314 research outputs found

    Integrated Radio Resource Allocation for Multihop Cellular Networks With Fixed Relay Stations

    Full text link

    LTE Advanced: Technology and Performance Analysis

    Get PDF
    Wireless data usage is increasing at a phenomenal rate and driving the need for continued innovations in wireless data technologies to provide more capacity and higher quality of service. In October 2009, 3rd Generation Partnership Project (3GPP) submitted LTE-Advanced to the ITU as a proposed candidate IMT-Advanced technology for which specifications could become available in 2011 through Release-10 . The aim of “LTE-Advanced” is to further enhance LTE radio access in terms of system performance and capabilities compared to current cellular systems, including the first release of LTE, with a specific goal to ensure that LTE fulfills and even surpass the requirements of “IMT-Advanced” as defined by the International Telecommunication Union (ITU-R) . This thesis offers an introduction to the mobile communication standard known as LTE Advanced, depicting the evolution of the standard from its roots and discussing several important technologies that help it evolve to accomplishing the IMT-Advanced requirements. A short history of the LTE standard is offered, along with a discussion of its standards and performance. LTE-Advanced details include analysis on the physical layer by investigating the performance of SC-FDMA and OFDMA of LTE physical layer. The investigation is done by considering different modulation schemes (QPSK, 16QAM and 64QAM) on the basis of PAPR, BER, power spectral density (PSD) and error probability by simulating the model of SC-FDMA & OFDMA. To evaluate the performance in presence of noise, an Additive White Gaussian Noise (AWGN) channel was introduced. A set of conclusions is derived from our results describing the effect of higher order modulation schemes on BER and error probability for both OFDMA and SC-FDMA. The power spectral densities of both the multiple access techniques (OFDMA and SC-FDMA) are calculated and result shows that the OFDMA has higher power spectral density.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    TD-SCDMA Relay Networks

    Get PDF
    PhDWhen this research was started, TD-SCDMA (Time Division Synchronous Code Division Multiple Access) was still in the research/ development phase, but now, at the time of writing this thesis, it is in commercial use in 10 large cities in China including Beijing and Shang Hai. In all of these cities HSDPA is enabled. The roll-out of the commercial deployment is progressing fast with installations in another 28 cities being underway now. However, during the pre-commercial TD-SCDM trail in China, which started from year 2006, some interference problems have been noticed especially in the network planning and initialization phases. Interference is always an issue in any network and the goal of the work reported in this thesis is to improve network coverage and capacity in the presence of interference. Based on an analysis of TD-SCDMA issues and how network interference arises, this thesis proposes two enhancements to the network in addition to the standard N-frequency technique. These are (i) the introduction of the concentric circle cell concept and (ii) the addition of a relay network that makes use of other users at the cell boundary. This overall approach not only optimizes the resilience to interference but increases the network coverage without adding more Node Bs. Based on the cell planning parameters from the research, TD-SCDMA HSDPA services in dense urban area and non-HSDPA services in rural areas were simulated to investigate the network performance impact after introducing the relay network into a TD-SCDMA network. The results for HSDPA applications show significant improvement in the TDSCDMA relay network both for network capacity and network interference aspects compared to standard TD-SCDMA networks. The results for non- HSDPA service show that although the network capacity has not changed after adding in the relay network (due to the code limitation in TD-SCDMA), the TD-SCDMA relay network has better interference performance and greater coverage

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    IST-2000-30148 I-METRA: D6.2 Implications in re-configurable systems beyond 3G (Part 2)

    Get PDF
    This activity evaluates the extension of the bandwidth of the UTRA MIMO HSDPA concept to 20 MHz, which is precisely the bandwidth of HIPERLAN/2. This would allow a fair comparison between the performance of UTRA MIMO HSDPA and the enhanced HIPERLAN/2. The bandwidth expansion would be the consequence of multiplying the chip rate of the W-CDMA spreading by four, i.e., 3.84 x 4 = 15.36 Mcps. A higher bandwidth MIMO channel model is necessary and this will be developed based on the channel model already developed in WP2. High data rates are required to satisfy the ever-increasing application requirements in future wireless communication systems. Recent investigations have indicated that a peak data rate of up to 20Mbps per user in the DL may be required for satisfactory reception of bursty traffic. As the transmission powers (of both mobile terminals and base stations) are limited, higher data rates lead to the reduction of the effective coverage area of a cell. That is, only users that are close to the base station will be able to communicate with high data rates, while users far away from the base station will only be able to use low data rates.Preprin

    Heterogeneous LTE/ Wi-Fi architecture for intelligent transportation systems

    Get PDF
    Intelligent Transportation Systems (ITS) make use of advanced technologies to enhance road safety and improve traffic efficiency. It is anticipated that ITS will play a vital future role in improving traffic efficiency, safety, comfort and emissions. In order to assist the passengers to travel safely, efficiently and conveniently, several application requirements have to be met simultaneously. In addition to the delivery of regular traffic and safety information, vehicular networks have been recently required to support infotainment services. Previous vehicular network designs and architectures do not satisfy this increasing traffic demand as they are setup for either voice or data traffic, which is not suitable for the transfer of vehicular traffic. This new requirement is one of the key drivers behind the need for new mobile wireless broadband architectures and technologies. For this purpose, this thesis proposes and investigates a heterogeneous IEEE 802.11 and LTE vehicular system that supports both infotainment and ITS traffic control data. IEEE 802.11g is used for V2V communications and as an on-board access network while, LTE is used for V2I communications. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban vehicular environment. The system performance is evaluated in terms of data loss, data rate, delay and jitter. Several simulation scenarios are performed and evaluated. In the V2I-only scenario, the delay, jitter and data drops for both ITS and video traffic are within the acceptable limits, as defined by vehicular application requirements. Although a tendency of increase in video packet drops during handover from one eNodeB to another is observed yet, the attainable data loss rate is still below the defined benchmarks. In the integrated V2V-V2I scenario, data loss in uplink ITS traffic was initially observed so, Burst communication technique is applied to prevent packet losses in the critical uplink ITS traffic. A quantitative analysis is performed to determine the number of packets per burst, the inter-packet and inter-burst intervals. It is found that a substantial improvement is achieved using a two-packet Burst, where no packets are lost in the uplink direction. The delay, jitter and data drops for both uplink and downlink ITS traffic, and video traffic are below the benchmarks of vehicular applications. Thus, the results indicate that the proposed heterogeneous system offers acceptable performance that meets the requirements of the different vehicular applications. All simulations are conducted on OPNET Network Modeler and results are subjected to a 95% confidence analysis

    Esquemas de cooperação entre estaçÔes base para o LTE no sentido descendente

    Get PDF
    The explosive growth in wireless traffic and in the number of connected devices as smart phones or computers, are causing a dramatic increase in the levels of interference, which significantly degrades the capacity gains promised by the point-to-point multi input, multi output (MIMO) based techniques. Therefore, it is becoming increasingly clear that major new improvements in spectral efficiency of wireless networks will have to entail addressing intercell interference. So, there is a need for a new cellular architecture that can take these factors under consideration. It is in this context that LTE-Advanced arises. One of the most promising LTE-Advanced technology is Coordinated Multipoint (CoMP), which allows base stations to cooperate among them, in order to mitigate or eliminate the intercell interference and, by doing so, increase the system’s capacity. This thesis intends to study this concept, implementing some schemes that fall under the CoMP concept. In this thesis we consider a distributed precoded multicell approach, where the precoders are computed locally at each BS to mitigate the intercell interference. Two precoder are considered: distributed zero forcing (DZF) and distributed virtual signal-to-interference noise ratio (DVSINR) recently proposed. Then the system is further optimized by computing a power allocation algorithm over the subcarriers that minimizes the average bit error rate (BER). The considered algorithms are also evaluated under imperfect channel state information. A quantized version of the CSI associated to the different links between the BS and the UT is feedback from the UT to the BS. This information is then employed by the different BSs to perform the precoding design. A new DVSINR precoder explicitly designed under imperfect CSI is proposed. The proposed schemes were implemented considering the LTE specifications, and the results show that the considered precoders are efficiently to remove the interference even under imperfect CSI.O crescimento exponencial no trĂĄfego de comunicaçÔes sem-fios e no nĂșmero de dispositivos utilizados (smart phones, computadores portĂĄteis, etc.) estĂĄ a causar um aumento significativo nos nĂ­veis de interferĂȘncia, que prejudicam significativamente os ganhos de capacidade assegurados pelas tecnologias baseadas em ligaçÔes ponto-a-ponto MIMO. Deste modo, torna-se cada vez mais necessĂĄrio que os grandes aperfeiçoamentos na eficiĂȘncia espectral de sistemas de comunicaçÔes sem-fios tenham em consideração a interferĂȘncia entre cĂ©lulas. De forma a tomar em consideração estes aspectos, uma nova arquitectura celular terĂĄ de ser desenvolvida. É assim, neste contexto, que surge o LTE-Advanced. Uma das tecnologias mais promissoras do LTE-Advanced Ă© a Coordenação Multi-Ponto (CoMP), que permite que as estaçÔes base cooperem de modo a mitigar a interferĂȘncia entre cĂ©lulas e, deste modo, aumentar a capacidade do sistema. Esta dissertação pretende estudar este conceito, implementando para isso algumas tĂ©cnicas que se enquadram no conceito do CoMP. Nesta dissertação iremos considerar a implementação de um sistema de prĂ©-codificação em mĂșltiplas cĂ©lulas, em que os prĂ©-codificadores sĂŁo calculados em cada BS, de modo a mitigar a interferĂȘncia entre cĂ©lulas. SĂŁo considerados dois prĂ©-codificadores: Distributed Zero Forcing (DZF) e Distributed Virtual Signal-to-Interferance Noise Ratio (DVSINR), recentemente proposto. De seguida o sistema Ă© optimizado com a introdução de algoritmos de alocação de potĂȘncia entre as sub-portadoras com o objectivo de minimizar a taxa mĂ©dia de erros (BER). Os algoritmos considerados sĂŁo tambĂ©m avaliados em situaçÔes em que a informação do estado do canal Ă© imperfeita. Uma versĂŁo quantizada da CSI associada a cada uma das diferentes ligaçÔes entre as BS e os UT Ă© assim enviada do UT para a BS. Esta informação Ă© entĂŁo utilizada para calcular os diferentes prĂ©-codificadores em cada BS. Uma nova versĂŁo do prĂ©-codificador DVSINR Ă© proposta de modo a lidar com CSI imperfeito. Os esquemas propostos foram implementados considerandos especificaçÔes do LTE, e os resultados obtidos demonstram que os prĂ©-codificadores removem de uma forma eficiente a interferĂȘncia, mesmo em situaçÔes em que a CSI Ă© imperfeita

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntĂ€ kasvaa nopeasti ympĂ€ri maailmaa. ÄlykkĂ€iden pÀÀtelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynĂ€ nĂ€iden korkeaan markkinapenetraatioon ja korkealuokkaiseen kĂ€yttĂ€jĂ€kokemukseen lisÀÀvĂ€t entisestÀÀn palveluiden kysyntÀÀ ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisĂ€kapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljĂ€nnen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on mÀÀritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). NĂ€mĂ€ ovat jĂ€rjestelmiĂ€, jotka pitĂ€vĂ€t sisĂ€llÀÀn IMT:n ne uudet ominaisuudet, jotka ylittĂ€vĂ€t IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lĂ€hetetyt kaksi pÀÀasiallista kandidaattiteknologiaa. TĂ€ssĂ€ diplomityössĂ€ esitellÀÀn kolmannen sukupolven jĂ€rjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. LisĂ€ksi työssĂ€ esitetÀÀn LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekĂ€ vertaillaan nĂ€iden lĂ€hestymistapoja IMT-A vaatimusten tĂ€yttĂ€miseksi. Lopuksi työssĂ€ luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltÀÀn Mobile WiMAX) -jĂ€rjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Performance Evaluation of LTE and LTE advanced standards for next generation mobile networks

    Get PDF
    Nel corso della trattazione sono analizzati gli standard 3GPP LTE e LTE-Advanced per la prossima generazione delle reti mobili cellulari. L'algoritmo OptiMOS, che puĂČ essere impiegato dalla Stazione Base per servire in modo efficiente connessioni VoIP, Ăš descritto nel capitolo [8]. L’algoritmo di link scheduling Relay, finalizzato a ottimizzare le reti LTE avanzate in presenza di nodi relay Ăš descritto nel capitolo [9]. Questo lavoro Ăš stato presentato in adempimento parziale dei requisiti per la Laurea di Dottore di Ricerca in Ingegneria dell'Informazione presso l'ufficio informazioni Dipartimento di Ingegneria dell'UniversitĂ  degli Studi di Pisa, Italia
    • 

    corecore