227 research outputs found

    Boson-fermion mapping and dynamical supersymmetry in fermion models

    Get PDF
    We show that a dynamical supersymmetry can appear in a purely fermionic system. This ``supersymmetry without bosons" is constructed by application of a recently introduced boson-fermion Dyson mapping from a fermion space to a space comprised of collective bosons and ideal fermions. In some algebraic fermion models of nuclear structure, particular Hamiltonians may lead to collective spectra of even and odd nuclei that can be unified using the dynamical supersymmetry concept with Pauli correlations exactly taken into account.Comment: 20 pages. Revtex. One PostScript figure available on request from P

    Interaction via reduction and nonlinear superconformal symmetry

    Get PDF
    We show that the reduction of a planar free spin-1/2 particle system by the constraint fixing its total angular momentum produces the one-dimensional Akulov-Pashnev-Fubini-Rabinovici superconformal mechanics model with the nontrivially coupled boson and fermion degrees of freedom. The modification of the constraint by including the particle's spin with the relative weight n∈Nn\in \N, n>1n>1, and subsequent application of the Dirac reduction procedure (`first quantize and then reduce') give rise to the anomaly free quantum system with the order nn nonlinear superconformal symmetry constructed recently in hep-th/0304257. We establish the origin of the quantum corrections to the integrals of motion generating the nonlinear superconformal algebra, and fix completely its form.Comment: 12 pages; typos correcte

    Superconformal mechanics and nonlinear supersymmetry

    Full text link
    We show that a simple change of the classical boson-fermion coupling constant, 2α→2αn2\alpha \to 2\alpha n , n∈Nn\in \N, in the superconformal mechanics model gives rise to a radical change of a symmetry: the modified classical and quantum systems are characterized by the nonlinear superconformal symmetry. It is generated by the four bosonic integrals which form the so(1,2) x u(1) subalgebra, and by the 2(n+1) fermionic integrals constituting the two spin-n/2 so(1,2)-representations and anticommuting for the order n polynomials of the even generators. We find that the modified quantum system with an integer value of the parameter α\alpha is described simultaneously by the two nonlinear superconformal symmetries of the orders relatively shifted in odd number. For the original quantum model with ∣α∣=p|\alpha|=p, p∈Np\in \N, this means the presence of the order 2p nonlinear superconformal symmetry in addition to the osp(2|2) supersymmetry.Comment: 16 pages; misprints corrected, note and ref added, to appear in JHE

    Symmetry classes of disordered fermions

    Full text link
    Building upon Dyson's fundamental 1962 article known in random-matrix theory as 'the threefold way', we classify disordered fermion systems with quadratic Hamiltonians by their unitary and antiunitary symmetries. Important examples are afforded by noninteracting quasiparticles in disordered metals and superconductors, and by relativistic fermions in random gauge field backgrounds. The primary data of the classification are a Nambu space of fermionic field operators which carry a representation of some symmetry group. Our approach is to eliminate all of the unitary symmetries from the picture by transferring to an irreducible block of equivariant homomorphisms. After reduction, the block data specifying a linear space of symmetry-compatible Hamiltonians consist of a basic vector space V, a space of endomorphisms in End(V+V*), a bilinear form on V+V* which is either symmetric or alternating, and one or two antiunitary symmetries that may mix V with V*. Every such set of block data is shown to determine an irreducible classical compact symmetric space. Conversely, every irreducible classical compact symmetric space occurs in this way. This proves the correspondence between symmetry classes and symmetric spaces conjectured some time ago.Comment: 52 pages, dedicated to Freeman J. Dyson on the occasion of his 80th birthda

    On the quantum description of Einstein's Brownian motion

    Full text link
    A fully quantum treatment of Einstein's Brownian motion is given, showing in particular the role played by the two original requirements of translational invariance and connection between dynamics of the Brownian particle and atomic nature of the medium. The former leads to a clearcut relationship with Holevo's result on translation-covariant quantum-dynamical semigroups, the latter to a formulation of the fluctuation-dissipation theorem in terms of the dynamic structure factor, a two-point correlation function introduced in seminal work by van Hove, directly related to density fluctuations in the medium and therefore to its atomistic, discrete nature. A microphysical expression for the generally temperature dependent friction coefficient is given in terms of the dynamic structure factor and of the interaction potential describing the single collisions. A comparison with the Caldeira Leggett model is drawn, especially in view of the requirement of translational invariance, further characterizing general structures of reduced dynamics arising in the presence of symmetry under translations.Comment: 14 pages, latex, no figure
    • …
    corecore