the amount of
time occurred between the appearance of the semantic categorization question
and the pressing of a response key. It is important to underline that this task
comes after the ERP time window, when participants were carrying out a differ-
ent task (thinking about and picturing a name’s referent). Therefore, analyzing
response times provides an additional, but different perspective into semantic
processing of individual entities when compared to the evoked responses. RTs
are traditionally taken to be measures of cognitive processing, reflecting multiple
overlapping processing stages and inviting different interpretations depending

5The average number of electrodes included in each cluster was 9.6. This is in accordance
with previous work (Graumann, Ciuffi, Dwivedi, Roig, & Cichy, 2022) where an average of 5
channels (half of the cluster size) was used for a 64-electrodes montage (half of the electrode
density).
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on the task at hand (Luce, 1991) . Since our task involved semantic categoriza-
tion, we interpret RTs as reflecting ease of access to stimulus-related categorical
information - i.e. shorter response times indicate easier categorization and easier
processing of entity-specific information (Carlson, Ritchie, Kriegeskorte, Dur-
vasula, & Ma, 2014) . While RTs are not central to our investigations, they
can provide additional evidence that relevant differences in semantic processing
exist across levels of familiarity and categories.

Significant differences in RTs emerged depending on the type of stimulus.
Since RTs are not normally distributed (Balota & Yap, 2011) , we follow the
methodological recommendation of (Lo & Andrews, 2015) of reporting also re-
sults for RTs after logarithmic transformation. RTs were higher on average
for places (average raw RT: 1.636s; average log-transformed RT: 0.311s) than
for people (average raw RT: 1.583s; average log-transformed RT: 0.279s), and
the difference between the two was statistically significant (non-parametric per-
mutation test on raw RTs: T = 4.88, p = 0.0139; on log-transformed RTs:
T = 9.217, p = 0.002). RTs were also significantly quicker for personally fa-
miliar as opposed to famous (for personally familiar, raw RTs: 1.575s, log-
transformed RTs: 0.247s; for famous, raw RTs: 1.644s, log-transformed RTs:
0.317s; non-parametric permutation test on raw RTs: T = −6.37, p = 0.004, on
log-transformed RTs: T = −13.08, p = 0.002).

Overall, behavioural results thus indicate that, while accuracy was not af-
fected by familiarity or semantic categories, response times were. That is, rel-
evant differences in semantic processing could be retrieved already at a be-
havioural level. In particular, processing of entity-specific categorical informa-
tion was easier for people and personally familiar entities as opposed, respec-
tively, to places and famous entities.

3.2 Decoding semantic category

First, we report in Figure 2 the decoding scores when classifying ERP according
to their semantic category - i.e. predicting whether a given ERP refers to a
person or a place. We do so separately for personally familiar and famous
stimuli, so as to obtain preliminary evidence with respect to the interaction
between information regarding semantic category and familiarity.

Personally familiar entities Regarding the time-resolved decoding analy-
sis for personally familiar stimuli (upper portion of Figure 2), we could decode
with accuracy significantly above chance in the 330-800ms time range (peak
between 400 and 540ms, p < 0.001). This indicates the presence of reliable
category-related information in distributed patterns in the ERP signal, as ex-
pected, within the time range usually found to be associated with semantic
processing (the N400 and LPC - see (Rugg & Curran, 2007; Kutas & Feder-
meier, 2011; Dimsdale-Zucker et al., 2022)). Searchlight decoding revealed the
presence of clusters of electrodes affording statistically significant decoding in
centro-parietal and bilateral areas of the scalp (peak decoding p < 0.001) - this
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is again compatible with previous results on lexical semantic processing (Kutas
& Federmeier, 2011).

Famous entities Decoding semantic category for famous stimuli in a time-
resolved fashion, by contrast, provided accuracy significantly above chance only
in the time window (330-430ms; peak decoding at 360ms, p = 0.0156) typi-
cally associated with the N400 semantic response (Šoškić et al., 2022). Overall
time-resolved decoding scores were lower than for personally familiar stimuli,
indicating that familiarity affects the way in which category-related informa-
tion is processed in the brain (Gobbini, Leibenluft, Santiago, & Haxby, 2004).
Furthermore, no spatial cluster where decoding was significantly above chance
was found in the searchlight analysis (lower portion of Figure 2; peaks per time
window: between 400 and 500ms: electrode D17, p = 0.310, D28 and A17,
p = 0.321; between 700 and 800ms, electrodes D14 and D16, p = 0.283). This
indicates that, in the case of famous individual entities, looking at spatially dis-
tributed patterns is critical to find the distinction between semantic categories.

Personally familiar > famous In the lowest row of Figure 2 we compared
directly the decoding performance for personally familiar and famous entities.
We subtracted their decoding scores obtained in the searchlight analyses (per-
sonally familiar-famous) and then we computed statistical tests (as described in
Section 2.4). Specifically, we looked at spatio-temporal clusters where the dif-
ference was significantly above 0, thus indicating significantly superior decoding
performance for personally familiar entities. We found that significant differ-
ences in decoding performance emerge in limited clusters already after 200ms
(e.g. B12, p = 0.04785), and become clearer between 400ms and 700ms. In
terms of spatial location, they revolve around a central set of electrodes (peak
between 400-700ms at A1, p = 0.00195), reaching to right fronto-temporal (peak
between 600-700ms at C3, C4, p = 0.00292) and left frontal (peak between 600-
700ms at C24, p = 0.0019) and posterior (peak between 500-600ms at A17,
p = 0.0097) clusters.
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Figure 2: Visualization of the results for time-resolved and searchlight
decoding of semantic category (people vs places). In the top portion of
the figure we report decoding scores , averaged across subjects (y axis), against
time points (x axis). Here we used all electrodes, thus looking at whole-brain
patterns. The standard error of the mean is reported as a shaded area around
the decoding performance lines. In the lower section, we report searchlight de-
coding performance – i.e. scores for clusters of electrodes within a 30mm radius
– which indicate localized presence of information relevant for decoding. In
order to compare personally familiar and famous entities more easily, we also
plot in the last row the difference maps, showing electrodes where performance
for personally familiar stimuli is better than for famous stimuli. Statistically
significant performance (p <= 0.05 after TFCE correction) in both cases is in-
dicated by solid colour dots. Semantic category information could be reliably
decoded between 300ms and 500ms for both personally familiar and famous
entities, and, specifically for personally familiar entities, until 800ms. Overall,
performance was significantly better and more extended, both temporally (up-
per portion) and spatially (bottom part, last row), for personally familiar as
opposed to famous entities.
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3.3 Decoding familiarity

In Figure 3 it is possible to compare time-resolved performance and spatio-
temporal decoding maps for people and places, understanding when and where
familiarity information is domain-specific – i.e. selectively present for people or
places.

People For people, statistically significant time-resolved decoding performance
was reached in a very large time window (230-800ms; with an extended peak
where p < 0.001 between 400ms and 590ms). In searchlight, between 200 and
400ms decoding was statistically significant in right fronto-temporal and left
posterior-parietal clusters (p < 0.001). Between 400 and 700ms familiarity could
be decoded in a larger set of clusters, first on the left-right temporo-parietal
axis and then developing frontally and posteriorly along the central midline
(p < 0.001). Finally, between 700 and 800ms only right temporo-parietal elec-
trodes were statistically significant (peak at B23 p < 0.001).

Places Regarding places, time-resolved decoding was significantly above chance
only in the range between 360-560ms (N400 and SFE ranges, peak cluster with
p < 0.001 between 400-450ms), but not in the N250 range (200-300ms). In
searchlight, statistical significance in the N250 range was achieved only in left
posterior-parietal electrodes (peaks at D24, D25, p = 0.0029); later the distri-
bution of statistically significant electrodes largely followed the one described
above in the case of people. Notice, however, that overall statistically significant
decoding performance for places was temporally and spatially more constrained
when compared to people.

People > places We also looked at whether the difference between people and
places was statistically significant (lower section of Figure 3). We subtracted
the decoding scores for places to those for people (people-places) obtained in the
searchlight analyses, as previously done for categorical information (see Section
3.2). Clusters where the difference is significant emerge diffusely after 200ms,
indicating that familiarity information is more easily decoded for people than
for places. Importantly, the difference between the two categories is statistically
significant during the N250 time window, whose person-specificity is debated
(Tanaka et al., 2006) , in most, but not all, clusters. Significant differences
emerge in fronto-temporal (peaking at C5, C6, C7, p = 0.00292) and in left
posterior-parietal clusters (peaking at A10, A11, p = 0.02148), but not in left
temporal electrodes (e.g. D21, p = 0.96). There, familiarity information could
be decoded for both places and people. This is compatible with the existence
of both domain-general and domain-specific ERP effects in the N250 range.
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Figure 3: Visualization of the results for time-resolved and searchlight
decoding of familiarity (personally familiar vs famous). In the top
portion of the figure we report decoding scores , averaged across subjects (y
axis), against time points (x axis). Here we used all electrodes, thus looking at
whole-brain patterns. The standard error of the mean is reported as a shaded
area around the decoding performance lines. In the lower section, we report
searchlight decoding performance – i.e. scores for clusters of electrodes within
a 30mm radius – which indicate localized presence of information relevant for
decoding. In order to compare people and places more easily, we also report
in the last row the difference maps, showing electrodes where performance for
people is better than for places. Statistically significant performance (p <=
0.05 after TFCE correction) in both cases is indicated by solid colour dots.
Familiarity information could be reliably decoded between 300ms and 600ms
for both people and places, and, specifically for people, between 230-800ms.
Responses to people afforded, overall, significantly better decoding performance
as opposed to places: in the early time window (200-300ms) one domain-general
cluster was revealed in left posterior-parietal areas, and a person-specific cluster
in right fronto-temporal electrodes.
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3.4 Univariate ERP analysis

The ERP components relevant to familiarity and semantic processing described
above (N250, F/N400, LPC/SFE) were first individuated using a univariate
approach, as opposed to the multivariate decoding used here. As it has been
pointed out recently in both the fMRI and EEG literature (Davis et al., 2014;
Hebart & Baker, 2018; Wang & Kuperberg, 2023) , univariate and multivariate
analyses can sometimes provide complementary evidence. Therefore, in addition
to the multivariate decoding results of Sections 3.2 and 3.3, we also computed
the grand average ERPs. Furthermore, we ran statistical tests to find out at
which time points differences in voltage are statistically significant across levels
of familiarity and semantic categories. This makes it possible to obtain a more
complete picture regarding the differences in evoked activity for the types of
stimuli considered in our study.

Results are reported in Figure 4. While ERPs start to show some differences
in voltage starting from around 250ms (earliest peak difference for famous vs
personally familiar is at 0.3075ms - p = 0.635, for people vs places at 0.3925ms,
p = 0.288), comparisons reach statistical significance only in a later time frame
(500-800ms, LPC/SFE). The difference between ERPs for people and places
is statistically significant from around 630ms to 800ms (peak at 0.732ms, p =
0.02832), and between personally familiar and famous entities between 500ms
and 750ms (peak at 0.5575ms, p = 0.00586). This adds to the evidence emerging
from multivariate decoding in showing that, in a later time window in the evoked
activity, both familiarity and semantic category can be reliably distinguished.
Regarding the directionality of such effects, in the LPC/SFE the activity evoked
by names of people and famous entities has overall lower voltage than the one
elicited by names of places and personally familiar entities.

Univariate comparisons thus offer more conservative estimates of the differ-
ences in ERPs when contrasted with the multivariate decoding results reported
above. Despite not adding new information, these results confirms recent reports
that, in the case of EEG (Wang & Kuperberg, 2023) as well as fMRI (Kuhnke,
Kiefer, & Hartwigsen, 2023) , multivariate analyses afford higher sensitivity as
opposed to univariate analyses. Importantly, this validates a multivariate de-
coding approach such as ours, as it allows to detect pieces of evidence that would
be otherwise ignored.

4 Discussion

In this work we have shown that familiarity interacts with semantic categories
in shaping representations of individual entities. Crucially, we have done so us-
ing, as stimuli, names instead of pictures. This allowed us to sidestep low-level
visual recognition processes which are usually intertwined in face- and scene-
recognition studies. As a framework for the analyses, we have used a multi-
variate decoding approach. This method affords additional sensitivity when
compared to univariate ERP techniques. To look at the differences between the
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Figure 4: Visualization of the grand average ERPs, separately for peo-
ple and places as well as personally familiar and famous entities. We
report changes in voltage averaged across all electrodes (y axis) for all time
points (x axis). We also run statistical tests, comparing ERP voltage for people
vs places and for personally familiar vs famous entities. Statistically significant
differences (p <= 0.05 after TFCE correction) in both cases are indicated by
solid colour dots. Although some differences can be visually detected already
from 250ms on, the only time window where differences between different ERPs
are statistically significant is the LPC/SFE range.
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two approaches, we also reported time-resolved univariate ERP results (Fig-
ure 4), which did show less sensitivity than decoding. Also, we employed a
searchlight decoding procedure to find in a bottom-up fashion spatio-temporal
clusters containing relevant categorical and familiarity information. Overall,
clusters were broadly distributed, concurrently covering electrodes and time
ranges traditionally associated with multiple separate ERP components. This
confirms the high sensitivity afforded by our approach, while suggesting that
information related to semantic processes such as those investigated here well
outside of traditional regions of interest. Not only familiarity-related informa-
tion was found in person-specific spatial clusters, but our results also suggest
easier processing of person identity as opposed to places. Despite such differ-
ences, our work reveals domain-general loci of processing of familiarity - and
how familiarity with a person or a place makes it easier to process identity-
specific information. In the following, we will look at these points in two steps.
First, we will discuss separately results for the three time windows described in
the Introduction (N250, F/N400 and SFE/LPC). Then, we will look at what
such evidence can tell us about the role and the interactions of familiarity and
categorical information in brain representations of individual entities.

4.1 The timing of individual entities processing

4.1.1 200-300ms: the N250 range

In this early time window , mainly information related to familiarity, and not
to semantic categories, appears to be available. This was expected, based on
previous literature (cf. predictions in Section 1).

Figure 2 shows that categorical information could be decoded only for per-
sonally familiar entities, in reduced clusters of electrodes. By contrast, we see
from Figure 3 that familiarity could be classified in this interval with accu-
racy significantly higher than chance both for people (in both time-resolved and
searchlight analyses) and for places (using the searchlight approach).

In particular, people and places shared statistically significant clusters in
the left posterior-parietal part of the scalp. These locations are consistent with
localization previously associated with the familiarity effect for faces (Tanaka
et al., 2006; Kaufmann, Schweinberger, & Burton, 2009; Sommer et al., 2021).
Therefore, our results seem to suggest that the N250 may not be a component
specific to person recognition, but a marker of recognition of domain-general
representations of individual entities. This is consistent with our expectations,
that were based on the image recognition results reported in (Pierce et al., 2011;
Klink et al., 2023). There, it was shown that not only faces, but also images
of other important types of entities (personal car, own dog, rooms from one’s
apartment) elicited differences in N250 depending on familiarity. The novelty
of our results comes from the fact that by using names as stimuli, instead of
pictures, we could avoid capturing responses evoked by specific instances of
images or visual features - thus being able to look more closely at domain-
general correlates of familiarity.
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Finally, we expected to be able to decode, during the N250, familiarity infor-
mation similarly for both people and places. With respect to this, our analyses
revealed a more complex picture. A domain-general cluster where decoding per-
formance was comparable emerged in left temporal areas. However, for people
only, familiarity information was strongly represented in right fronto-temporal
areas (lowest row of Figure 3, people > places) , indicating the presence of
domain-specific information. This person-specific role of frontal areas is to be
expected, as frontal areas were proposed as being part of the person-specific
network (Morton et al., 2021).

Also, overall, decoding performance was higher for people than places. In
this sense, although the N250 in general may not be person-specific, identity-
specific patterns may be more distinguishable for people than for places. This
result is novel in the literature for familiarity on EEG, as far as we know. It
is nevertheless in accordance with the results of a fMRI decoding experiment
reported in (Ragni, Lingnau, & Turella, 2021), which found that when decoding
familiarity from mental imagery for places and people, the former always provide
lower decoding scores. We discuss why this may happen below, in Section 4.2.

Therefore, our results seem to indicate that, when processing individual
entities within the N250 range, different neural processes happen simultaneously
- some being domain-general and reflected in left posterior-parietal areas of the
scalp and other being person-specific, in right fronto-temporal clusters.

4.1.2 300-500ms: the F/N400 range

In this time window, which is the one most typically associated with lexical
semantic processing (Hauk et al., 2006; Kutas & Federmeier, 2011; Šoškić et al.,
2022), both categorical and familiarity information could be decoded in time-
resolved and searchlight analyses. This reflects our expectations, with only
one partial exception. We were not able to find any localized cluster where
categorical information could be reliably decoded for famous individual entities
in searchlight - which was only possible when looking at whole-scalp distributed
patterns. We discuss this exception in Section 4.2 in light of our general results.

When comparing how familiarity information was encoded in evoked re-
sponses for people and places (Figure 3), spatial patterns were largely similar,
nevertheless showing the same effect reported for the N250 range - namely,
that decoding scores are higher overall for people (again, see Section 4.2 for a
discussion).

Other than that, the emerging topography is compatible with that typically
found to be involved in the semantic processing of individual entities (Semenza,
2022).

Temporo-parietal clusters are compatible with traditional accounts of proper
name processing which have implicated both anterior and posterior temporal
areas (Semenza, 2011; O’Rourke & de Diego Balaguer, 2020; Desai et al., 2022).
Frontal and posterior midline clusters, where decoding provided higher scores
especially when looking for familiarity (Figure 3), may reflect the activity of the
Default Mode Network, which is involved in social cognition and episodic (self-
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related) memory retrieval (Raichle, 2015; Campbell, Louw, Michniak, & Tanaka,
2020; Smallwood et al., 2021; Kaefer, Stella, McNaughton, & Battaglia, 2022).

4.1.3 500-800ms: the SFE/LPC range.

In this time range, as predicted, decoding accuracy was significantly above
chance for all of our distinctions (with the usual exception of famous entities)
until 700ms, which is when categorical and familiarity information began to fade
away from the ERP signal.

In this time range, people and places could be distinguished in left fronto-
temporal and right posterior-parietal clusters (see Figure 2), showing spatial
patterns which are quite similar to the ones found in the previous time win-
dow (300-500ms). In time-resolved decoding of familiarity (Figure 3), however,
the difference between people and places was quite stark: familiarity could be
accurately decoded for places starting from around 550ms, whereas for people
decoding was significant until 800ms. Searchlight, however, revealed that, in
fact, spatially circumscribed clusters still carried information regarding famil-
iarity for both people and places up until 800ms. Once more, the main difference
among the two types of entities seems to be in terms of how much information
is carried in the ERPs. Decoding was significantly better for people than for
places in widely distributed clusters (Figure 3, lowest row). Given that this is a
relatively late time window, this could reflect differences in the ease of process-
ing identity-specific information, as proposed in (Wiese et al., 2021); we discuss
this below, in Section 4.2.

In general, the familiarity-related effects that we found between 500-800ms,
which involved consistently posterior-parietal clusters, are compatible with the
recent proposals of a SFE (Wiese et al., 2019; Dalski et al., 2022; Li et al.,
2022) and with previous accounts of LPC focusing on its role as a marker of
activation of episodic memory related to personally familiar stimuli (Rugg &
Curran, 2007; Renoult et al., 2016; Dimsdale-Zucker et al., 2022). Nevertheless,
it seems impossible to distinguish among the two - which may in fact reflect
similar brain processes.

4.2 Ease of identification

Overall, decoding scores were higher when considering information related to
familiarity, for people as compared to places ; and, when decoding semantic
category, for familiar compared to famous stimuli (Figure 2 and 3; direct com-
parisons with statistical tests are reported in the lowest row). We interpret
such differences in decodability between categories as reflecting differences in
the ease of processing identities, which is a widely used perspective to look at
semantic processing of individual entities (Ramon & Gobbini, 2018; Wiese et
al., 2021). In other words, our assumption is that the easier the identification
and processing of the identity of a person or a place for a subject, the easier it
will be to correctly classify the evoked response to that individual entity with
a decoding analysis, in turn obtaining higher scores. This perspective is also
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supported by the response times results for the categorization task, that took
place independently from the time window of the analyzed ERPs (see Section
3.1). Responses were significantly faster for people as opposed to places, and
for personally familiar as opposed to famous entities. These results, showing
that categorization - a crucial part of processing individual identities - is easier
for people and personally familiar entities, converge with the picture emerging
from EEG decoding.

4.2.1 People > places

The first gradient, people > places, is the most relevant with respect to our
research question - looking for differences in evoked responses among the two
semantic categories. The spatio-temporal dynamics of access to familiarity, in
particular, provide an amodal indicator of the ease of identity processing. Our
key finding is that, in all time windows, information regarding the familiarity of
people was easier to decode with respect to that of places, being both temporally
and spatially more extended; in the crucial N250 range, clusters specific to
people were revealed in right fronto-temporal electrodes, and, in the LPC/SFE
time range, time-resolved decoding performance for places reduced drastically.

While it has been shown in previous neuroimaging studies that processing
people and places involves partially distinct brain areas which can be selectively
impaired, it is an open question why decoding, whose success can be interpreted
as reflecting ease of processing individual identities in the brain, should be easier
when considering people instead of places.

(Kaminski et al., 2022) and (Desai et al., 2022) discuss some reasons why this
could be the case. People identity could be easier to process because richer se-
mantic knowledge involving multiple modalities is available about people (voice,
face, autobiographical experiences), while places only involve visual and less au-
tobiographical knowledge (Kaminski et al., 2022); or they could involve a larger
set of secondary meanings and associations with other concepts (Desai et al.,
2022).

Another possible explanation could be the peculiar relevance of conspecifics
in human brain processing, be it because of evolutionary (Mahon & Caramazza,
2011) or social (Olson et al., 2013) factors. Both our results and this theoretical
view seem to be consistent with the analysis of BOLD activation in (Desai et
al., 2022), where it is shown that, when comparing areas selectively activated by
either people or place names, the former involve a substantially larger amount
of brain voxels (23768mm3 vs 7035mm3), whereas the latter mostly seem to
involve a subset of areas associated with processing of people names.

Finally, a number of semantic and linguistic variables may affect brain pro-
cessing, which makes it difficult to properly measure differences among the two
categories.

Our analyses address these concerns by controlling name length, familiarity
and imageability. Familiarity and imageability were controlled by design. Both
were controlled during stimuli selection in order to avoid confounds across cat-
egories for the famous stimuli. Also, familiarity was controlled with the aim
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obtaining two clearly separated levels - famous and personally familiar entities
(see Section 2.1). Notice that neither name length nor imageability, on the
other hand, could be controlled a priori for personally familiar entities - names
provided by individual participants could not be matched with word lengths
or the imageability of famous entities. Therefore, we chose to remove the vari-
ance associated with word length, whose effect is particularly pervasive on EEG
responses, out of our data.

Our results show that, after having ruled out low-level distinctions between
people and places such as name length, people evoked more clearly distinguish-
able patterns of activity in terms of individual identity, and that in early ac-
cess to familiarity information (200-300ms) people-specific processes, reflected
in right fronto-temporal activity, emerged.

4.2.2 Familiar > famous

The second gradient (familiar > famous) is less surprising. Behavioural results
from the face recognition literature, reviewed in (Ramon & Gobbini, 2018), have
consistently shown that identity recognition of people is much easier when per-
sonally familiar stimuli are used. Previous neuroimaging studies have shown
that familiar stimuli entail greater brain activation, linked to access of richer
entity-related semantic knowledge, stronger social and emotional response (Gobbini
et al., 2004; Donix et al., 2010; Cloutier, Kelley, & Heatherton, 2011; Desai et
al., 2022).

Our results suggest that this seems to hold for places too. There is less
literature on familiarity for this type of entity, but our results are consistent
with previous results. In (Klink et al., 2023), pictures of one’s apartment elicited
stronger category-specific representations as opposed to somebody else’s. In
(Penaud et al., 2022), using scene exploration in virtual reality, it was shown
that first-person experience improves encoding and subsequent recall of semantic
information.

Our finding that discriminability of neural patterns is easier when personally
familiar stimuli are used thus converges with previous results suggesting that
personal familiarity with any type of experimental stimuli makes processes re-
lated to identity recognition easier, or at least qualitatively different as proposed
in (Renoult, Davidson, Palombo, Moscovitch, & Levine, 2012; Renoult et al.,
2016).

We nevertheless acknowledge that our experiment has a clear limitation,
when it comes to understanding in detail how different levels of familiarity affect
semantic processing. Namely, our approach is coarse-grained: we decided to look
at a binary set of familiarity labels (personally familiar / famous), and we did
not collect individualized familiarity ratings for each participant. Therefore, we
are unable to investigate fine-grained variations in brain reponses modulated by
small-scale differences in familiarity across stimuli within each of the categories
(cf. Section 2.1). We believe that this could be a fruitful future direction to
better understand semantic processing of individual entities.
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5 Conclusions

In this study we used EEG and multivariate decoding analysis to investigate
similarities and differences between temporal and spatial evolution of the evoked
responses to proper names of individual entities of different semantic categories
(people and places). In particular, we looked at how the two semantic categories
access familiarity information, which is amodal and therefore should not involve
the sensorimotor differences between the two categories.

In terms of spatial locations, our results about individual entity processing
are consistent with those of previous studies. The key novelty of this work is our
analysis of temporal processing. Our results suggest that semantic category can
be reliably distinguished in a time window and with spatial localization typically
associated with lexical semantic processing (300-800ms, with peaks in centro-
parietal and bilateral temporo-parietal areas). With respect to familiarity infor-
mation, two main findings emerge. First, we find that people seem to be easier
to identify than places, in both early (N250) and late (SFE) time windows. Sec-
ond, we discover that within the early time window, both domain-general (left
posterior-lateral) and domain-specific (right fronto-temporal, only for people)
neural patterns can be individuated, suggesting the presence of person-selective
processes during the N250 time range.
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Diversity in Citation Practices statement

We used the Gender Citation Balance Index (GCBI) tool available at https://
postlab.psych.wisc.edu/gcbialyzer/ to calculate the likelihood that the
first and the last author for our references self-identifies as woman (W) or
man(M). In the following, the first letter refers to the first author, the second to
the last (e.g. WW means both first and last authors likely identify themselves
as woman). To interpret results, they are scaled around 0, where 0 is the Jour-
nal of Cognitive Neuroscience (JoCN) base rate: negative and positive values
indicate respectively below-JoCN and above-JoCN rates. Results are as follows:
MM=0.284, WM=-0.183, MW=0.285, WW=-0.571.
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