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The -ary Image of Some -ary Cyclic Codes:
Permutation Group and Soft-Decision Decoding

Jérôme Lacan and Emmanuelle Delpeyroux

Abstract—Using a particular construction of generator matrices of
the -ary image of -ary cyclic codes, it is proved that some of these
codes are invariant under the action of particular permutation groups.
The equivalence of such codes with some two-dimensional (2-D) Abelian
codes and cyclic codes is deduced from this property. These permutations
are also used in the area of the soft-decision decoding of some expanded
Reed–Solomon (RS) codes to improve the performance of generalized
minimum-distance decoding.

Index Terms—Permutation groups, -ary image of -ary cyclic codes,
soft-decision decoding.

I. INTRODUCTION

One important area in coding theory is concerned with codes which
are invariant under a set of permutations.

For example, any linear code of lengthn over q (i.e., vector sub-
space of( q )n) which has the property of being invariant under the
cyclic permutation (shift) is called a cyclic code. This property al-
lows us to consider such a code as a principal ideal in the algebra
q [z]=(zn�1). Let (i; j) denote the greatest common divisor of two

integersi andj. When(n; q) = 1, a cyclic code is entirely defined by
the set of its nonzeros, i.e., thenth roots of unity such that at least one
codeword polynomialc(x) does not evaluate to zero in this point. The
parameters of such a code are usually denoted by[n; k], wherek is the
dimension of the code considered as aq -vector subspace. Note that
k is also the number of nonzeros. In order to distinguish different codes
of the same dimension, we denote a code by[n; NZ]q , whereNZ is
the set of nonzeros. A generator polynomialg(z) of such a code is a
polynomial codeword such that each codewordc(z) can be expressed
as a productc(z) = g(z)�u(z) whereu(z) is a polynomial of degree
less thank. From such a generator polynomial, we can obtain a gener-
ator matrixG of this code defined as follows:

GT = g(z) zg(z) � � � zk�1g(z)

whereGT denotes the transpose ofG.
An Abelian code over q is a vector subspace of( q )mn invariant

under the shift of the rows and the columns where we consider each
codeword as anm � n-matrix [6]. Many researchers have worked on
codes which are invariant under particular groups of permutations such
as, for example, the general linear group [1]–[3] or the Mathieu group
[5, Ch. 20]. The first problem we address in this correspondence is that
of determining a group of permutations under whose action theq-ary
image of someqm-ary cyclic codes is invariant. This property is used
to obtain new results on these codes such as the invariance under partic-
ular permutations or the equivalence with cyclic and two-dimensional
(2-D) Abelian codes.

Permutations that fix a code have an interesting application in the
area of soft-decision decoding of theq-ary image (the so-called ex-
panded image) of the Reed–Solomon (RS) codes. For these codes,
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the use of soft-decision decoding can significantly improve the perfor-
mance. In practice, in most cases,qm is equal to2m, but the codewords
are transmitted in their expanded binary form and the available soft in-
formation is relative to the binary symbols. However, soft-decoding
algorithms, like the generalized minimum distance decoding (GMD)
of Forney [10] or the Chase algorithm [11], make use of soft-decision
information on the symbol level. In [9], it is stated that “the major draw-
back with RS codes (for satellite use) is that the present generation of
decoders does not make full use of bit-based soft decision informa-
tion.” The permutations introduced in this correspondence can be used
for this purpose.

This correspondence is divided into five sections. In Section II, we
give a construction of a q-generator matrix of theq-ary image of
qm-ary cyclic codes. A similar construction is found in [8], but here
we completely characterize each block as a generator matrix of a cyclic
code over q . This characterization is necessary to prove the invariance
of theq-ary image under the action of permutation groups.

In Section III, we define special sets of permutations, and we prove
that they form a group. Then we determine cyclic codes whoseq-ary
image is invariant under the action of these permutations.

In Section IV, we present some consequences of these results. We
prove that if a cyclic code over q is such that itsq-ary image is
invariant under the action of some of these groups then thisq-ary image
is equivalent to a 2-D Abelian code. When(n; m) = 1, theq-ary image
is equivalent to a cyclic code.

Section V presents an application of these permutations and shows
how to use them to improve the performance of the soft-decision de-
coding of RS codes. The algorithm is worked out in detail and some
simulation results are presented.

II. GENERATOR MATRIX OF THE q-ARY IMAGE

OF A qm-ARY CYCLIC CODE

Let NZ be a subset of q nf0g and letC be the code equal to
[n = qm � 1; NZ]q . In this section, we present a construction of a
q-generator matrix of theq-ary image ofC. The generator matrix is

obtained as a block matrix where each block is a generator matrix of a
cyclic code of lengthn over q.

A. Definitions and Preliminaries

We start by defining theqs-ary image of aqr-ary cyclic code, where
q is a subfield of q . Let

a(z) =

n�1

j=0

ajz
j

be an element of q [z]=(zn � 1). Let� = f�0; �1; . . . ; �
�1g be

a basis of q over q . Using�, the polynomiala(z) may be written
as

n�1

j=0

�1

i=0

ai; j�iz
j

whereai; j 2 q and

�1

i=0

ai; j�i = aj :

We define theqs-ary image ofa(z) with respect to the basis� by
the bijective module homomorphism

D�: q [z]=(zn � 1)

a(z)

�!

�!

( q [x]=(xn � 1))

a0(x); a1(x); . . . ; a
�1(x)

where

ai(x) =

n�1

j=0

ai; jx
j :

Theqs-ary image of[n; NZ]q with respect to the basis� is denoted
by D�([n; NZ]q ), and we have

D�([n; NZ]q ) = fD�(c(z))jc(z) 2 [n; NZ]q g:

Then D�([n; NZ]q ) is a submodule of dimensionr
s
k of the

q [x]=(xn � 1)-module( q [x]=(xn � 1)) .
Let

(c
(i)
0 (x); c

(i)
1 (x); . . . ; c

(i)
�1(x)); for i = 0; . . . ;

r

s
k � 1

be an q -basis ofD�([n; NZ]q ). An q -generator matrix for
D�([n; NZ]q ) is given as

c
(0)
0 (x) � � � c

(0)
�1(x)

� � �

c
( k�1)

0 (x) � � � c
( k�1)

�1 (x)

:

We define the set of conjugates of an element� of q with respect

to q as the set of elements�; �q ; . . . ; �q [4, Ch. 2, Defini-
tion 2.17]. This set is denoted byCq (�).

In order to construct the q-generator matrix of theq-ary image of
C, we need to splitNZ (the set of nonzeros ofC), into full sets of
conjugates with respect to subfields ofq . Let q , q ; . . . ; q

be the subfields of q such thatr1 < r2 < � � � < rt. Note thatr1 =
1 andrt = m. Let NZ1 denote the union of full sets of conjugates
with respect to q that are contained inNZ. The setNZ2 is defined
as the union of full sets of conjugates with respect toq that are
contained inNZnNZ1. Similarly, for i = 3; . . . ; t; NZi is defined
as the union of full sets of conjugates with respect toq that are
contained inNZnfNZ1 [ � � � [NZi�1g.

Fori = 1; . . . ; t, we denote byCi the subfield subcode ofC defined
by [n; NZi]q .

Example 1: Let� be a primitive element of 2 such that�4+�+
1 = 0. Let us define the RS codeC = [15; NZ]16 (presented in [8])
such thatNZ = f�7; �8; . . . ; �14; �0g. For this set of nonzeros, we
haver1 = 1,NZ1 = C2 (�0)[ C2 (�7), r2 = 2,NZ2 = C2 (�10),
andr3 = 4, NZ3 = C2 (�8) [ C2 (�9) [ C2 (�12). We obtain then
the subfield subcodesC1 = [15; NZ1]2, C2 = [15; NZ2]2 , and
C3 = [15; NZ3]2 . �

For eachi = 1; . . . ; t, we construct a particularq-generator ma-
trix of theq-ary image ofCi in Section II-B. Section II-C extends this
construction to the construction of a particularq -generator matrix
of theqr -ary image of the code[n; NZi]q . Finally, in Section II-D,
the fact thatC is equal to t

i=1[n; NZi]q is used to construct an
q-generator matrix ofD�([n; NZi]q ) and thus a q-generator ma-

trix of D�(C).

B. Generator Matrix of theq-ary Image ofCi

For eachi = 1; . . . ; t, consider the subfield subcodeCi. The subset
NZi is a union of full sets of conjugates with respect toq

NZi =

t

j=1

Cq (�i; j); where�i; j 2 NZi:
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LetCi; j be the code[n; Cq (�i; j)]q . Clearly,Ci =
t

j=1Ci; j .
Let �i; j(z) be the primitive idempotent of[n; Cq(�i; j)]q. A generator
of Ci; j may be expressed as

gi; j(z) = �i; j(z)
b2C (� )nC (� )

(z � b): (1)

Let � = f�0; . . . ; �r �1g be a basis of q over q. Then the
generatorgi; j(z) may also be expressed as

gi; j(z) = �i; j(z) b
(0)
i; j(z)�0 + b

(1)
i; j(z)�1 + � � �+ b

(r �1)
i; j (z)�r �1

(2)

where eachb(l)i; j(z) has its coefficients in q .

Example 2: By considering the codeC defined in Example 1,C1 is
equal toC1;1 �C1; 2, C2 is equal toC2; 1, andC3 is equal toC3;1 �
C3; 2�C3;3. Let us compute, for example,g2; 1(z) andg3; 2(z). Note
that the basis� of q over q (here 2 over 2) must be, for each
q , a direct product between a basis ofq over q and a basis

of q over q (see [12]). Hence,� must be a direct product between
a basis of 2 over 2

2 (we take the basisf1; �g) and a basis of 2

over 2 (we take the basisf1; �5g).
Following (1), a generator ofC2;1 is g2; 1(z) = �2; 1(z)(z � �5).

As f1; �5g is a basis of 2 over 2, theng2; 1(z) may be expressed
as�2; 1(z)(z:1 + 1 � �5) (see (2)). A generator ofC3; 1 is

�3; 1(z)(z� �)(z � �
2)(z � �

4):

By developing the coefficients in basis�, we obtain the polynomial

g3; 1(z) = �3; 1(z)((z
3+z

2+1)�1+(z2+1)��5+(z2+z)��+1��6)

which respects the form defined by (2). �

Proposition 1: For j = 1; . . . ; ti; let Bi; j be thejCq(�i; j)j � ri
matrix whose entries are

x
u
�i; j(x)b

(l)
i; j(x)

for u = 0; . . . ; jCq(�i; j)j � 1 andl = 0; . . . ; ri � 1.
ThenBi; j is a q-generator matrix ofD�(Ci; j).

Proof: The first row ofBi; j is equal toD�(gi; j(z)). Thus, each
row of Bi; j is in D�(Ci; j).

Let us prove that thesejCq(�i; j)j rows are linearly independent.
Clearly, there is at least one�i; j(x)b

(l )
i; j (x) not equal to0. On the other

hand, the code[n; Cq(�i; j)]q (generated, for example, by�i; j(x))
is irreducible (see [6, Ch. 5]), it follows that it is also generated by
�i; j(x)b

(l )
i; j (x), andfxu�i; j(x)b

(l )
i; j (x),u = 0; . . . ; jCq(�i; j)j�1g

is an q-basis of[n; Cq(�i; j)]q. This proves that thejCq(�i; j)j rows
are linearly independent.

Moreover

dim D�(Ci; j) = ri � dim Ci; j

= ri � dim [n; Cq (�i; j)]q

= ri � jCq (�i; j)j

= jCq(�i; j)j

= dim [n; Cq(�i; j)]q:

This completes the proof.

Example 3: Let us develop matricesB2; 1 andB3; 1 related to codes
C2; 1 andC3;1 (see Example 2). The polynomial�2; 1(z) is equal to

z + z
2 + z

4 + z
5 + z

7 + z
8 + z

10 + z
11 + z

13 + z
14
:

Then, fromg1; 2(z), we obtain

B2; 1 =
101101101101101 011011011011011

110110110110110 101101101101101
:

Similarly, fromg3; 1(z) and�3; 1(z) which is equal to

z + z
2 + z

3 + z
4 + z

6 + z
8 + z

9 + z
12

we obtainB3; 1 equal to the matrix shown at the bottom of the page.�

AsCi =
t

j=1 Ci; j , an q-generator matrix ofD�(Ci)may be ex-
pressed as

Mi =

Bi; 1

� � �

Bi; t

=

b
(0)
i; 1(x)Mi; 1 � � � b

(r �1)
i; 1 (x)Mi; 1

. . .

b
(0)
i; t (x)Mi; t � � � b

(r �1)
i; t (x)Mi; t

where Mi; j is the following particular generator matrix of
[n; Cq(�i; j)]q:

�i; j(x)

x�i; j(x)

� � �

xjC (� )j�1�i; j(x)

:

Whenb(l)i; j(x) is not equal to0, since[n; Cq(�i; j)]q is irreducible,

the matrixb(l)i; j(x)Mi; j is also a generator matrix of[n; Cq(�i; j)]q.
Thus,Mi is composed of block matrices generating cyclic codes

over q.

C. Generator Matrix of theqr -ary Image of[n; NZi]q

For eachi = 1; . . . ; t, let 
 = f
0; 
1; . . . ; 
 �1g be a basis
of q over q , and letfg0(z); . . . ; gjNZ j�1(z)g be a basis ofCi

over q .
Forj=0; . . . ; m

r
�1, we define by
jCi the setf
jc(z): c(z)2Cig:

Clearly, for j = 0; . . . ; m

r
� 1, 
jCi is a subcode ofC and

f
jgu(z):u=0; . . . ; jNZij�1g is a basis of
jCi.
Then thejNZij �

m

r
elements of

�1

j=0

fD
(
jgu(z)): u = 0; . . . ; jNZij � 1g

may be considered as the rows of aq -generator matrix of
D
([n; NZi]q ). These rows form a block matrix

Ti =

Mi 0 . . . 0

0 Mi . . . 0

. . . . . .

0 0 . . . Mi

;

whereMi is a generator matrix ofCi over q .

Example 4: As an illustration of this part, we may express the ma-
trix T2 of codeC (see Example 1) as

T2 =
M2 0

0 M2

whereM2 is a generator matrix ofC2 over 2 . �

111010110010001 011001000111101 01000111101011 11110101100100

111101011001000 101100100011110 10100011110101 01111010110010

011110101100100 010110010001111 11010001111010 00111101011001

001111010110010 101011001000111 01101000111101 10011110101100

:
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D. Construction of the q-Generator Matrix ofD�(C)

Now, using the two previous sections, we can construct anq-gen-
erator matrix ofD�(C).

Let the basis� of q over q be chosen such that� is the direct
product of a basis of q over q with a basis of q over q for
every subfield q of q . Such a basis always exists (see [12]). In
other words, for eachi, we choose the bases used in Sections II-B and
II-C such that their direct product is equal to�.

Finally, in order to obtain an q-generator matrix of
D�([n; NZi]q ) it is sufficient to replaceMi (Section II-C) byMi

(Section II-B) inTi. We call the obtained matrixTi. If r1 = 1, we
haveM1 = M1 andT1 = T1. If rt = m, thenTt = Mt holds.

Since C is the direct sum of the codes[n; NZi]q (for
i = 1; . . . ; t), an q-generator matrix ofD�(C) is given, in
transposed form, as

[T1 T2 � � � Tt ] :

This matrix generatesD�(C) and it is composed of block matrices
generating cyclic codes overq (see Section II-B).

Example 5: As an illustration, we construct two submatrices of the
2-generator matrix of codeC defined in Example 1. The first one

is related to nonzero�10, i.e., to subfield subcodeC2. The codeC2

(over 2 ) is equal toC1; 2. Therefore,M2 is equal toB2; 1 which
is developed in Example 3. Then, we can deduce the corresponding
submatrixT2 of the generator matrix ofC shown in the first matrix at
the bottom of the page.

The second submatrix is related to the nonzero�8. This submatrix
is a part ofT3 (see previous notations). Asr3 = 4 is equal tom,
T3 = M3, andM3 is the concatenation ofB3; 1, B3; 2, andB3; 3. The
submatrix corresponding to�8 is shown in the second matrix at the
bottom of the page.

Note that this example illustrates the difference between our con-
struction and the construction of [8]. Indeed, in [8], the submatrix cor-
responding to�8 is not factorized into explicit block matrices. �

III. GROUPS OFPERMUTATIONS OF THEq-ARY IMAGE OF SOME

qm-ARY CYCLIC CODES

A. Groups of Permutations

Now, let us introduce the following sets of permutations.

Definition 1: Let =(n) be the ring of integers modulon. Let
(w0; w1; . . . ; wm�1) be somem-tuple, such that eachwi is in =(n).
We denote by(l; �; a) the permutation off0; 1; . . . ; m�1g� =(n)

which sends(i; j) to (�(i); (j + s
(l; �)
i )ql + a), where

1) � 2 Sm (where Sm is the group of permutations of
f0; 1; . . . ; m � 1g);

2) a 2 =(n) andl 2 f0; 1; . . . ; m � 1g;

3) s(l; �)i = q�lw�(i) � wi, for i = 0; 1; . . . ; m� 1.

Let us denote byP the set

f(l; �; a); l = 0; 1; . . . ; m� 1; � 2 Sm anda 2 =(n)g:

Proposition 2: Let us denote the law of composition by�. Then

1) (P; �) is a group;

2) the generators of this group are(0; id; 1), (1; id; 0), and the set
of (0; �; 0) for � in the set of the generators ofSm;

3) jPj = m �m! � n.

Proof:
1) Clearly,(l1; �1; a1) � (l2; �2; a2) is equal to

(l1 + l2; �1 � �2; a1 + a2q
l )

which is also an element ofP . Moreover, for all(l; �; a) 2 P , we
have the following two equalities:

— (l; �; a) � (0; id; 0) = (0; id; 0) � (l; �; a) = (l; �; a)
— (l; �; a) � (�l; ��1; �q�la) = (0; id; 0).

So,P is a group under composition.

2) Direct.
3) It is sufficient to show that all these permutations are different.

Let (l1; �1; a1) and (l2; �2; a2) be two permutations. Let us
assume that, for any pair(i; j), we have

(�1(i); (j + s
(l ; � )
i )ql + a1)

= (�2(i); (j + s
(l ; � )
i )ql + a2):

Then�1 = �2. Thus, for�1 = �2 = � and for any pair(i; j), we have

j + qm�l w�(i) � wi ql + a1

� j + qm�l w�(i) � wi ql + a2 modulon:

So, for any pair(i; j), we have

ql j � wiq
l + a1 � ql j � wiq

l + a2 modulon

i.e.,

(j � wi) ql � ql + a1 � a2 � 0 modulon:

Since there is a pair(i; j) such thatj � wi � 0 modulon, we have
a1 � a2 modulon.

Moreover, there is a pair(i; j) such that(j � wi; n) = 1. Thus,
ql � ql � 0 modulon and hencel1 = l2.

The action of a permutation(l; �; a) of P on an element of
( q[x]=(x

n � 1))m is defined as follows.

Definition 2: Let c(x) andc0(x) be two elements of( q[x]=(x
n �

1))m: Let c(x) be equal to(c0(x); c1(x); . . . ; cm�1(x)) andc0(x) to
(c00(x); c

0

1(x); . . . ; c
0

m�1(x)), where

ci(x) =

n�1

j=0

ci; jx
j and c0i(x) =

n�1

j=0

c0i; jx
j :

101101101101101 011011011011011 0 0

110110110110110 101101101101101 0 0

0 0 101101101101101 011011011011011

0 0 110110110110110 101101101101101

:

111010110010001 011001000111101 01000111101011 11110101100100

111101011001000 101100100011110 10100011110101 01111010110010

011110101100100 010110010001111 11010001111010 00111101011001

001111010110010 101011001000111 01101000111101 10011110101100

:



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002 2073

For each permutation(l; �; a) of P , we define the map(l; �; a) of
( q[x]=(x

n�1))m which sendsc(x) ontoc0(x) if c0i; j = cu; t, where
(u; t) = (l; �; a)�1(i; j), for i = 0; 1; . . . ; m� 1 andj 2 =(n).

The element(l; �; a)(c(x)) is called the image ofc(x) by the per-
mutation(l; �; a).

Clearly, for a fixed permutation, the images of two different elements
of ( q[x]=(x

n � 1))m are different.

B. Invariant Codes Under the Action of Some Groups of Permutations

Let � = f�0; �1; . . . ; �m�1g be a basis of q over q . We
consider the codeC1 = [n; f�g]q , where� is a primitive element
of q . Then the construction of theq-generator matrix ofD�(C1)
implies no condition on basis� because there is no subfield subcode
(see Section II-D). Moreover, a generator ofC1 is (see Section II-B)

�(z)
b2C (�)nC (�)

(z � b)

where�(z) is the primitive idempotent of[n; Cq(�)]q. In basis�, this
polynomial may be expressed as

�(z)(b0(z)�0 + � � �+ bm�1(z)�m�1)

wherebi(z) is some polynomial over q (i = 0; . . . ; m � 1). Then
the q-generator matrix ofD�(C1) has the following form (see Propo-
sition 1):

�(x)b0(x) � � � �(x)bm�1(x)

x�(x)b0(x) � � � x�(x)bm�1(x)

� � � � � � � � �

xm�1�(x)b0(x) � � � xm�1�(x)bm�1(x)

:

Let us denote the first row of this matrix byG�

1 (x). As this matrix
is entirely defined by its first row,G�

1 (x) may be considered as a gen-
erator ofD�(C1). For this particular construction of theq-generator
matrix ofD�(C1) and for the fixed basis�, G�

1 (x) is unique. Thus,
from now on,G�

1 (x) will be calledthegenerator ofD�(C1).

Remark 1: In order to prove the following propositions, we define
a mapping as

 : q = q(�) �! [n; Cq(�)]q
m�1

i=0

ei�
i �! �(x)

m�1

i=0

eix
i:

The mapping is a ring isomorphism (see [5, Ch. 8]).

Proposition 3: LetC1 be equal to[n; f�g]q , where� is a primi-
tive element of q . LetG�

1 (x) be equal to

(�(x)b0(x); . . . ; �(x)bm�1(x)):

Then

1) G�

1 (x) can be expressed as(�(x)xu ; . . ., �(x)xu );

2) D�(C1) = f(�(x)xu +r; . . . ; �(x)xu +r), for r = 0; . . .,
qm � 2g [f(0; . . . ; 0)g.

Proof:
1) First, let us prove that�(x)bi(x) 6= 0, for all i = 0; . . . ; m� 1.

If there exists an integeri0 such that�(x)bi (x) is equal to zero then
all codewords ofC1 have the form

n�1

j=0

m�1

i=0

ci; j�iz
j ; with ci ; j = 0; 8 j:

This is clearly impossible. Thus,�(x)bi(x) 6= 0, for all
i = 0; . . . ; m � 1.

Second, the nonzero� of C1 is a primitive element of q . Re-
mark 1 implies that[n; Cq(�)]q is equal to

f�(x)xr; r = 0; . . . ; n� 1g [ f0g

and then all the�(x)bi(x) may be expressed as�(x)xu .
2) Follows from 1) and Remark 1.

Example 6: In order to illustrate Proposition 3, we consider the code
C1 = [n; f�8g]2 where� is a primitive element of 2 such that
�4+�+1 = 0. A generator polynomial of this code is the polynomial
g3; 1(z) given in Example 2

�(z)(1 � (z3 + z2 + 1) + �5 � (z2 + 1) + � � (z2 + z) + �6 � 1):

Using this polynomial, we can deducethegenerator polynomial in the
basis� = f1; �5; �; �6g. This generatorG�

1 (x) is equal to

(�(x)(x3 + x2 + 1); �(x)(x2 + 1); �(x)(x2 + x); �(x)):

Following Proposition 3, the generator polynomial can be expressed as
G
�

1 (x) = (�(x)x13, �(x)x8; �(x)x5; �(x)). �

Now, the expression ofG�

1 (x) leads us to define a group of permuta-
tions such thatD�(C1) is invariant under the action of these permuta-
tions. All these permutations depend on them-tuple(u0; . . . ; um�1)
defined byG�

1 (x) (see Proposition 3), so they depend on the basis�
and on the codeC1.

Definition 3: LetC1 be equal to[n; f�g]q , where� is a primitive
element of q . LetG�

1 (x) be equal to(�(x)xu ; . . . ; �(x)xu ).
We defineP�

1 as the group of permutations for which them-tuple
(w0; . . ., wm�1) is equal to(u0; . . . ; um�1) (see Definition 1).

Proposition 4: D�(C1) is invariant under the action of each per-
mutation inP�

1 .
Proof: In order to prove this proposition, it is sufficient to prove

that the image of any codeword(�(x)xr+u ; . . . ; �(x)xr+u ) of
D�(C1) by any permutation inP�

1 is also a codeword ofD�(C1). Let
us express�(x) as n�1

j=0 �jx
j . Then we have

�(x)xr+u ; . . . ; �(x)xr+u

=

n�1

j=0

�j�u �rx
j ; . . . ;

n�1

j=0

�j�u �rx
j

and by using Definition 2 its image by the permutation(l; �; a) is equal
to

n�1

j=0

�(j�a)q �q u �rx
j ; . . . ;

n�1

j=0

�(j�a)q �q u �rx
j :

Since(�(x))q = �(x) (by definition, �(x) is an idempotent), this
element is also equal to(�(x)xrq +a+u ; . . ., �(x)xrq +a+u ).

Example 7: Let us consider the group of permutationsP�

1 of code
C1 defined in Example 6. This group is constructed from the4-tuple
(13; 8; 5; 0). Let us consider some permutation ofP�

1 , for example,
(l; �; a) = (3; s; 4) wheres is the cyclic permutation modulo4. It
may be verified that the corresponding map(3; s; 4) (see Definition 2)
sends any codeword ofC1 onto another codeword ofC1. For example,
x4G

�

1 (x) is sent ontox10G�

1 (x). �

Now, we prove that for other codesC in q [z]=(zn � 1),D�(C)
is invariant under the action of any groupP (defined in Definition 1).

Proposition 5: LetC0 be equal to[n; V ]q , whereV is some union
of full sets of conjugates with respect toq. ThenD�(C0) is invariant
under the action of anyP .

Proof: Let us denote byC 0
0 the code[n; V ]q . The particular form

of the q-generator matrix ofD�(C0) (see Section II) implies thatC0

may be expressed asf(c0(x); . . . ; cm�1(x)): ci(x) 2 C
0
0g.
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The action of the permutations ofP overD�(C0) may be split into
two parts:

— the permutation of the different polynomialsci(x) by the ele-
ments ofSm (the group of permutations off0; 1; . . . ; m�1g);

— some cyclic shifts and some exponentiations byql of the code-
words ofC0

0.
It can easily be proved thatD�(C0) is invariant under the action

of these two kinds of operations. Thus,D�(C0) is invariant under the
action of all the permutations.

Proposition 6: Let C be equal to[n; f�g [ V ]q , where� is a
primitive element of q , andV is some union of full sets of conju-
gates with respect toq . LetC1 be equal to[n; f�g]q , and letG�

1 (x)
be equal to(�(x)xu , . . ., �(x)xu ).

The codeD�(C) is invariant under the action ofP�

1 .
Proof: As C is equal toC0 � C1 whereC0 = [n; V ]q , the

proof is direct from Propositions 4 and 5.

Another way to increase the number of codes which are invariant
under the action of any groupP is to consider the dual codes.

Definition 4: LetTr be the trace function of q over q defined
by

Tr(
) =

m�1

i=0


q :

The trace-dual basis of� = f�0; �1; . . . ; �m�1g is defined as the
unique basis�? = f�00; �

0

1; . . . ; �
0

m�1g of q over q such that

Tr(�i�
0

j) =
1; if i = j

0; if i 6= j.

Let C? be the dual code ofC.

Proposition 7: Let C be a code in q [z]=(zn � 1) such that
D�(C) is invariant under the action ofP . ThenD� (C?) is also
invariant under the action ofP .

Proof: ClearlyD�(C)? is invariant under the action ofP . More-
over, it is known [7, Lemma 6] thatD�(C)? = D� (C?). Thus,
D� (C?) is invariant under the action ofP .

Propositions 6 and 7 allow us to determine codes which are invariant
under the action of someP . Several RS codes satisfy the conditions
given by these propositions. For example, it can be verified that for all
k = 1; . . . ; 7, there is a[7; k; 8 � k]8 RS code (i.e., a RS code of
length7, dimensionk, and minimum distance8 � k over 8) whose
binary image is invariant under the action of aP�. This is also the
case for the[8; k; 9�k]9 RS codes (fork = 1; . . . ; 8) whose ternary
image has the same property.

Some infinite families of RS codes also satisfy this property. All the
RS codes[qm�1; f1; �g; qm�2]q , where� is a primitive element
of q , are such that theirq-ary image is invariant under the action
of a groupP . The duals of these codes in the trace-dual basis, i.e.,
[qm � 1; qm � 3; 3]q RS codes, also have the same property.

Note that the list of RS codes given here is not exhaustive. Several
other RS codes can be found satisfying the conditions given by Propo-
sitions 6 and 7.

IV. THEORETICAL CONSEQUENCES

In this section, it will prove that the invariance of some expanded
codes under the action of the permutations allows us to determine some
new properties of these codes. We start by determining the conditions
under which the group of permutations contains the permutation� of
f0; 1; . . . ; m � 1g � =(n) which sends(i; j) to (i + 1; j) if i <

m � 1 and to(0; j + 1) otherwise (see [7]). In a second part, it will
be proved that all expanded codes which are invariant under a groupP
are necessarily equivalent to a 2-D Abelian code, and sometimes to a
cyclic code.

Let us fix some notations for this section:C1 will represent the code
[n; f�g]q where� is a primitive element of q , its generatorG�

1

is equal to(�(x)xu ; . . . ; �(x)xu ), C0 will represent the code
[n; V ]q , whereV is some union of full sets of conjugates with respect
to q .

A. Invariance Under the Cyclic Permutation

A well-known problem in the area ofq-ary images ofqm-ary
cyclic codes is to determine under what conditions theq-ary image is
invariant under the action of a cyclic permutation, i.e., the mapping
which sends a codeword(c0(x); . . . ; cm�1(x)) to the codeword
(xcm�1(x); c0(x); . . . ; cm�2(x)).

Clearly, this mapping corresponds to the permutation� defined pre-
viously.

In order to make the connection between� and the group of permu-
tationsP , we give the following three lemmas.

Lemma 1: Let

G
�

1 (x) = (�(x)xu ; . . . ; �(x)xu )

be the generator of the codeC1 = [n; f�g]m, where� is a prim-
itive element of q . We consider anm-tuple (v0; . . . ; vm�1).
There is a basis
 of q over q such thatG




1 (x) is equal to
(�(x)xv ; . . . ; �(x)xv ) if and only if f�v ; . . . ; �v g is a
basis of q over q .

Proof: First, let us give a preliminary result. Let� and 
 be
two bases of q over q . Let P be the change of basis such that
�t = P
t. Let us assume thatG�

1 (x) is equal to(�(x)xu ; . . .,
�(x)xu ) andG




1 (x) is equal to(�(x)xv ; . . . ; �(x)xv ). By
using the definition ofG�

1 (x) (andG



1 (x)) given at the beginning of
the Section III-B, it is clear that we haveG




1 (x)
t = P tG

�

1 (x)
t.

1) Suppose that there exists a basis
 of q over q such that

G



1 (x) = (�(x)xv ; . . . ; �(x)xv ):

Suppose that there are some scalarsai, not all equal to zero (we
take, for example,a0 6= 0), such that m�1

i=0
ai�

v = 0. It follows
that�(x) m�1

i=0
aix

v = 0 holds (use Remark 1). Let
 be equal to
f
0; . . . ; 
m�1g and let us consider the basis� of q over q equal
to f
0; 
1 � 
0

a

a
; . . ., 
m�1 � 
0

a

a
g. Using the preliminary

result,G�

1(x) is equal to(0; �(x)xv ; . . ., �(x)xv ). Because of
the proof of Proposition 3, this is impossible.

2) Conversely, suppose thatf�v ; . . . ; �v g is a basis of q

over q. Thenf�(x)xv , . . ., �(x)xv g is a basis of[n; Cq(�)]q
(see Remark 1). On the other hand,f�u ; . . . ; �u g is also a basis
of q over q (see previous point) and the same argument as above
shows thatf�(x)xu ; . . . ; �(x)xu g is also a basis of[n; Cq(�)]q.
Then there exists an invertible matrixP 0 such that

(�(x)xv ; . . . ; �(x)xv )t = P 0(�(x)xu ; . . . ; �(x)xu )t:

Now, we consider the set
 such that� = P 0
t

t. SinceP 0 is invertible,


 is also a basis of q over q and the preliminary result implies that

G



1 (x) = (�(x)xv ; . . . ; �(x)xv ):

Lemma 2: Let

G
�

1 (x) = (�(x)xu ; �(x)xu ; . . . ; �(x)xu ):

Then for any integert, there exists a basis
 of q over q such that

G



1 (x) = (�(x)xu +t; . . . ; �(x)xu +t)

and we haveD�(C1) = D
(C1).
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Proof: Lemma 1 proves thatf�u ; . . . ; �u g is a basis of
q over q. Thus,f�u +t; . . . ; �u +tg is also a basis of q

over q. On the other hand, it proves that there is a basis
 of q

over q such that

G



1 (x) = (�(x)xu +t; . . . ; �(x)xu +t):

The dimensions ofD�(C1) andD
(C1) and Proposition 3 prove the
last assertion.

In Proposition 4, it is proved thatD�(C1) is invariant under the ac-
tion of P�

1 . Lemma 2 proved that there are other bases ofq over
q, called, for example,
, such thatD
(C1) is also invariant under

the action ofP�

1 .

Lemma 3: For any integert, there exists a basis
 such that

G



1 (x) = (�(x)xt; �(x)x�b+t; . . . ; �(x)x�(m�1)b+t)

whereb is invertible in =(n).
Proof: Clearly,f1; ��b; . . . ; ��(m�1)bg is a basis of q over

q because� is a primitive element of q andb is invertible in =(n).
Lemma 1 proves that there exists a basis
0 such that

G



1 (x) = (�(x)xu ; �(x)xu ; . . . ; �(x)xu ):

The final result is obtained using Lemma 2 for this polynomial.

Proposition 8: There exists a basis
 such that� is inP



1 if and only
if (n; m) = 1. When such a basis exists, we have

1) G



1 (x) = (�(x)xv ; �(x)xv �a; . . ., �(x)xv �(m�1)a), where
a is the inverse ofm in =(n), andv0 is an integer.

2) � = (0; �; a), where� is the permutation ofSm defined by
�(i) � i+ 1 modulom anda is the inverse ofm in =(n).

Proof: Let us suppose that there is a basis
 such that� is inP



1

and thatG



1 (x) = (�(x)xv ; . . . ; �(x)xv ). Then, by considering
the image of the different pairs(i; j) by � , for all j in =(n), we have

(i+ 1; j) = (�(i); jql + v�(i) � qlvi + a); if i < m� 1

and

(0; j + 1) = (�(m� 1); jql + v�(m�1) � qlvm�1 + a);

if i = m� 1:

Therefore,� is necessarily the permutation ofSm defined by�(i) �
i + 1 modulom, and forj = 0: vi+1 � qlvi + a � 0 modulon if
i < m� 1, andv0 � qlvm�1 + a � 1 modulon otherwise.

Thus, for anyj in =(n), qlj� j modulon, and necessarilyl=0:
Thus, we havevi+1 � vi � �a modulo n if i < m � 1, and
v0 � vm�1 � 1 � a modulon. Hence,1 � am � 0 modulon, and
(n; m) = 1 holds.

Clearly,� = (0; �; a), where� is the permutation ofSm defined by
�(i) � i+1 modulom anda is the inverse ofm in =(n). Moreover,
vi = v0 � ia, for all i = 1; . . . ; m � 1.

Conversely, suppose that(n; m) = 1. Let a be the inverse ofm in
=(n). Then there is a basis
 such that

G



1 (x) = (�(x)xv ; �(x)xv �a; . . . ; �(x)xv �(m�1)a)

for some integerv0 (see Lemma 3). Let us considerP



1 , and the partic-
ular permutation(0; �; a), where� is the permutation ofSm defined
by�(i) � i+1 modulom. This permutation is equal to� , and hence,
it is in P




1 .

Corollary 1: LetC be equal toC0 �C1. If (n; m) = 1 then there
exists a basis
 such thatD
(C1),D
(C0), andD
(C) are invariant
under the action of� .

Also, in the basis
?, their dual codes are invariant under the action
of � .

Proof: Use Propositions 4, 5, 7, and 8.

This result is another proof of a part of the results given in [7].

B. Equivalence With Cyclic and 2-D Abelian Codes

In [7], Seguin presents an open question which is “when does a
qm-ary cyclic code have aq-ary image which is equivalent to a cyclic
code?” The following proposition partly solves this problem.

Proposition 9: Let C be a code in q [z]=(zn � 1) which is in-
variant under the action of a groupP . Then, the following two state-
ments are true.

1) D�(C) is equivalent to a 2-D Abelian code.

2) If (m; n) = 1, thenD�(C) is equivalent to a cyclic code.

Proof:
1) Recall that a set of matrices can be considered as a 2-D Abelian

code if it is a vector space which is invariant under the cyclic shifts of
the rows and the columns. Here, it will be proved that it is possible to
define a permutationP which sends the set of codewords ofD�(C)
onto a set ofm� n-matrices that satisfies the required property.

Let P be the permutation off0; 1; . . . ; m � 1g � =(n) which
sends(i; j) onto(i; w0�wi+ j) where(w0; . . . ; wm�1) is defined
by P (see Definition 1). Letc(x) be an element ofD�(C) equal to
(c0(x); . . ., cm�1(x)), where

ci(x) =

n�1

j=0

ci; jx
j :

Let c0(x) be equal to(c00(x); . . ., c
0

m�1(x)), where

c0i(x) =

n�1

j=0

c0i; jx
j :

The action ofP on c(x) is defined byc0i; j = cu; t, where(u; t) =
P�1(i; j) for i = 0; 1; . . . ; m�1, andj 2 =(n). We callc0(x) the
image ofc(x) byP . Let us denote byP (D�(C)) the set of the images
of the codewords ofD�(C) underP .

Now, letp be a permutation ofP . SinceD�(C) is invariant under the
action ofp, thenP (D�(C)) is invariant under the action ofP �p�P�1.

Let � be the permutation ofSm defined by�(i) � i + 1 modulo
m. We consider the action ofP � (0; �; 0) � P�1 overP (D�(C)).
Clearly we have

P � (0; �; 0) � P�1(i; j) = (i+ 1; j):

Thus, this permutation acts onP (D�(C)) as the shift of each column
andP (D�(C)) is invariant under the action of this permutation.

Finally, let us consider the action ofP � (0; Id; 1) � P�1 over
P (D�(C)). We have

P � (0; Id; 1) � P�1(i; j) = (i; j + 1):

So this permutation acts onP (D�(C)) as the shift of each row and
P (D�(C)) is invariant under the action of this permutation. Then,
P (D�(C)) is invariant under the shift of the rows and the columns.
Since it is the image of a vector space (D�(C)) under a permutation,
P (D�(C)) is also a vector space. Thus,D�(C) is equivalent to a 2-D
Abelian code.

2) It is well known that a 2-D Abelian code of lengthn1 � n2 is
equivalent to a cyclic code if(n1; n2) = 1, [6, Ch. 5].

V. APPLICATION TO THESOFT-DECISION DECODING OFBINARY

IMAGE OF SOME RS CODES

In practical applications, theq-ary image of someqm-ary cyclic
codes is often used in concatenated schemes. For example, the binary
image of some RS codes over2 is used for satellite transmissions
[9].
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Fig. 1. Performance comparison for the[7; 4; 4] RS code.

In many applications, soft-decision decoding holds the promise of
substantial performance gains for this kind of codes. Nevertheless, clas-
sical soft-decision decoding algorithms of RS codes use soft informa-
tion on symbol level and then they do not make full use of bit-based
soft-decision information [9].

We propose an approach to this problem based on the use of permu-
tations in conjunction with a GMD algorithm [10]. We also present the
results of some simulations of this new decoding algorithm applied to
two RS codes.

A. Decoding Algorithm

The main problem in order to use soft-decision decoding of the bi-
nary image of the RS code may be summarized as follows. The avail-
able soft information is relative to binary symbols (q-ary image). How-
ever, some of the main soft-decision decoding algorithms of the RS
codes (GMD, Chase algorithm) operate with soft information for byte
(qm-ary symbols). In other words, we have to compute symbol level
soft information from the bit-based soft coefficients without losing too
much information.

The soft-decision decoding algorithm of RS codes considered here is
GMD decoding [10]. The GMD algorithm consists of determining the
d� 1 least reliable bytes (i.e., with the worst soft coefficients) and ap-
plying successive erasure decodings by varying the number of erasures.
In this way, a list of tentative codewords is obtained. The codeword on
this list that is nearest to the received word is considered as the decoded
codeword.

In order to improve the performance of this decoding, the permuta-
tions introduced in Section III may be used as follows. The received
binary word is permuted in order to “group” the unreliable bits within
the same bytes. These bytes are then considered as the least reliable
for the soft-decision decoding. After a successful GMD decoding of
this word, the binary form of the corrected word is permuted by the in-
verse permutation to obtain a tentative codeword. This operation is per-
formed repeatedly for several permutations. The final decoded output

is the best (the nearest to the binary received word) of the codewords
proposed by the different decodings.

In order to choose the permutations used for each received codeword,
we represent a codeword as anm � n array over 2, each column
representing the binary image of a byte-symbol.

Clearly, for a given word, the permutations(l; �; a) and(l; �; b)
compose the same columns. So, for the decoding, the only considered
permutations are(l; �; 0), for l = 0; . . . ; m � 1 and� 2 Sm. The
number of such permutations ism �m!.

From the definition of the permutations, it can be deduced that two
distinct positions can be grouped onto the same column only if they
belong to distinct rows. This property implies that each row can be
considered independently for the choice of permutations. For each of
them rows, the permutations are sorted according to their capability
to group bad positions with theworstposition of the considered row.
Then, the selected permutations are the bestu permutations for each
row, whereu is a parameter which determines the number of used per-
mutations (u�m) (and hence, a level of correction).

In order to estimate the complexity of this approach, the two steps of
the algorithm must be considered. The first step sorts the permutations
to determine theu best ones for each row. The required complexity,
counted as the number of multiplications and comparisons in the field
of concern, is of orderO(m2

�m!� u). The second part of the algo-
rithm concerns theu�m independent GMD decodings of a word. As
the complexity of the computation of GMD decoding isO(n�d) (see
[14] or [15]), the complexity of this step isO(n � d� u �m). Note
that theseu�m GMD decodings can be implemented in parallel.

The complexity of the first step can be reduced by considering a
subset of the permutations and by only sorting the elements of this
subset. If the size of this subset is a power ofm, the complexity of
the algorithm is bounded by a polynomial inn. Furthermore, the error
performance is not significantly degraded. It can be noted that the com-
plexity of different soft-decision decoding algorithms of RS codes with
comparable performance [8], [16], [17] contain an exponential factor.

In the next subsection, simulation results for this decoding algorithm
are presented for two codes and two values ofu.
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Fig. 2. Performance comparison for the[15; 13; 3] RS code.

B. Simulation Results

The first code isC = [7; f�6; �; �3; �5g]8, where� is such that
�3+�2+1 = 0. This code, whose parameters are[7; 4; 4], is able to
correct one byte error and one byte erasure or three byte erasures.

Let us considerD�(C), the binary image ofC with respect to the
basis� equal tof1; �; �2g, where� = �3. Then

G
�

1
(x) = (�(x); �(x)x5; �(x)x2)

where�(x) is the primitive idempotent of[7; f�; �2; �4g]2. As the set
of nonzeros can be split intof�g[ f�3; �6; �5g,D�(C) is invariant
under the action ofP�

1
(see Proposition 6).

In our simulations, we have added white Gaussian noise (AWGN)
to the binary form of the codewords. For each bit, the associated soft
information is computed and quantized into 32 possible values.

In order to evaluate the bit-error rate (BER) performance of our algo-
rithm for several values ofu (u = 1 andu = 4), we have implemented
other classical algorithms: maximum-likelihood decoding (MLD) and
Forney’s GMD decoding [10]. Note that the implemented version of
GMD decoding is the one presented in [14].

The results of our simulations are presented in Fig. 1.
The second code is a[15; 13; 3] RS code over 16 defined as fol-

lows. Let� be a primitive element of 16 such that�4+�+1 = 0. Let
us define the basis� = f1; �; �2; �3g of 16 over 2. Proposition 6
proves thatD�([15; f1; �g]16) is invariant under the action ofP�

1
and

Proposition 7 proves that the dual code of[15; f1; �g]16 expanded in
the dual basis of� is also invariant under the action ofP�

1
.

This dual code is the[15; 13; 3] RS code considered here. The sim-
ulated performance of the decoding algorithm foru = 1 andu = 4 is
presented in Fig. 2.

The two simulations clearly show the benefit of using the permu-
tations for improving the performance of GMD decoding. Indeed, at
BER= 10�7, the difference in performance between GMD decoding
and the new algorithm foru = 1 is about 1.4 dB for the[7; 4; 4] RS
code and about 1.2 dB for the[15; 13; 3] RS code.

Foru = 4, in comparison with GMD, the gain is about 1.6 dB for the
[7; 4; 4] RS code and about 1.4 dB for the[15; 13; 3] RS code at BER
= 10�7. It may also be observed that these performances are close to
the MLD, i.e., less than 0.2 dB for the[7; 4; 4] RS code and about 0.4
dB for the[15; 13; 3] RS code at BER= 10�7.
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Variance of the Turbo Code Performance Bound
Over the Interleavers

Atousa H. S. Mohammadi, Member, IEEE,and
Weihua Zhuang, Senior Member, IEEE

Abstract—In this correspondence, we evaluate the variance of the union
performance bound for a rate-1 3 turbo code over all possible interleavers
of length , under the assumption of a maximum-likelihood (ML) decoder.
Theoretical and simulation results for turbo codes with two-memory com-
ponent codes indicate that the coefficient of variation of the bound increases
with the signal-to-noise ratio and decreases with the interleaver length.
Theoretical analysis for large interleaver lengths shows that the coefficient
of variation asymptotically approaches a constant value. The results also
demonstrate that the majority of the interleavers have performance bounds
very close to the average value of the bound. This phenomenon is more pal-
pable for larger interleaver lengths.

Index Terms—Channel coding, concatenated codes, turbo codes, union
performance bound.

I. INTRODUCTION

Turbo codes, introduced in 1993 [1], are composed of the parallel
concatenation of two (or more) recursive systematic convolutional
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(RSC) component codes, connected through an interleaver(s). The
interleaver, which reorders the input block of data given to the
second encoder, plays a key role in the pseudorandom nature and,
consequently, the high performance of turbo codes. Thus, the study
and design of the interleaver has been an attractive subject for many
researchers in this area.

In [2], an interleaver design technique is proposed which searches
for a random interleaver resulting in the fewest output sequences with
low weights corresponding to input weights of2 or3. The authors then
use simulation results to show that for short frame transmission systems
and bit error rates (BERs) of around10�3, a block interleaver outper-
forms the best such found pseudorandom interleaver, and the overall
effect of the interleaver is not significant in this range [3]. In [4], how-
ever, it is shown that, for turbo codes of large interleaver lengths, pseu-
dorandom interleavers outperform block interleavers significantly, e.g.,
2.7 dB at BER of10�5. Recently, a systematic approach for the design
of the interleaver has been proposed in [5]. The method is based on re-
cursively minimizing a cost function to find an interleaver which best
breaks a set ofa priori chosen error patterns. The weight distribution
of a turbo code employing the best such found interleaver of length
100 shows 0.5- to 0.9-dB improvement over a randomly selected in-
terleaver of the same length. In [6], a deterministic interleaver design
algorithm is proposed based on linear recursion to produce an initial
interleaver which is subsequently optimized by pairwise exchange of
its elements. These optimized interleavers show more than 0.5-dB im-
provement over a randomly selected interleaver and about 0.2-dB im-
provement over anS-random interleaver for BERs of less than10�5

and block length576. In [7], a mathematical structure is developed for
turbo-code interleaver design at low BERs, which achieves more than
0.5-dB improvement over random interleavers for interleaver length
1176. In [8], high-spread interleavers have been designed for specific
short interleaver lengths. These interleavers are shown to significantly
lower the error floor occurring at high signal-to-noise ratios. Other
works related to the design of the interleaver include [9]–[13].

Although the above works implicitly suggest some conclusions re-
garding the effect of different choices of interleavers on the perfor-
mance of turbo codes, they are mainly focused on either search algo-
rithms for the best (or at leastgood) interleaver(s) or explaining the
behavior of these codes in general. So far, the only statistical study
of the turbo code behavior with respect to interleavers considers the
upper bound on the maximum-likelihood (ML) performance of the
turbo code, averaged over all possible interleavers (e.g., [14]).

If higher order statistical averages of the turbo code performance
with respect to the interleaver are known, it will be possible to have
a more accurate estimate of the distribution of the performance bound
with respect to the interleaver. As a first step, in this correspondence,
we study the effect of the interleaver by looking at the variance of the
turbo-code performance with respect to all possible interleavers of the
same length, under the assumption of an ML decoder. Note that, in
practice, turbo codes are decoded iteratively using a non-ML decoder,
however, it is a widely accepted conjecture that the performance of the
suboptimum iterative decoding converges toward the ML performance.
This study tackles the question brought up in [14, Question 3] to give
more insight regarding what performance to expect from a turbo code
with fixed component codes and interleaver length. It also provides an
estimate of how well a particular interleaver performs among the range
of all possible interleavers and helps to evaluate the performance of an
interleaver search algorithm.

The correspondence is organized as follows. In Section II, a brief re-
view of the turbo-code average performance bound [14] is given and
following that, the mathematical formulations for the second moment

0018-9448/02$17.00 © 2002 IEEE
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