240 research outputs found

    Parallel Interference Cancellation Based Turbo Space-Time Equalization in the SDMA Uplink

    No full text
    A novel Parallel Interference Cancellation (PIC) based turbo Space Time Equalizer (STE) structure designed for multiple antenna assisted uplink receivers is introduced. The proposed receiver structure allows the employment of non-linear type of detectors such as the Bayesian Decision Feedback (DF) assisted turbo STE or the Maximum Aposteriori (MAP) STE, while operating at a moderate computational cost. Receivers based on the proposed structure outperform the linear turbo detector benchmarker based on the Minimum Mean-Squared Error (MMSE) criterion, even if the latter aims for jointly detecting all transmitters’ signals. Additionally the PIC based receiver is capable of equalizing non-linear binary pre-coded channels. The performance difference between the presented algorithms is discussed using Extrinsic Information Transferfunction (EXIT) charts. Index Terms—PIC, EXIT chart, precoding, Bayesian, STE

    The Error-Pattern-Correcting Turbo Equalizer

    Full text link
    The error-pattern correcting code (EPCC) is incorporated in the design of a turbo equalizer (TE) with aim to correct dominant error events of the inter-symbol interference (ISI) channel at the output of its matching Viterbi detector. By targeting the low Hamming-weight interleaved errors of the outer convolutional code, which are responsible for low Euclidean-weight errors in the Viterbi trellis, the turbo equalizer with an error-pattern correcting code (TE-EPCC) exhibits a much lower bit-error rate (BER) floor compared to the conventional non-precoded TE, especially for high rate applications. A maximum-likelihood upper bound is developed on the BER floor of the TE-EPCC for a generalized two-tap ISI channel, in order to study TE-EPCC's signal-to-noise ratio (SNR) gain for various channel conditions and design parameters. In addition, the SNR gain of the TE-EPCC relative to an existing precoded TE is compared to demonstrate the present TE's superiority for short interleaver lengths and high coding rates.Comment: This work has been submitted to the special issue of the IEEE Transactions on Information Theory titled: "Facets of Coding Theory: from Algorithms to Networks". This work was supported in part by the NSF Theoretical Foundation Grant 0728676

    Joint Tomlinson-Harashima precoding and optimum transmit power allocation for SC-FDMA

    Get PDF

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten für drahtlose, breitbandige Einträger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichs-entzerrern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-Schätzung, der nichtlinearen MMSE-Schätzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammenhang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungsfähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der erste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entscheidungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berücksichtigt werden. Durch die zusätzlich interne Entscheidungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger - hybrid SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalierbare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weiteren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungsfähigkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE Empfängern untersucht. Zunächst wird das Problem der Maximierung der instantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iterativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes für die Nutzer unter Berücksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen Empfängers. Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simulationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren zur Leistungszuweisung überlegen ist

    Design and analysis of iteratively decodable codes for ISI channels

    Get PDF
    Recent advancements in iterative processing have allowed communication systems to perform close to capacity limits withmanageable complexity.For manychannels such as the AWGN and flat fading channels, codes that perform only a fraction of a dB from the capacity have been designed in the literature. In this dissertation, we will focus on the design and analysis of near-capacity achieving codes for another important class of channels, namely inter-symbol interference (ISI)channels. We propose various coding schemes such as low-density parity-check (LDPC) codes, parallel and serial concatenations for ISI channels when there is no spectral shaping used at the transmitter. The design and analysis techniques use the idea of extrinsic information transfer (EXIT) function matching and provide insights into the performance of different codes and receiver structures. We then present a coding scheme which is the concatenation of an LDPC code with a spectral shaping block code designed to be matched to the channel??s spectrum. We will discuss how to design the shaping code and the outer LDPC code. We will show that spectral shaping matched codes can be used for the parallel concatenation to achieve near capacity performance. We will also discuss the capacity of multiple antenna ISI channels. We study the effects of transmitter and receiver diversities and noisy channel state information on channel capacity

    MMSE equalizers and precoders in turbo equalization.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.Transmission of digital information through a wireless channel with resolvable multipaths or a bandwidth limited channel results in intersymbol interference (1SI) among a number of adjacent symbols. The design of an equalizer is thus important to combat the ISI problem for these types of channels and hence provides reliable communication. Channel coding is used to provide reliable data transmission by adding controlled redundancy to the data. Turbo equalization (TE) is the joint design of channel coding and equalization to approach the achievable uniform input information rate of an ISI channel. The main focus of this dissertation is to investigate the different TE techniques used for a static frequency selective additive white Gaussian noise (AWGN) channel. The extrinsic information transfer (EXIT) chart is used to analyse the iterative equalization/decoding process and to determine the minimum signal to noise ratio (SNR) in order to achieve convergence. The use of the Minimum Mean Square Error (MMSE) Linear Equalizer (LE) using a priori information has been shown to achieve the same performance compared with the optimal trellis based Maximum A Posterior (MAP) equalizer for long block lengths. Motivated by improving the performance of the MMSE LE, two equalization schemes are initially proposed: the MMSE Linear Equalizer with Extrinsic information Feedback (LE-EF (1) and (U)). A general structure for the MMSE LE, MMSE Decision Feedback Equalizer (DFE) and two MMSE LE-EF receivers, using a priori information is also presented. The EXIT chart is used to analyse the two proposed equalizers and their characteristics are compared to the existing MAP equalizer, MMSE LE and MMSE DFE. It is shown that the proposed MMSE LE-EF (1) does have an improved performance compared with the existing MMSE LE and approaches the MMSE Linear Equalizer with Perfect Extrinsic information Feedback (LE-PEF) only after a large number of iterations. For this reason the MMSE LE-EF is shown to suffer from the error propagation problem during the early iterations. A novel way to reduce the error propagation problem is proposed to further improve the performance of the MMSE LE-EF (I). The MAP equalizer was shown to offer a much improved performance over the MMSE equalizers, especially during the initial iterations. Motivated by using the good quality of the MAP equalizer during the early iterations and the hybrid MAP/MMSE LE-EF (l) is proposed in order to suppress the error propagation problem inherent in the MMSE LE-EF (I). The EXIT chart analysis reveals that the hybrid MAP/MMSE LE-EF (l) requires fewer iterations in order to achieve convergence relative to the MMSE LE-EF (l). Simulation results demonstrate that the hybrid MAP/MMSE LE-EF (I) has a superior performance compared to the MMSE LE-EF (I) as well as approaches the performance of both the MAP equalizer and MMSE LE-PEF at high SNRs, at the cost of increased complexity relative to the MMSE LEEF (I) receiver. The final part of this dissertation considers the use of precoders in a TE system. It was shown in the literature that a precoder drastically improves the system performance. Motivated by this, the EXIT chart is used to analyse the characteristics of four different precoders for long block lengths. It was shown that using a precoder results in a loss in mutual information during the initial equalization stage. However" we show by analysis and simulations that this phenomenon is not observed in the equalization of all precoded channels. The slope of the transfer function, relating to the MAP equalization of a precoded ISI channel (MEP), during the high input mutual information values is shown to play an important role in determining the convergence of precoded TE systems. Simulation results are presented to show how the precoders' weight affects the convergence of TE systems. The design of the hybrid MAP/MEP equalizer is also proposed. We also show that the EXIT chart can be used to compute the trellis code capacity of a precoded ISI channel

    Iterative equalization and decoding using reduced-state sequence estimation based soft-output algorithms

    Get PDF
    We study and analyze the performance of iterative equalization and decoding (IED) using an M-BCJR equalizer. We use bit error rate (BER), frame error rate simulations and extrinsic information transfer (EXIT) charts to study and compare the performances of M-BCJR and BCJR equalizers on precoded and non-precoded channels. Using EXIT charts, the achievable channel capacities with IED using the BCJR, M-BCJR and MMSE LE equalizers are also compared. We predict the BER performance of IED using the M-BCJR equalizer from EXIT charts and explain the discrepancy between the observed and predicted performances by showing that the extrinsic outputs of the MM-BCJR algorithm are not true logarithmic-likelihood ratios (LLR's). We show that the true LLR's can be estimated if the conditional distributions of the extrinsic outputs are known and finally we design a practical estimator for computing the true LLR's from the extrinsic outputs of the M-BCJR equalizer
    corecore