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the use of soft-decision decoding can significantly improve the perfoshere

mance. In practice, in most casg$, is equal t@™, but the codewords

are transmitted in their expanded binary form and the available soft in- — -
formation is relative to the binary symbols. However, soft-decoding ai(r) = Zm‘,;r

algorithms, like the generalized minimum distance decoding (GMD)
of Forney [10] or the Chase algorithm [11], make use of soft-decision
information on the symbol level. In [9], itis stated that “the major drawB
back with RS codes (for satellite use) is that the present generation

decoders does not make full use of bit-based soft decision informa-
tion.” The permutations introduced in this correspondence can be used
for this purpose.

This correspondence is divided into five sections. In Section I, W‘Ehen DE, : v
give a construction of & ,-generator matrix of thg-ary image of Fa*[¢]/(¢" —1)-module(F,:[2]/(2" —1))%.
q™-ary cyclic codes. A similar construction is found in [8], but here Let
we completely characterize each block as a generator matrix of a cyclic 0 @ r
code oveF, . This characterization is necessary to prove the invariance {(Cél)(x)e o’ (x), ..., 05)71(1')% fori=0,...., ~k~ 1}
of theg-ary image under the action of permutation groups.

In Section lll, we define special sets of permutations, and we proge anF,--basis of D.([n, NZ],~). An F,s-generator matrix for
that they form a group. Then we determine cyclic codes wheagy D, ([n, NZ],) is given as
image is invariant under the action of these permutations.

In Section IV, we present some consequences of these results. We ey e Y ()
prove that if a cyclic code ovdf,~ is such that itsj-ary image is ¢
invariant under the action of some of these groups therthiy image .
is equivalentto a 2-D Abelian code. When m) = 1, theg-aryimage cégk_w (z)
is equivalent to a cyclic code.

Section V presents an application of these permutations and showsVe define the set of conjugates of an elemguwff F,~ with respect
how to use them to improve the performance of the soft-decision dg . as the set of elements 37", ..., ﬁqs(f”> [4, Ch. 2, Defini-
coding of RS codes. The algorithm is worked out in detail and SOy 2.17]. This set is denoted k- (3).
simulation results are presented.

j=0

Theg®-aryimage ofn, N Z],- with respectto the basisis denoted
gf/Dg([n, NZ]4+), and we have

Da([n, NZ)gr) = {Dalc(2))|c(z) € [n, NZ];}.

[n, NZ];») is a submodule of dimensiod k& of the

@)

T_1

s

In order to construct thE,-generator matrix of the-ary image of
C, we need to splitVZ (the set of nonzeros af'), into full sets of
Il. GENERATOR MATRIX OF THE ¢-ARY |IMAGE conjugates with respect to subfielddaf- . LetF g ,Fyrz, ..., Fgre
OF A ¢™-ARY CycLIC CODE be the subfields df,~ such thaty < r» < --- < r,. Note that; =
Let NZ be a subset oF -\ {0} and letC’ be the code equal to andr, = m. Let N.Z, denote the union of full sets of conjugates
[n = ¢™ — 1, NZ]s~. In this section, we present a construction of é{v'th respe_ct -, thatare contz_ilned iy Z.' The setV Zz is defined
F,-generator matrix of the-ary image ofC’. The generator matrix is as the union of full sets of conjugates with respecFie. that are

i in\ N 7 imi p— NZ i i
obtained as a block matrix where each block is a generator matrix O(f%ntalned_ INVZ\N Z1. Slmllarlyf fori = 3_’ - 1, N Zi is defined
cyclic code of length: overF,. as the union of full sets of conjugates with respeckte; that are

contained iNNZ\{NZ; U---UNZ;_}.

Fori=1,...,¢, ; th fiel fi
A Definitions and Preliminaries orz’ =1, , t,we denote by’; the subfield subcode @f defined
by [/L. _/\ Zz]q’"i .
We start by defining the’-ary image of " -ary cyclic code, where

. / imiti 4 v
F,- is a subfield ofF - Let Example 1: Let« be a primitive element df,+ such thaty” + «+

1 = 0. Let us define the RS cod& = [15, N Z]:s (presented in [8])

nlo suchthatVZ = {a", %, ..., o', a"}. For this set of nonzeros, we
afz) = Z a;z’ haveri = 1, NZ; = Co1(a®)UCor(a”), 70 = 2, NZy = Cp2(a'?),
i= andr; = 4, NZ; = Cr1(a®) U Caa(a®) U Cra(at?). We obtain then
be an element df,-[2]/(z" — 1). Leta = {aq, a1, ..., az_,} be the subfield subcodeS: = [15, NZi],, C> = [15, N Z:],2, and
a basis of, overF,. Usinga, the polynomiak(z) may be written Cs = [15, N Z3],a. o
as Foreachi =1, ..., t, we construct a particuldf,-generator ma-

i trix of the ¢-ary image ofC; in Section 1I-B. Section II-C extends this
construction to the construction of a particukay- -generator matrix
of theq"¢-ary image of the codp:, N Z;],~. Finally, in Section II-D,
the fact thatC' is equal to@’_,[n, N Z;],~ is used to construct an
wherea;, ; € F,s and F.-generator matrix 0P, ([n, N Z;],~ ) and thus & ,-generator ma-
trix of Do (C).

15

-

n—1 5

(l‘iyj(h‘flj
i=0

=0 1

<.

-1
; gt = B. Generator Matrix of theg-ary Image ofC;
Foreach =1, ..., t, consider the subfield subcodg. The subset

We define the;®-ary image ofa(z) with respect to the basis by R ; ; i
N Z; is a union of full sets of conjugates with respecip-

the bijective module homomorphism
Da: Fprlal/(" = 1) (Fys[a]/(a" = 1))% vz - U Colfer),  whered, € NZ.
a(z) — (@), ar(@), o az (@) = o
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LetC;, ; be the codén, Cy: (3;,;)]4 - Clearly,C; = @t'_l Ci, ;. Then, fromyg; 2(z), we obtain

Lets, ,(~) be the primitive idempotent df. C, (7., )],. A generator 101101101101101 011011011011011
il B. —
OfCQernay be expressed as >t 110110110110110 101101101101101
gi i (2) =0; ;(2) H (2 —b). 1) Similarly, from ga. 1 (=) andés. 1 (=) which is equal to
beECq (B, j)\Cqm' (8i,5)
Let s = {bo, ..., b.,—1} be a basis of-,~; overF,. Then the A A A A SR P T
generatoy;, J( ) may also be expressed as we obtainBs, 1 equal to the matrix shown at the bottom of the page.
9i.5(2) = 8. 5(2) [b(O)( 20 + b1 (=) +"'+b§;"}"_l)(f)5m—‘] AsC; = @'L, C; ;, anF,-generator matrix oPs(C') may be ex-
(2) pressed as
where eacth{",(z) has its coefficients ifF,. Bi BN @) My - BT (@) M
M= . |=

Example 2: By considering the cod€ defined in Example 1¢'; is T
equaltoCy 1 B C 2, Cs is equal taCs 1, andCs is equal toCs ( B Bi 4, bf?f.(r)Mi,ti {)E";__U(m)ﬂ/jiln
C's,» 4 Cs, 5. Let us compute, for examplg.-g 1(2) andgs, 2 (z). Note . L . o o
that the basig of F,~ overF, (hereF,. overF-) must be, for each \[/)\;hecre(/;t[l )]] s the following particular generator matrix of
F,~, adirect product between a basisfof~ overF, and a basis * """’ T
of F,~ overF, (see [12]). Hencey must be a direct product between 8: ()
a basis ofF,. overF3 (we take the basi§l, a}) and a basis oF 2

overF, (we take the basil, a”}). s, 5(x)
Following (1), a generator af, 1 is g2, 1(2) = #2,1(2)(z — a®).
As {1, o’} is a basis of,= overF, theng., (=) may be expressed 21035 NG, ()
ashs, 1(z)(z.1+1-a%) (see (2)). A generator af_; is . R
05.1(2)(z — a)(z — a®)(z — ™). Whenb!" () is not equal td), since[n. C, (3, ;)] is ireducible,

By developing the coefficients in basis we obtain the polynomial ~ the matrrxb( ()M, ; is also a generator matrix §f, C,(3:,;)],-
(2) = 85,1 (=)(( S4.240) 14 241 5+( 2, Jat1 6) Thus, M; |s composed of block matrices generating cyclic codes
g3,1(z) = 03,1(2)({Z2 +Z% . z e z Z)« e}

overF,.
which respects the form defined by (2). o
. . C. Generator Matrix of thg" -ary Image ofn, NZ;|;m
Proposition 1: Forj =1, . , let B; ; be the|C, (3 ;)| x 7; )
matrix whose entries are Foreachi = 1,..., ¢, lety = {70, 7, .- Y- 1} be a basis
20, 5(x) b(’) (x of F,~ overF -, and let{go(2), ..., ngZir,l( }be a basis of’;
o ) overFgr; .
foru=0,....1C(8, ;)| —1landl =0, ..., 7 — 1. Forj=0, ..., ™—1,we define byy;C; the set{~;c(z): c(z) € C; }.
ThenB; ; is aF,-generator matrix oDs(C5, ;). Clearly, forj = 0, ---» 7o — 1, 9;Ci is a subcode ofC" and
Proof: The first row of B; ; is equal toD(s(ql i(2)). Thus, each {+,4,(z):u=0, ..., |AZ |—1} is a basis ofy; C;.
row of B; ; isinDs(C, ). Then the|N Z;| x ™ elements of
Let us prove that thesg, (3, , | rows are linearly independent. - !
Clearly, there is at least oifie ; («x )b fo) (x) notequal td). On the other T .
hand, the codén, C,(3: ;)], (generated for example, b ;(z)) U {Dy(vigu(2)):u=0. ... [NZi| =1}
is irreducible (see [6, Ch. 5]), it follows that it is also generated by 7=0
8; ()b (lo (z), and{z"8; ; (x )b(lo)( Jou=0,...,1C,(3. ;)|-1} may be considered as the rows of Fg-; -generator matrix of
is anF, ‘basis of[n, Cq(Bi,)]q- This proves that theoq(r}l Al rows Dy([n, NZi]g=). These rows form a block matrix
are Iinearly independent. Mi 0 ... 0
Moreover
. . 0o M, ... 0
dimg, Ds(C; ;) = ri X dllIquri Ci, T, =
=ri x dimg ., [n, Cgri (8i5)]q
—ILX|(, T?(JLJ)| 0 0 - ,ML'
= C,(Bi. )] whereM; is a generator matrix of’; overF,~; .
= dimg, [, Co(Bi ;)]q- Example 4: As an illustration of this part, we may express the ma-
This completes the proof O trix T of codeC' (see Example 1) as
Example 3: Let us develop matriceB, ; andBs, ; related to codes T = Me 0
C5 1 andC’s, ¢ (see Example 2). The polynomi&l (=) is equal to 0 Mo
P R L R HP L R where M, is a generator matrix af; overF,z. o

111010110010001 011001000111101 01000111101011 11110101100100
111101011001000 101100100011110 10100011110101 01111010110010
011110101100100 010110010001111 11010001111010 00111101011001
001111010110010 101011001000111 01101000111101 10011110101100
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D. Construction of thé,-Generator Matrix ofD. (C')

Now, using the two previous sections, we can construdt agen-
erator matrix ofD, (C').

Let the basisy of F,~ overF, be chosen such thatis the direct
product of a basis df,~ overF, with a basis of~,~; overF, for

every subfield-,~; of F,~. Such a basis always exists (see [12]). In
other words, for each we choose the bases used in Sections 1I-B and

1I-C such that their direct product is equaldo

Finally, in order to obtain anF,-generator matrix of
Da([n, NZ;],=) itis sufficient to replaceM; (Section II-C) by,
(Section 1I-B) in7;. We call the obtained matri&;. If v = 1, we
haveM, = M, and7; = T;. If r = m, thenT; = M; holds.

Since C' is the direct sum of the codef:, NZ;],~ (for
1 =
transposed form, as

[T\ T T].

This matrix generateB, (C') and it is composed of block matrices

generating cyclic codes ovér, (see Section II-B).

Example 5: As an illustration, we construct two submatrices of the 3) |t is sufficient to show that all these permutations are different.

F.-generator matrix of cod€ defined in Example 1. The first one
is related to nonzera'?, i.e., to subfield subcod€’. The codeCs
(overF,2) is equal toC', 2. Therefore, M, is equal toBz, 1 which

is developed in Example 3. Then, we can deduce the corresponding

submatrixT» of the generator matrix af’ shown in the first matrix at
the bottom of the page.

The second submatrix is related to the nonzetoThis submatrix
is a part ofT5 (see previous notations). As = 4 is equal tom,
T5 = M3, andMs is the concatenation dBs 1, Bs, 2, andBs, 3. The

submatrix corresponding to® is shown in the second matrix at the

bottom of the page.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

Let us denote byP the set
{(l,0,a),1=0,1,....,m—1,0 €5, anda € Z/(n)}.

Proposition 2: Let us denote the law of composition by Then
1) (P, o) is a group;

2) the generators of this group dfe id, 1), (1, id, 0), and the set
of (0, o, 0) for ¢ in the set of the generators 6f, ;

3) |P| = m x m! X n.
Proof:
1) Clearly,(l1, o1, a1) o (I2, 02, a2) is equal to

(li +13, c1 002, a1 +(1'2qll)

1,...,t), an F,-generator matrix ofD.(C) is given, in which is also an element &0. Moreover, for all(l, o, a) € P, we

have the following two equalities:
— (l,0,a)0(0,id, 0)=(0,id,0)o (I, 0,a)= (I, 7, a)
—(l, o, )0 (=1, 07", —¢7"a) = (0, id, 0).
So,P is a group under composition.
2) Direct.

Let ({1, 01, a1) and(lz, 02, a2) be two permutations. Let us
assume that, for any pait, j), we have

(@1 (i), (G + 507" 4 ay)
(02(1), (G + 5% 7 )q" + az).

Thensy = o2. Thus, fors; = o2 = ¢ and for any paiti, j), we have

(j + qmillwa(i) — 'LUi) ¢+ ay

= (j + 4" P w,gy — wi) "% + a> modulon.

Note that this example illustrates the difference between our cop?: for any paiii, j), we have

struction and the construction of [8]. Indeed, in [8], the submatrix cor-

responding ta" is not factorized into explicit block matrices. o

Ill. GROUPS OFPERMUTATIONS OF THE¢-ARY |IMAGE OF SOME
q™-ARY CycLIC CODES

A. Groups of Permutations
Now, let us introduce the following sets of permutations.

Definition 1: Let Z/(n) be the ring of integers modula. Let
(wo, w1, ..., wn_1)be somen-tuple, such that each; isinZ/(n).
We denote by!l, o, a) the permutation of0, 1, ..., m—1} xZ/(n)
which sendsi., j) to ((i), (j + 5" )¢’ + a), where

¢ = wigt + a1 = ¢"2j — wig"™® + a2 modulon
i.e.,
(j — wi) (qll — qlz) + a1 — a» = 0 modulon.
Since there is a palfi, j) such thaty — w; = 0 modulon, we have
a; = as modulon.

Moreover, there is a paifi, j) such thatj — w;, n) = 1. Thus,
¢'t — ¢'2 = 0 modulon and hencé; = I». O

The action of a permutationil, o, @) of P on an element of
(Fqlz]/(2™ = 1))™ is defined as follows.

Definition 2: Letc(x) andc' () be two elements ofF,[+] /(2™ —
1))™. Lete(x) be equaltdea (), c1(), ..., em—1(z))ande' (x) to

1) € Sw (where S, is the group of permutations of - ; ;
(0.1, ..., m—1}): (co(z), ¢t (z)y ..., i (2)), where
. n—1 . n—1 »
2) aIE Z/(n)andl € {0, 1, ..., m —1}; (’z(r)zzf’zﬂ"] and c(z) = o al.
3) .55 ) = qilwa(i) —w;, fori =0,1,..., m—1. =0 =0
101101101101101 011011011011011 0 0
110110110110110 101101101101101 0 0
0 0 101101101101101 011011011011011
0 0 110110110110110 101101101101101
111010110010001 011001000111101 01000111101011 11110101100100
111101011001000 101100100011110 10100011110101 01111010110010
011110101100100 010110010001111 11010001111010 00111101011001
001111010110010 101011001000111 01101000111101 10011110101100
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For each permutatiofl, o, a) of P, we define the magl, o, a) of Second, the nonzerd of C; is a primitive element of;~. Re-
(Fql2]/(2™ —1))™ which sends(x) ontoc' () if ¢} ; = cu,+, where mark 1 implies thafn, C,(53)], is equal to
(u, )= (1, 0,a)" (i, j),fori=0,1,..., m—1andj € Z/(n). Gl r =0 —1rud{o

The elementl, o, a)(c(x)) is called the image of(x) by the per- {B(e)a”, r =0, m = 1} U{0}
mutation(l, o, a). and then all thé(x)b;(x) may be expressed d¢x)x"+.

Clearly, for a fixed permutation, the images of two different elements 2) Follows from 1) and Remark 1. o

of (Fy[a]/(«" —1))™ are different. Example 6: In order to illustrate Proposition 3, we consider the code

= [n, {a®}],2 wherea is a primitive element of,1 such that
+a+1 = 0. A generator polynomial of this code is the polynomial
Leta = {ao, a1, ..., am—1} be a basis of;~ overF,. We g3 ((z) given in Example 2
consider the cod€y = [n, {3}],~, wherej is a primitive element . 3, .2 5 .2 02 6
of F,=. Then the construction oqf tHe,-generator matrix oD, (C') bR+ + D)o’ T+ Dda- (e 4+2) +a7- 1),
implies no condition on basis because there is no subfield subcod&/sing this polynomlal we can dedutieegenerator polynomial in the
(see Section II-D). Moreover, a generatordfis (see Section II-B)  basisa = {1, a®, a, a®}. This generato&:7(«) is equal to

Cy
B. Invariant Codes Under the Action of Some Groups of Permutatlons

6(2) H (= —b) (0(x)(2® + 2° + 1), 6(x)(2® + 1), (2)(2” + ), 0(x)).
bEC,(B)\Cgm (8) Following Proposition 3, the generator polynomial can be expressed as
) ) = (8(x)a?, 6 , 0 , 0(x)).
wheref(z) is the primitive idempotent df:, C,(3)]4. In basisw, this Gi@) = (Bl (2)2%, 6(x)2, 8(x) ¢
polynomial may be expressed as Now, the expression @F5-(x) leads us to define a group of permuta-
, tions such thab., (C1) is invariant under the action of these permuta-
0(z)(bo()a0 + -+ + bm—1(2)m—1) tions. All these permutations depend on thetuple (uo, . .., wm—1)
whereb; (=) is some polynomial ovefF, (i = 0, ..., m — 1). Then defined byG1(x) (see Proposition 3), so they depend on the basis
theF,-generator matrix oD, (C\ ) has the foIIowmg form (see Propo- @nd on the codé”,.
sition 1): Definition 3: LetC; be equal tdn, {3}],~, where3 is a primitive
B(x)bo(x) 6(2)bm—1(2) element of,». Let G7() be equal td#(x)="°, ..., §(x)z"m—1).
()b c0(2)b , We defineP{" as the group of permutations for which the-tuple
wf(x)bo(x) v xb(x)bn—i(2) (Wos + .oy wim—1) is equal to(ug, ..., um_1) (see Definition 1).
Proposition 4: D, (C1) is invariant under the action of each per-
e ()bo () - 2™ TH0(@) b1 (2) mutation inP;-.
Proof: In order to prove this proposition, it is sufficient to prove
Let us denote the first row of this matrix &y (). As this matrix that the image of any COdeWO(d(l)’E7+“0 () of

is entirely defined by its first rowi{-(=) may be considered as a gen
erator of D, (C ). For this particular construction of tif€,-generator
matrix of D, (C‘l) and for the fixed basig, G5 () is unique. Thus,

D.(C1) by any permutation ifP;- is also a codeword P, (C). Let
us expresg(x) asy_ i, ' ;47 . Then we have

from now on,G7(x) will be calledthegenerator oD, (C+). (H(ﬂj)mﬂruo, H(m)_rrﬂm_l)
Remark 1: In order to prove the following propositions, we define ot nl i
a mappingy as Z I Z B sty —r
U B =Fa(8) — [0, Ca(B)lg and by using Definition 2 itsimage by the permutaﬁjam, a)isequal
m—1 m—1 to

e — f(x) et n—1
; ; <Ze(j—a)ql—qlw) r ZH(J a)gt—gtup, g — "rj)'
s

Proposition 3: Let C, be equal tdn, {3}],~, whereg is a primi- Since (8(x))? = 6(x) (by definition, () is an idempotent), this

The mappingy is a ring isomorphism (see [5, Ch. 8]).

tive element of ;. Let G(x) be equal to element is also equal (@(z)2™ +oT0 | . g(x)a"? Fotum—1) O
(0(a)bo(x), ...,y 0(a)bm_1(2)). Example 7: Let us consider the group of permutatigR$ of code

C; defined in Example 6. This group is constructed from 4kteiple

Then (13, 8, 5, 0). Let us consider some permutation?f, for example,
1) G(x) can be expressed &&(x)z"“?, ..., §(z)z"m—1); (1, 0, a) = (3, s, 4) wheres is the cyclic permutation modulb. It
2) Do(Ch) = {(B(x)z"0*", ..., §(x)a"==177) forr = 0, ..., Mmaybe verified thatthe corresponding miaps, 4) (see Definition 2)
" =2} U{(0, ..., 0)}. sends any codeword 6f; onto another codeword @f; . For example,

' 2 G5(x) is sent onte:' ' GH(x). o

Proof:
1) First, let us prove that(x)b;(x) # 0, foralli =0, ..., m — 1. Now, we prove that for other cod€sin F,~[z]/(z" — 1), Da(C)

If there exists an integer such tha# (x)b;, (x) is equal to zero then is invariant under the action of any grofip(defined in Definition 1).

all codewords of”; have the form . . .
! Proposition 5: LetC, be equal tgn, V], , wherel” is some union
n—1 m—1

. . . of full sets of conjugates with respectfq. ThenD, (Co) is invariant
Z Z Ci J % with ciy j =0, V). under the action of anp. a

Proof: Letus denote by the coddn, V],. The particular form
This is clearly impossible. Thusf(x)b;(x) # 0, for all of theF,-generator matrix 0D.(Co) (see Section Il) implies that,
i=0,...,m—1. may be expressed dco (), ..., cm_1(2)): c;(x) € Cp}.

J=0 =0
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The action of the permutations &f overD, (Cyy) may be splitinto  — 1 and to(0, j + 1) otherwise (see [7]). In a second part, it will

two parts: be proved that all expanded codes which are invariant under a group
— the permutation of the different polynomialgz) by the ele- are necessarily equivalent to a 2-D Abelian code, and sometimes to a
ments ofS,,, (the group of permutations f), 1, ..., m—1}); cyclic code.
— some Cyc"c shifts and some exponentiationslbpf the code- Let us fix some notations for this SeCtiC@i will represent the code
words of . [n, {B}],~ wherej is a primitive element oF ,~, its generator=;
It can easily be proved tha..(Cy) is invariant under the action 1S €qual to(6(z)a™, ..., #(x)a"m~1), Cy will represent the code

of these two kinds of operations. Tha, (C,) is invariant under the [n, V], ,whereV is some union of full sets of conjugates with respect

action of all the permutations. O toF,.

Proposition 6: Let C be equal tdn, {5} U V],~, where3 is a A. Invariance Under the Cyclic Permutation
primitive element ofF,~, andV" is some union of full sets of conju-
gates with respect 86, . LetC'; be equal tdn, {3}],m, and letGi (=)
be equal td6(x)z"?, ..., 8(x)x¥™1).

The codeD., (C) is invariant under the action 6"

Proof: As C'is equal toCy 4 C1 whereCy = [n, V], the
proof is direct from Propositions 4 and 5. O

A well-known problem in the area of-ary images of¢™-ary
cyclic codes is to determine under what conditions¢fery image is
invariant under the action of a cyclic permutation, i.e., the mapping
which sends a codewor@(z). ..., ¢m—1(x)) to the codeword
(xCrm—1(x), co(x), ...\ Cm—2(x)).

Clearly, this mapping corresponds to the permutatialefined pre-
Another way to increase the number of codes which are invariaf{pusly-

under the action of any group is to consider the dual codes. In order to make the connection betweeand the group of permu-
tationsP, we give the following three lemmas.
Definition 4: Let Tr be the trace function &, overF, defined
by Lemma 1: Let

_ G5 (x) = (0(x)a™0, ..., O(x)a"™)
Tr(v) = Z 41 be the generator of the cod®, = [n, {3}]~, wherej is a prim-

i=0 itive element offF,~. We consider ann-tuple (vo, ..., Vm—1).
There is a basisy of F,~ over F, such thatGi(z) is equal to
(B(x)zv0, ..., #(x)z>=1) if and only if {3*°, ..., g1} is a
basis ofF,~ overF,.

, { 1, ifi=j Proof: First, let us give a preliminary result. Let and v be

Tr(oiay) =

The trace-dual basis @f = {«o, a1, ..., am—1} is defined as the
unique basist = {af, af, ..., al,_; } of F,= overF, such that

0 if i two bases of,~ overF,. Let P be t‘he change of basis such that
’ ' o' = Py'. Let us assume thaf{(x) is equal to(#(x)z"", ...,

Let C* be the dual code of’. g(x)a"m—1) andG(x) is equal to(f(x)z", ..., B(x)x"™"). By

using the definition of7{(z) (andG%’(m))/given at the beginning of

the Section I1I-B, it is clear that we havgi(z)' = P'GT(x)".

1) Suppose that there exists a basisf F,~ overF, such that

Proposition 7: Let C' be a code inF,~[z]/(z" — 1) such that
D.(C) is invariant under the action &. ThenD, . (C*) is also
invariant under the action @?. B

Proof: ClearlyD.(C)~ isinvariant under the action &. More- GH(z) = (B(x)x™, ..., B(x)z"m—1).

P 1 _ 1
ovef, It IS known [7, Lemma 6] thab, ()~ = D,+(C™). Thus,  gypnose that there are some scatarsnot all equal to zero (we
D, (C™)is invariant under the action @?. L take, for examplego # 0), such thaty " a; 3% = 0. It follows

m—1

Propositions 6 and 7 allow us to determine codes which are invaridfit? () 22iZ aix"* = 0 holds (use Remark 1). Let be equal to
under the action of som®. Several RS codes satisfy the conditiond 70: - -+ ¥m—1} andletus consider the bagisf F, overF, equal
given by these propositions. For example, it can be verified that for £ {10, m =7 &t ym1 — 0 =%~} Using the preliminary
k=1, ..., 7 thereis a7, k. 8 — k]s RS code (i.e., a RS code ofresult,G(x) is equal to(0, #(x)«"*, ..., §(x)x"=~1). Because of
length7, dimensionk, and minimum distancé — k overFs) whose the proof of Proposition 3, this is impossible.
binary image is invariant under the action ofPav. This is also the ~ 2) Conversely, suppose thgg™, ..., 3*=-1} is a basis of~;m
case for the8, k, 9 — k] RS codes (fok = 1, ..., 8) whose ternary overFq. Then{6#(x)z", ..., #(x)a""~*} is a basis ofn, Cq(3)]
image has the same property. (see Remark 1). On the other hafd;*°, ..., g3“=-1} is also a basis

Some infinite families of RS codes also satisfy this property. All thef F,~ overF, (see previous point) and the same argument as above
RS code$q™ — 1, {1, a}, ¢™ —2],=, wheren is a primitive element shows thafd(a)z"°, ..., §(x)x"~*} is also abasis df:, Cq(3)]q-
of F,~, are such that theif-ary image is invariant under the actionThen there exists an invertible matd# such that
of a group. The duals of these codes in the trace-dual basis, i-€.(9 ()™ ... 6(x)a" 1) = P/(8(x)z"", ..., B(x)x " )".

[¢™ — 1, ¢ — 3, 3]4= RS codes, also have the same property. . ' e e .

Note that the list of RS codes given here is not exhaustive. Seveh"V: We consider the setsuch thaty = P+, Sincel”” is invertible,

other RS codes can be found satisfying the conditions given by Propd$ 0 @ basis df,~ overF, and the preliminary resultimplies that

sitions 6 and 7. GZ_(*‘) = (B(x)", ..., B(x)z"" ). 0
IV. THEORETICAL CONSEQUENCES Lemma 2: Let
In this section, it will prove that the invariance of some expanded Gr(w) = (0()2", 6(a)a"t, ..., f(a)a"m0).

codes under the action of the permutations allows us to determine soraen for any integet, there exists a basisof F,~ overF, such that
new properties of these codes. We start by determining the conditions v - N

under which the group of permutations contains the permutatioh Grle) = (0(e)e™, ..., B(w)e )
{0, 1, ..., m — 1} x Z/(n) which sendgi, j)to (i + 1, j) if i < and we havé,(Cy) = D(Ch).
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Proof: Lemma 1 proves thaf3"°, ..., 3=} is a basis of
F,~ overF,. Thus,{g"o™", ..., 3“=-17"] is also a basis oF ;~
overF,. On the other hand, it proves that there is a bastf F,~
overF, such that B

GHw) = (B(a)a" T, ..., fa)am 1Tt

The dimensions 0P, (C1) and’Dl(Cl) and Proposition 3 prove the
last assertion. O

In Proposition 4, it is proved th&®. (C ) is invariant under the ac-
tion of Pi~. Lemma 2 proved that there are other baseE gf over
F,, called, for exampley, such thatD,(C") is also invariant under
the action ofPy. a

Lemma 3: For any integet, there exists a basigsuch that
GH(x) = (8(x)a’, B(x)a T, L, ey (MDY
whereb is invertible inZ/(n).
Proof: Clearly,{1, 7%, ..., 3~ (™~ Y¥}is a basis oF ;= over

F, becausé is a primitive element df ,~ andb is invertible inZ/(n).
Lemma 1 proves that there exists a bagisuch that

Gi(x) = (B(x)x", B(x)a", ..., B(x)z" ™ 1).
The final result is obtained using Lemma 2 for this polynomial.(J
Proposition 8: There exists a basissuch that- is in ’P;—' if and only
if (n, m) = 1. When such a basis exists, we have
1) Gi(x) = (8(x)z", B(x)x"0™", ..., f(x)z"0 0"~ D) where
a is the inverse ofn in Z/(n), andv, is an integer.
2) 7 = (0, 7, a), wheres is the permutation ob,, defined by
o (i) =i+ 1 modulom anda is the inverse ofn in Z/(n).
Proof: Let us suppose that there is a bagisuch thatr is in /P%
and thalGl—'(;v) = (8(x)z"°, ..., 8(x)2"™—1). Then, by considering
the image of the different paifs, j) by 7, forall j in Z/(n), we have

(i+1,7)=(a(i), i+ Vo) — qvi + a), ifi<m-—1
and
0,741)=(a(m—1), jq’ + Volm—1) — qlvm,l +a),
ifi=m-—1.

Thereforeg is necessarily the permutation®f, defined byo (i)
i + 1 modulom, and forj = 0: v,41 — ¢'v; + a = 0 modulon i
i <m—1,andvo — ¢'v,n_1 + a = 1 modulon otherwise.

Thus, for anyj in Z/(n), ¢'j = j modulon, and necessarily= 0.
Thus, we havev;y1 — v; = —a modulon if i < m — 1, and
vo — Um—1 = 1 — a modulon. Hence,l — am = 0 modulon, and
(n, m) = 1 holds.

Clearly, = (0, o, a), wheres is the permutation of.,, defined by
o (i) = i+ 1 modulom anda is the inverse ofn in Z/(n). Moreover,
v, =wvy —ia,foralli=1,..., m—1.

Conversely, suppose that, m) = 1. Leta be the inverse ofn in
Z/(n). Then there is a basig such that

GE(x) = (B(x)z", B(x)x" ", ..., f(x)z 0 (M1

for some integen, (see Lemma 3). Let us considiéll, and the partic-
ular permutatior(0, ¢, a), whereo is the permutation of,,, defined
by (i) = ¢ + 1 modulom. This permutation is equal to, and hence,
itisin P;-. O

=

Corollary 1: LetC be equal ta”y & C|. If (n, m) = 1 then there
exists a basig such thatD, (C1), Dy(Co), andD, (C) are invariant
under the action of.

2075

This result is another proof of a part of the results given in [7].

B. Equivalence With Cyclic and 2-D Abelian Codes

In [7], Seguin presents an open question which is “when does a
q™-ary cyclic code have g-ary image which is equivalent to a cyclic
code?” The following proposition partly solves this problem.

Proposition 9: Let C' be a code iF4~[z]/(z" — 1) which is in-
variant under the action of a grodp. Then, the following two state-
ments are true.

1) D.(C) is equivalent to a 2-D Abelian code.
2) If (m, n) = 1, thenD,(C) is equivalent to a cyclic code.

Proof:

1) Recall that a set of matrices can be considered as a 2-D Abelian
code if it is a vector space which is invariant under the cyclic shifts of
the rows and the columns. Here, it will be proved that it is possible to
define a permutatiod® which sends the set of codewordsmf, (C')
onto a set ofn x n-matrices that satisfies the required property.

Let P be the permutation of0, 1, ..., m — 1} x Z/(n) which
sendq, j) onto(z, wo — w; + j) where(wo, ..., w,—1) is defined
by P (see Definition 1). Let:(x) be an element oD, (C') equal to
(co(x), ..., em—1(x)), where

n—1 ]
ci(z) = Z ci, o’
j=0

!
© Cm—1

Letc'(z) be equal tqch (), .. (z)), where

n—1
ci(x) = Z c'i,]v,r"..
7=0
The action ofP on c(x) is defined byc; ; = cu,+, where(u, t) =
P, j)fori=0,1,..., m—1,andj € Z/(n). We callc'(x) the
image ofc(x) by P. Let us denote by’ (D, (C')) the set of the images
of the codewords 0P, (C') underP.
Now, letp be a permutation oP. SinceD. (C') is invariant under the
action ofp, thenP(D.(C)) is invariant under the action dfopo P~'.
Let o be the permutation of,,. defined bys (i) = ¢ + 1 modulo
m. We consider the action @ o (0, ¢, 0) o P! over P(D.(C)).
Clearly we have

Po(0,0,0)0 P (i, j)=(i+1, j).

Thus, this permutation acts di(D.(C')) as the shift of each column
andP(D.(C)) is invariant under the action of this permutation.

Finally, let us consider the action @ o (0, Id, 1) o P~ over
P(D4(C)). We have

Po(0,Id 1)o P™"(i,j) = (i, j + 1).

So this permutation acts af(D.(C')) as the shift of each row and
P(D.(C)) is invariant under the action of this permutation. Then,
P(D.(C)) is invariant under the shift of the rows and the columns.
Since it is the image of a vector spad@.(C')) under a permutation,
P(D,(C)) is also a vector space. Thus, (C') is equivalent to a 2-D
Abelian code.

2) It is well known that a 2-D Abelian code of length x n; is
equivalent to a cyclic code {fn1, n2) = 1, [6, Ch. 5]. O

V. APPLICATION TO THE SOFT-DECISION DECODING OF BINARY
IMAGE OF SOME RS (ODES

In practical applications, the-ary image of some™-ary cyclic

Also, in the basis_,/l, their dual codes are invariant under the actiogodes is often used in concatenated schemes. For example, the binary

of 7.

Proof: Use Propositions 4, 5, 7, and 8. |

image of some RS codes oes~ is used for satellite transmissions

9.



2076 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

E/N, (in dB)

Log., ( Bit Error Rate)
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Fig. 1. Performance comparison for tf¥e 4, 4] RS code.

In many applications, soft-decision decoding holds the promise isfthe best (the nearest to the binary received word) of the codewords
substantial performance gains for this kind of codes. Nevertheless, clasposed by the different decodings.
sical soft-decision decoding algorithms of RS codes use soft informa-n order to choose the permutations used for each received codeword,
tion on symbol level and then they do not make full use of bit-basate represent a codeword as anx n array overF,, each column
soft-decision information [9]. representing the binary image of a byte-symbol.

We propose an approach to this problem based on the use of permi€Elearly, for a given word, the permutatiots o, «) and (I, o, b)
tations in conjunction with a GMD algorithm [10]. We also present theompose the same columns. So, for the decoding, the only considered
results of some simulations of this new decoding algorithm applied permutations arél, o, 0),for! = 0, ..., m — 1 ando € S,,. The
two RS codes. number of such permutationsigs x m!.

From the definition of the permutations, it can be deduced that two

distinct positions can be grouped onto the same column only if they

A. Decoding Algorithm belong to distinct rows. This property implies that each row can be
) ] o ] considered independently for the choice of permutations. For each of

The main problem in order to use soft-decision decoding of the Rise 1y, rows, the permutations are sorted according to their capability
nary image of the RS code may be summarized as follows. The avg§-group bad positions with theorstposition of the considered row.
able soft information is relative to binary symbojsdry image). How- Then, the selected permutations are the hesermutations for each
ever, some of the main soft-decision decoding algorithms of the R&y, whereu is a parameter which determines the number of used per-
codes (GMD, Chase algorithm) operate with soft information for byt ;tations @ x m) (and hence, a level of correction).

(¢™ -ary symbols). In other words, we have to compute symbol level |, order to estimate the complexity of this approach, the two steps of
softinformation from the bit-based soft coefficients without losing toghe algorithm must be considered. The first step sorts the permutations
much information. to determine the:. best ones for each row. The required complexity,

The soft-decision decoding algorithm of RS codes considered hergdfunted as the number of multiplications and comparisons in the field
GMD decoding [10]. The GMD algorithm consists of determining thef concern, is of orde®(m? x m! x ). The second part of the algo-

d — 1 least reliable bytes (i.e., with the worst soft coefficients) and agithm concerns the x m independent GMD decodings of a word. As
plying successive erasure decodings by varying the number of erasufigs complexity of the computation of GMD decodingl$n x d) (see

In this way, a list of tentative codewords is obtained. The codeword 14] or [15]), the complexity of this step I9(n x d x u x m). Note

this list that is nearest to the received word is considered as the decogied these. x m GMD decodings can be implemented in parallel.
codeword. The complexity of the first step can be reduced by considering a

In order to improve the performance of this decoding, the permutsubset of the permutations and by only sorting the elements of this
tions introduced in Section Ill may be used as follows. The receivetibset. If the size of this subset is a powemofthe complexity of
binary word is permuted in order to “group” the unreliable bits withirthe algorithm is bounded by a polynomiahin Furthermore, the error
the same bytes. These bytes are then considered as the least reldtmrmance is not significantly degraded. It can be noted that the com-
for the soft-decision decoding. After a successful GMD decoding pfexity of different soft-decision decoding algorithms of RS codes with
this word, the binary form of the corrected word is permuted by the ikomparable performance [8], [16], [17] contain an exponential factor.
verse permutation to obtain a tentative codeword. This operation is perin the next subsection, simulation results for this decoding algorithm
formed repeatedly for several permutations. The final decoded outpu¢ presented for two codes and two values .of
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Fig. 2. Performance comparison for the, 13, 3] RS code.

For
[7, 4,

B. Simulation Results

The first code isC' = [7. {3°, 3, 3%, 3°}]s, whereg is such that
B* 4+ 3% +1 = 0. This code, whose parameters fig4, 4], is able to
correct one byte error and one byte erasure or three byte erasures.

Let us consideD,(C'), the binary image o’ with respect to the
basisa equal to{1, a, o*}, wherea = 3*. Then

G5(x) = (0(x), 8(x)a®, 9(1’):1’2)

whered (=) is the primitive idempotent df, {3, 3%, 3*}]». Asthe set
of nonzeros can be splitintg3} U {3, 3%, 3°}, D.(C) is invariant
under the action oP;" (see Proposition 6).

In our simulations, we have added white Gaussian noise (AWG
to the binary form of the codewords. For each bit, the associated so
information is computed and quantized into 32 possible values.

In order to evaluate the bit-error rate (BER) performance of our algo-
rithm for several values af (v = 1 andu = 4), we have implemented
other classical algorithms: maximume-likelihood decoding (MLD) and
Forney’'s GMD decoding [10]. Note that the implemented version of
GMD decoding is the one presented in [14].

The results of our simulations are presented in Fig. 1.

The second code is[a5, 13, 3] RS code oveF s defined as fol-

Tang,

(1]

lows. Let3 be a primitive element df s such that?* +3+1 = 0. Let g
us define the basis = {1, 3, 3%, 3°} of F1; overF». Proposition 6  [4]
proves thaD, ([15, {1, 3}]16) is invariant under the action &~ and
Proposition 7 proves that the dual codddf, {1, 3}]is expanded in (5]
the dual basis of is also invariant under the action ™. [6]
This dual code is thel 5, 13, 3] RS code considered here. The sim-
ulated performance of the decoding algorithmdoe 1 andu = 4 is [71

presented in Fig. 2.

The two simulations clearly show the benefit of using the permu- [8]
tations for improving the performance of GMD decoding. Indeed, at
BER = 107", the difference in performance between GMD decoding 9]
and the new algorithm fox = 1 is about 1.4 dB for th§7, 4, 4] RS
code and about 1.2 dB for th#5, 13, 3] RS code.

=10"
the MLD, i.e., less than 0.2 dB for tjg, 4, 4] RS code and about 0.4
dB for the[15, 13, 3] RS code at BER= 10"

u = 4, in comparison with GMD, the gain is about 1.6 dB for the
4] RS code and about 1.4 dB for thi5, 13, 3] RS code at BER
“. It may also be observed that these performances are close to
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Abstract—in this correspondence, we evaluate the variance of the union Shortinterleaver lengths. These interleavers are shown to significantly

performance bound for a rate-1 /3 turbo code over all possible interleavers lower the error floor occurring at high signal-to-noise ratios. Other
oflength IV, under the assumption of a maximum-likelihood (ML) decoder.  works related to the design of the interleaver include [9]-[13].

Theoretical and simulation results for turbo codes with two-memory com- - . .
ponent codes indicate that the coefficient of variation of the bound increases Alt_hOUQh the above YVOka 'mp“(_:'tly suggest some conclusions re-
with the signal-to-noise ratio and decreases with the interleaver length. garding the effect of different choices of interleavers on the perfor-
Theoretical analysis for large interleaver lengths shows that the coefficient mance of turbo codes, they are mainly focused on either search algo-
of variation asymptotically approaches a constant value. The results also rithms for the best (or at leagiood interleaver(s) or explaining the
demonstrate that the majority of the interleavers have performance bounds behavior of these codes in general. So far, the only statistical study
very close to the average value of the bound. This phenomenon is more pal- . . ’ : .
pable for larger interleaver lengths. of the turbo code behavior with respect to interleavers considers the
upper bound on the maximume-likelihood (ML) performance of the

turbo code, averaged over all possible interleavers (e.g., [14]).

If higher order statistical averages of the turbo code performance
with respect to the interleaver are known, it will be possible to have
I. INTRODUCTION a more accurate estimate of the distribution of the performance bound

Turbo codes, introduced in 1993 [1], are composed of the paralYéilth respect to the interleaver. As a first step, in this correspondence,

concatenation of two (or more) recursive systematic convolutiondf study the effect of the |r_1terleaver by looking _at th_e variance of the
turbo-code performance with respect to all possible interleavers of the

same length, under the assumption of an ML decoder. Note that, in
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