6,866 research outputs found

    The q-ary image of some qm-ary cyclic codes: permutation group and soft-decision decoding

    Get PDF
    Using a particular construction of generator matrices of the q-ary image of qm-ary cyclic codes, it is proved that some of these codes are invariant under the action of particular permutation groups. The equivalence of such codes with some two-dimensional (2-D) Abelian codes and cyclic codes is deduced from this property. These permutations are also used in the area of the soft-decision decoding of some expanded Reed–Solomon (RS) codes to improve the performance of generalized minimum-distance decoding

    Quasi-Cyclic Complementary Dual Code

    Full text link
    LCD codes are linear codes that intersect with their dual trivially. Quasi cyclic codes that are LCD are characterized and studied by using their concatenated structure. Some asymptotic results are derived. Hermitian LCD codes are introduced to that end and their cyclic subclass is characterized. Constructions of QCCD codes from codes over larger alphabets are given

    Skew Cyclic codes over \F_q+u\F_q+v\F_q+uv\F_q

    Get PDF
    In this paper, we study skew cyclic codes over the ring R=\F_q+u\F_q+v\F_q+uv\F_q, where u2=u,v2=v,uv=vuu^{2}=u,v^{2}=v,uv=vu, q=pmq=p^{m} and pp is an odd prime. We investigate the structural properties of skew cyclic codes over RR through a decomposition theorem. Furthermore, we give a formula for the number of skew cyclic codes of length nn over $R.

    Cyclic LRC Codes and their Subfield Subcodes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalizes the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Transactions on Information Theory, no. 8, 2014; arXiv:1311.3284). In this paper we focus on the optimal cyclic codes that arise from the general construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance.Comment: Submitted for publicatio

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels

    Cyclic LRC Codes, binary LRC codes, and upper bounds on the distance of cyclic codes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalize the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Trans. Inform. Theory, no. 8, 2014). In this paper we focus on optimal cyclic codes that arise from this construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance. The locality parameter of a cyclic code is related to the dual distance of this code, and we phrase our results in terms of upper bounds on the dual distance.Comment: 12pp., submitted for publication. An extended abstract of this submission was posted earlier as arXiv:1502.01414 and was published in Proceedings of the 2015 IEEE International Symposium on Information Theory, Hong Kong, China, June 14-19, 2015, pp. 1262--126
    corecore