6,227 research outputs found

    Informational and Causal Architecture of Continuous-time Renewal and Hidden Semi-Markov Processes

    Full text link
    We introduce the minimal maximally predictive models ({\epsilon}-machines) of processes generated by certain hidden semi-Markov models. Their causal states are either hybrid discrete-continuous or continuous random variables and causal-state transitions are described by partial differential equations. Closed-form expressions are given for statistical complexities, excess entropies, and differential information anatomy rates. We present a complete analysis of the {\epsilon}-machines of continuous-time renewal processes and, then, extend this to processes generated by unifilar hidden semi-Markov models and semi-Markov models. Our information-theoretic analysis leads to new expressions for the entropy rate and the rates of related information measures for these very general continuous-time process classes.Comment: 16 pages, 7 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/ctrp.ht

    Structural Intervention Distance (SID) for Evaluating Causal Graphs

    Full text link
    Causal inference relies on the structure of a graph, often a directed acyclic graph (DAG). Different graphs may result in different causal inference statements and different intervention distributions. To quantify such differences, we propose a (pre-) distance between DAGs, the structural intervention distance (SID). The SID is based on a graphical criterion only and quantifies the closeness between two DAGs in terms of their corresponding causal inference statements. It is therefore well-suited for evaluating graphs that are used for computing interventions. Instead of DAGs it is also possible to compare CPDAGs, completed partially directed acyclic graphs that represent Markov equivalence classes. Since it differs significantly from the popular Structural Hamming Distance (SHD), the SID constitutes a valuable additional measure. We discuss properties of this distance and provide an efficient implementation with software code available on the first author's homepage (an R package is under construction)

    Estimating the effect of joint interventions from observational data in sparse high-dimensional settings

    Full text link
    We consider the estimation of joint causal effects from observational data. In particular, we propose new methods to estimate the effect of multiple simultaneous interventions (e.g., multiple gene knockouts), under the assumption that the observational data come from an unknown linear structural equation model with independent errors. We derive asymptotic variances of our estimators when the underlying causal structure is partly known, as well as high-dimensional consistency when the causal structure is fully unknown and the joint distribution is multivariate Gaussian. We also propose a generalization of our methodology to the class of nonparanormal distributions. We evaluate the estimators in simulation studies and also illustrate them on data from the DREAM4 challenge.Comment: 30 pages, 3 figures, 45 pages supplemen

    Informational and Causal Architecture of Discrete-Time Renewal Processes

    Full text link
    Renewal processes are broadly used to model stochastic behavior consisting of isolated events separated by periods of quiescence, whose durations are specified by a given probability law. Here, we identify the minimal sufficient statistic for their prediction (the set of causal states), calculate the historical memory capacity required to store those states (statistical complexity), delineate what information is predictable (excess entropy), and decompose the entropy of a single measurement into that shared with the past, future, or both. The causal state equivalence relation defines a new subclass of renewal processes with a finite number of causal states despite having an unbounded interevent count distribution. We use these formulae to analyze the output of the parametrized Simple Nonunifilar Source, generated by a simple two-state hidden Markov model, but with an infinite-state epsilon-machine presentation. All in all, the results lay the groundwork for analyzing processes with infinite statistical complexity and infinite excess entropy.Comment: 18 pages, 9 figures, 1 table; http://csc.ucdavis.edu/~cmg/compmech/pubs/dtrp.ht

    Prediction and Generation of Binary Markov Processes: Can a Finite-State Fox Catch a Markov Mouse?

    Get PDF
    Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.Comment: 12 pages, 12 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/gmc.ht

    Distributional Equivalence and Structure Learning for Bow-free Acyclic Path Diagrams

    Full text link
    We consider the problem of structure learning for bow-free acyclic path diagrams (BAPs). BAPs can be viewed as a generalization of linear Gaussian DAG models that allow for certain hidden variables. We present a first method for this problem using a greedy score-based search algorithm. We also prove some necessary and some sufficient conditions for distributional equivalence of BAPs which are used in an algorithmic ap- proach to compute (nearly) equivalent model structures. This allows us to infer lower bounds of causal effects. We also present applications to real and simulated datasets using our publicly available R-package

    Robust causal structure learning with some hidden variables

    Full text link
    We introduce a new method to estimate the Markov equivalence class of a directed acyclic graph (DAG) in the presence of hidden variables, in settings where the underlying DAG among the observed variables is sparse, and there are a few hidden variables that have a direct effect on many of the observed ones. Building on the so-called low rank plus sparse framework, we suggest a two-stage approach which first removes the effect of the hidden variables, and then estimates the Markov equivalence class of the underlying DAG under the assumption that there are no remaining hidden variables. This approach is consistent in certain high-dimensional regimes and performs favourably when compared to the state of the art, both in terms of graphical structure recovery and total causal effect estimation

    The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications

    Get PDF
    The principle goal of computational mechanics is to define pattern and structure so that the organization of complex systems can be detected and quantified. Computational mechanics developed from efforts in the 1970s and early 1980s to identify strange attractors as the mechanism driving weak fluid turbulence via the method of reconstructing attractor geometry from measurement time series and in the mid-1980s to estimate equations of motion directly from complex time series. In providing a mathematical and operational definition of structure it addressed weaknesses of these early approaches to discovering patterns in natural systems. Since then, computational mechanics has led to a range of results from theoretical physics and nonlinear mathematics to diverse applications---from closed-form analysis of Markov and non-Markov stochastic processes that are ergodic or nonergodic and their measures of information and intrinsic computation to complex materials and deterministic chaos and intelligence in Maxwellian demons to quantum compression of classical processes and the evolution of computation and language. This brief review clarifies several misunderstandings and addresses concerns recently raised regarding early works in the field (1980s). We show that misguided evaluations of the contributions of computational mechanics are groundless and stem from a lack of familiarity with its basic goals and from a failure to consider its historical context. For all practical purposes, its modern methods and results largely supersede the early works. This not only renders recent criticism moot and shows the solid ground on which computational mechanics stands but, most importantly, shows the significant progress achieved over three decades and points to the many intriguing and outstanding challenges in understanding the computational nature of complex dynamic systems.Comment: 11 pages, 123 citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/cmr.ht
    • …
    corecore