130,937 research outputs found

    Concepts and their Use for Modelling Objects and References in Programming Languages

    Full text link
    In the paper a new programming construct, called concept, is introduced. Concept is pair of two classes: a reference class and an object class. Instances of the reference classes are passed-by-value and are intended to represent objects. Instances of the object class are passed-by-reference. An approach to programming where concepts are used instead of classes is called concept-oriented programming (CoP). In CoP objects are represented and accessed indirectly by means of references. The structure of concepts describes a hierarchical space with a virtual address system. The paper describes this new approach to programming including such mechanisms as reference resolution, complex references, method interception, dual methods, life-cycle management inheritance and polymorphism.Comment: 43 pages. Related papers: http://conceptoriented.com

    Conceptual Spaces in Object-Oriented Framework

    Get PDF
    The aim of this paper is to show that the middle level of mental representations in a conceptual spaces framework is consistent with the OOP paradigm. We argue that conceptual spaces framework together with vague prototype theory of categorization appears to be the most suitable solution for modeling the cognitive apparatus of humans, and that the OOP paradigm can be easily and intuitively reconciled with this framework. First, we show that the prototypebased OOP approach is consistent with Gärdenfors’ model in terms of structural coherence. Second, we argue that the product of cloning process in a prototype-based model is in line with the structure of categories in Gärdenfors’ proposal. Finally, in order to make the fuzzy object-oriented model consistent with conceptual space, we demonstrate how to define membership function in a more cognitive manner, i.e. in terms of similarity to prototype

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    Aspect-oriented design model.

    Get PDF
    Designing crosscutting concerns (aspects) is a challenging task. Since crosscutting concerns were not addressed while developing contemporary software design techniques, so they lack support for accommodating representation of such concerns along with base program. Some design languages like UML have been extended to express aspects and their elements but they do not fully represent aspects. Some lack adequate representation of aspect elements and some lack an efficient and reusable composition technique. In this paper, some of the aspect-oriented design techniques have been critically discussed. A proposed aspect model has been discussed which helps in overcoming the deficiencies in the contemporary aspect-oriented design techniques. This model represents aspects and their elements throughout the software development life cycle

    UML-F: A Modeling Language for Object-Oriented Frameworks

    Full text link
    The paper presents the essential features of a new member of the UML language family that supports working with object-oriented frameworks. This UML extension, called UML-F, allows the explicit representation of framework variation points. The paper discusses some of the relevant aspects of UML-F, which is based on standard UML extension mechanisms. A case study shows how it can be used to assist framework development. A discussion of additional tools for automating framework implementation and instantiation rounds out the paper.Comment: 22 pages, 10 figure
    corecore