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ABSTRACT

Iterative Equalization and Decoding Using Reduced-State

Sequence Estimation Based Soft-Output Algorithms. (May 2003)

Raja Venkatesh Tamma, B.E. (Hons.),

Birla Institute of Technology & Science, Pilani

Chair of Advisory Committee: Dr. Krishna R. Narayanan

We study and analyze the performance of iterative equalization and decoding

(IED) using an M-BCJR equalizer. We use bit error rate (BER), frame error rate

simulations and extrinsic information transfer (EXIT) charts to study and compare

the performances of M-BCJR and BCJR equalizers on precoded and non-precoded

channels. Using EXIT charts, the achievable channel capacities with IED using the

BCJR, M-BCJR and MMSE LE equalizers are also compared. We predict the BER

performance of IED using the M-BCJR equalizer from EXIT charts and explain

the discrepancy between the observed and predicted performances by showing that

the extrinsic outputs of the M-BCJR algorithm are not true logarithmic-likelihood

ratios (LLR’s). We show that the true LLR’s can be estimated if the conditional

distributions of the extrinsic outputs are known and finally we design a practical

estimator for computing the true LLR’s from the extrinsic outputs of the M-BCJR

equalizer.
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CHAPTER I

INTRODUCTION

Iterative equalization and decoding (IED) is an offshoot of the increasing interest

within the channel coding community in iterative decoding techniques [1]. It was

first proposed by C. Douillard et al. [2] to minimize the bit error rate (BER) by

modeling the ISI channel as a convolutional code and applying iterative decoding on

the serial concatenated code (SCC) structure thus realized in conjunction with an

outer error-correction code (ECC).

In a typical digital communications system, the data is protected by an ECC

and the coded bits are modulated and transmitted over the ISI channel. In the re-

ceiver, the channel symbols are demodulated and decoded to recover the user data.

The transmission channel and the demodulator may be equivalently represented by a

discrete-time transversal filter (DTTF). The structure of a DTTF resembles a conven-

tional convolutional code. Thus, the input symbols to the decoder may equivalently

be considered as the output symbols of a convolutional code cascaded with an DTTF

model to which additive white Gaussian noise (AWGN) has been added. If an inter-

leaver is inserted between the ECC and the DTTF, an SCC results. In the iterative

decoder, the interleaver decorrelates the feedback information exchanged between the

equalizer and the decoder thus making them appear as independent decoding mod-

ules. This is essential for achieving good performance in IED.

In IED, a convolutional code is typically chosen as the ECC. This choice is mo-

tivated by the relative ease with which a soft-input soft-output (SISO) decoder can

be implemented for a convolutional code in comparison with a block code. Thus,

The journal model is IEEE Transactions on Automatic Control.
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the convolutional code forms the outer code and the DTTF forms the inner code

of the serial concatenated convolutional code (SCCC) [3]. We may use algorithms

based on maximum a posteriori probability (MAP) sequence estimation such as the

Soft-Output Viterbi Algorithm (SOVA) [4] or MAP symbol estimation e.g., Bahl-

Cocke-Jelinek-Raviv (BCJR) [5] for obtaining soft-information in IED. It was shown

in [3] that significant performance gains can be obtained from SCCC if and only if

the inner code is recursive. To make the DTTF appear recursive to the IED device,

we use a precoder [6] at the input of the DTTF. When the DTTF is made recursive

through such precoding, an interleaving gain results and the BER performance im-

proves significantly.

IED, as other iterative decoding algorithms do, suffers from high computational

complexity. There has been a welter of research in the coding community aimed at

reducing it at the expense of degraded performance. In [6], it was shown that con-

volutional codes with small constraint lengths outperform longer constraint lengths

codes at low signal-to-noise ratios (SNR’s). Therefore, the equalizer complexity is

the real bottleneck in IED. The need for reduced-complexity equalizer algorithms

assumes even greater importance in the presence of channels with long impulse re-

sponses. Our research efforts are geared towards exploring the performance of such

reduced-complexity soft-output algorithms for equalization on Extended Partial Re-

sponse (EPR) channels and analyzing their performance. We focussed on the BCJR

algorithm and its M-variant [7]. Although there are several published simulation re-

sults showing the performance of IED with an M-BCJR equalizer, several questions

about its performance remained unanswered.

In this thesis, we focus on understanding the behavior of the M-BCJR equalizer

in IED and compare its performance with other reduced-complexity equalizers. The

ECC is restricted to be a convolutional code and its corresponding decoder in the
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IED module is always restricted to use the BCJR algorithm.

The remainder of the report is organized as follows. We discuss the significance

of IED and give a summary of past research in this area in Chapter II. In Chapter III,

we review the BCJR algorithm, its M-variant and the extrinsic information trans-

fer (EXIT) charts [8]. In Chapter IV, we use BER and FER simulations and EXIT

charts to study the M-BCJR equalizer performance on precoded and non-precoded

channels. Linear equalizers (e.g., LE’s) and DFE’s [9] whose filter parameters are

updated based on criteria such as minimum-mean-squared-error (MMSE) are studied

extensively in the literature [10], [11], [12], [13]. We compare the losses in achievable

channel capacities of IED using the M-BCJR and MMSE LE equalizers measured

with reference to the BCJR equalizer. It is also interesting to note that unlike an

M-BCJR equalizer, an M-BCJR decoder suffers severe degradation when used on a

simple convolutional code. We try to explain this contrasting behavior of M-BCJR

using empirical arguments and with the help of simulations. We present simulation

results for IED with an M-BCJR equalizer on precoded channels also. Unlike the

non-precoded channel case, our simulations showed that the IED performance loss

with an M-BCJR equalizer on a precoded channel was significant for small values of

M .

In Chapter V, we see how close the simulated BER performance of the equalizer

is to the threshold predicted from the EXIT charts. When the BCJR equalizer was

used, the BER simulations for IED agreed with the expected threshold on both non-

precoded and precoded channels. On the other hand, when the M-BCJR equalizer

was used, there was a considerable gap between the observed BER performance and

the expected convergence thresholds on precoded channels especially for small values

of M . On non-precoded channels, the discrepancy between the actual performance

and the expected convergence threshold using an M-BCJR equalizer was insignificant
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at BER’s of practical interest. To explain this behavior, we show that the extrinsic

logarithmic likelihood ratios (LLR’s) at the output of the M-BCJR equalizer are not

true LLR’s. Hence the traditional practice of directly using them as feedback to the

outer decoder is sub-optimal. We show that the true values of the extrinsic LLR’s

can be obtained through Bayesian estimation given a conditional distribution of the

output extrinsic LLR’s for each symbol viz., −1 and +1 in the input alphabet of the

DTTF. We also present simulation results for such a genie-assisted IED to show that

the actual BER performance agrees with the predicted threshold.

In Chapter VI we develop a practical algorithm to estimate the true extrinsic

LLR’s at the equalizer output by estimating the pdf’s of the output extrinsic LLR’s.

It is interesting to note that unlike a non-precoded channel, −1’s and +1’s are un-

equally protected when precoding is used. Thus, this task assumes different forms

for the non-precoded and precoded channels. However, we try to design an estima-

tor only for the precoded channel. This is because in most practical applications,

a convolutional code is used as the ECC and in such cases, the performance of the

M-BCJR equalizer on a non-precoded channel is satisfactory and agrees with the

predicted performance.

The conclusions are given in Chapter VII.
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CHAPTER II

ITERATIVE EQUALIZATION AND DECODING

Iterative equalization and decoding is employed in the presence of an ISI channel to

counter the effects of ISI and minimize the bit error rate (BER). It was pioneered by

C. Douillard et al. [2] as an application of the iterative decoding principle [1], [14]

and has been an object of extensive research henceforth.

A. System Model

A typical communication system is shown in Figure 1. The data is protected by an

ECC. The coded bits ck are mapped to a symbol from the alphabet χ of the signal

constellation and transmitted over an ISI channel. For simplicity, we assume binary

phase shift keying (BPSK) modulation, i.e., χ={−1, +1}. In the receiver, the channel

output zk is passed through a whitened matched filter (WMF) and sampled every T

seconds, the symbol duration. The cascade of the ISI channel with the WMF and

the sampler may be equivalently treated as a DTTF. The DTTF is a finite impulse

response (FIR) filter and can be represented by an L-tap delay line with coefficients

fm, m = 0, 1, 2, . . . , L − 1. Thus the output of the DTTF at time k may be written

as

wk =

L−1∑
m=0

fmxk−m + nk

where nk is a sample of a white Gaussian noise process at time k. We shall refer to

a communication system model in which the ISI channel, the WMF and the sampler

are replaced with the DTTF as its DTTF model.

From the analogy with SCCC’s [3], we know that the BER can be significantly

improved by iteratively passing soft information rather than hard symbol estimates
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ECC WMFModulator
Channel

ISI
Equalizer

&
Decoder

t=nT

+

AWGN, n

a c x y z w a

Fig. 1. A typical communication system

between the equalizer and the decoder. However, the computational complexity of

such a system increases with the number of iterations and the channel impulse re-

sponse length L. To facilitate IED, a convolutional code is used as the ECC. It is

possible to obtain large interleaving gains in SCCC’s if the inner code (DTTF) is

recursive [3]. To make the DTTF appear recursive, we may use a precoder as in [6].

The DTTF model of the communication system is shown in Figure 2. A binary

data stream, ak, k = 1, 2, . . . , N of length N is encoded by the convolutional en-

coder generating a multiplexed stream of coded bits, ck, k = 1, 2, . . . , K of length

K = (1/R) ·N where R is the rate of the convolutional code. The coded bits ck

are pseudo-randomly permuted by the interleaver π(·). The interleaved stream,

π(ck), k = 1, 2, . . . , K is binary-phase shift keying (BPSK) modulated to obtain

the sequence xk, k = 1, 2, . . . , K, xk ∈ χ which is then convolutionally encoded by

the DTTF to produce yk, k = 1, 2, . . . , K, yk ∈ ζ where ζ is the output alphabet of

the DTTF when the input alphabet is χ. Since the code rate of DTTF is unity, the

length of the output stream is equal to K.

B. Principle of IED

IED is based on the principle of iterative decoding applied to SCCC’s [15]. The

receiver structure for IED is depicted in Figure 3. Both the equalizer and the decoder

are SISO devices. The equalizer computes the a posteriori probabilities (APP’s),

P (xk = x|z1, z2, . . . , zK), x∈χ, k = 1, 2, . . . , K, given K received symbols zk, k =
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1, 2, . . . , K and outputs the extrinsic LLR’s, LI(xk), k = 1, 2, . . . , K defined as the

a posteriori LLR minus the a priori LLR. The superscript I refers to the inner SISO

module viz., the equalizer.

LI(xk) = ln

(
P (xk = +1|z1, z2, . . . , zK)

P (xk = −1|z1, z2, . . . , zK)

)
− ln

(
P (xk = +1)

P (xk = −1)

)
. (2.1)

The a priori LLR, L(xk), k = 1, 2, . . . , K represents the a priori informa-

tion about the probability that xk ∈ χ, k = 1, 2, . . . , K assumes a particular value.

They are provided by the APP decoder. In the first equalization step, the a pri-

ori information, L(xk), k = 1, 2, . . . , K is not available and all values are assumed

to be equally probable i.e., L(xk) = 0, ∀ k. The a priori information for the

decoder is obtained by deinterleaving the output extrinsic LLR’s of the equalizer,

L(ck)=π−1(LI(xk)). Similar to the equalizer, the decoder also computes the APP’s

P (ck = c|L(c1), L(c2), . . . , L(cK)), c∈{0, 1} given the K code bit LLR’s L(ck), k =

1, 2, . . . , K and outputs the extrinsic LLR’s, LO(ck), k = 1, 2, . . . , K defined as the

output LLR minus the a priori LLR. The superscipt O refers to the outer decoder.

LO(xk) = ln

(
P (ck = +1|L(c1), L(c2), . . . , L(cK))

P (ck = −1|L(c1), L(c2), . . . , L(cK))

)
− ln

(
P (ck = +1)

P (ck = −1)

)
. (2.2)

a
π−1

f0 f2 fL-1f1

Convolutional
code

π( )c
D D D

+

Filter (DTTF) in place of
ISI + WMF + sampler

+

AWGN, n

yx z

Iterative Equalizer & Decoder

Discrete-Time Transversal

Decoder

π

Equalizerπca Modulator

Fig. 2. DTTF model of a communication system



8

Equalizer
MAP

DecoderDe-interleaver
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L (   )L(   )xk
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aI
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Fig. 3. Receiver model for IED

The extrinsic LLR’s of the decoder are interleaved to obtain the intrinsic information

for the equalizer i.e., L(xk)=π(LO(ck)), k = 1, 2, . . . , K. The decoder also outputs

estimates of the data bits as

âk = arg max

b∈{0,1}

{
P (bk = b|L(c1), L(c2), . . . , L(cK))

}
. (2.3)

This process is repeated several times over a block of received symbols. The

BCJR algorithm and its M-variant as used in IED are described in Chapter III.

C. Summary of Past Research

Linear equalization (LE) and decision feedback equalization (DFE) [9], [16] (non-

linear) are sub-optimal equalization techniques. Their filter parameters may be

selected on the basis of a variety of optimization criteria such as minimum-mean-

squared-error (MMSE) and the least-mean-squares (LMS) algorithm. On the other

hand, equalization techniques based on MLSE/MAP are optimal. The SOVA [4] and

BCJR [5] are examples of equalization algorithms based on MAP sequence estima-

tion and symbol estimation algorithms respectively. However, they are faced with the

disadvantage of exponentially increasing complexity as the length of channel impulse

response increases. Joint equalization and decoding is the optimal detection proce-

dure but is not a viable solution owing to its exceptionally high complexity.
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IED was first proposed in [2] and was further developed in [17], [18] besides

several other papers. In view of the high decoding complexity associated with the

MLSE/MAP equalizers, there have been several research efforts directed at develop-

ing reduced-complexity equalizers. A common technique to decrease the complexity

of non-linear equalizers is to use reduced-search algorithms such as the M-BCJR,

T -BCJR [7], [19], M-SOVA and T -SOVA [6] algorithms. Another approach is to use

equalization algorithms in which the filter coefficients may be selected on the basis

of different optimization criteria such as zero forcing (ZF) or MMSE [9]. Although

such algorithms are sub-optimal, they offer the advantage of quadratically increasing

complexity as the length of the channel impulse response increases. In [10], the MAP

equalizer in the IED framework is replaced with a soft-interference canceller based

on linear filters with a very low computational complexity. The filter coefficients are

updated using a least-mean-square (LMS) algorithm. This idea was further developed

in [11] where the filter coefficients were obtained by the LMS algorithm to match the

output of a MAP equalizer. For various signal-to-noise ratios (SNR’s) and feedback

information constellations, a linear estimate of the MAP equalizer is stored in a table

and used for equalization in the receiver. A similar approach was followed in [12] but

a known channel impulse response (as occurring in magnetic recording applications)

was assumed. The equalizer filter output was assigned a reliability measure to enable

the receiver to decide whether the linear algorithm should be used instead of the MAP

algorithm. In [13], a general structure for a SISO device based on MMSE equalization

was described and different implementations based on LE and DFE were derived. It

analyzes the performance of the equalizer and the decoder and gives suggestions on

how to select appropriate codes and SISO equalizers.
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CHAPTER III

REVIEW OF BCJR ALGORITHM AND EXIT CHARTS

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is a SISO processing tool. In gen-

eral, it is applicable to any Markov chain and produces a posteriori probabilities.

Since we are interested in the application of the BCJR algorithm to IED, we shall

present it as adapted to convolutional codes.

IED consists of two SISO devices viz., the equalizer and the decoder. They are

based on the general BCJR algorithm presented in Section A and can be readily used

as building blocks in any iterative decoder for convolutional codes. In Section B, we

describe the M-BCJR algorithm.

EXIT charts [8] may be used to study the convergence behavior of an iterative

decoder. The theory of EXIT charts and their utility are discussed in Section C.

A. SISO Module Based on the BCJR Algorithm

The SISO module shown in Figure 4 is a four-port device that accepts at the input

the sequences of LLR’s of the information bits, λI(u) and the coded bits, λI(c) and

produces at the output sequences of extrinsic LLR’s for the information bits, λO(u)

and the coded bits, λO(c). Its input-output relationships and internal operations are

given in subsection 1.

In our description of the BCJR algorithm, we assume that the encoder trellis

is time-invariant. This is a valid assumption because we are dealing with the time-

invariant trellises of the DTTF and convolutional codes in IED. For notation, we use

the trellis section of the encoder trellis shown in Figure 5. The symbol e denotes a

trellis edge starting from state sα
e and ending at state sβ

e . ue and ce are the respective

information and the code symbols associated with the edge e.
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The SISO module can operate at bit level or symbol level. Quite often, the

interleaver operates at bit level for improved performance. This necessitates the

transformation of symbol LLR’s into bit LLR’s and vice versa if the SISO module

is implemented at the symbol level (see subsection 2). Here, we describe the symbol

level SISO module.

1. The Input-Output Relationships of the SISO Module

Assume that the information and code symbols are defined over a finite time index

set [1,2, . . . ,K]. Let the operator
∗

log be defined as

∗
log(aj)

j

� log

[
J∑

j=1

eaj

]
(3.1)

From the input LLR’s, λI
k(u) and λI

k(c), k = 1, 2, . . . , K, the output extrinsic LLR’s,

λO
k (u) and λO

k (c), k = 1, 2, . . . , K are calculated as

λO
k (u) =

∗
log

e:ue=u

{
αk−1(s

α
e ) + λI

k(ce) + βk(s
β
e )

}
(3.2)

λO
k (c) =

∗
log

e:ce=c

{
αk−1(s

α
e ) + λI

k(ue) + βk(s
β
e )

}
(3.3)

The LLR’s calculated according to (3.2) and (3.3) are termed extrinsic due to

the fact that the computation of λO
k (u) (and of λO

k (u)) does not depend on the cor-

responding input LLR λI
k(u) (and λI

k(u)) and so it can be considered as an update

λI(u)

λI(c)

Oλ (u)

Oλ (c)

SISO

Fig. 4. Block diagram of a SISO module
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se
α

se
β

ue ce,
edge, e

Fig. 5. Encoder trellis section defining notation for description of the SISO algorithm

of the input LLR based on the code constraints and the information provided by

all homologous symbols in the sequence except the one corresponding to the same

symbol interval.

The quantities αk(·) and βk(·) in (3.2) and (3.3) are obtained through forward

and backward recursions, respectively, as

αk(s) =

∗
log

e:sβ
e =s

{
αk−1(s

α
e ) + λI

k(ue) + λI
k(ce)

}
∗

log
s

{
∗

log
e:sβ

e =s

{αk−1(sα
e ) + λI

k(ue) + λI
k(ce)}

} , k = 1, 2, . . . , K − 1. (3.4)

βk(s) =

∗
log

e:sα
e =s

{
βk+1(s

β
e ) + λI

k+1(ue) + λI
k+1(ce)

}
∗

log
s

{
∗

log
e:sβ

e =s

{
αk(sα

e ) + λI
k+1(ue) + λI

k+1(ce)
}} , k = 1, 2, . . . , K − 1. (3.5)

with initial values

α0(s) =




0, s = S0

−∞, otherwise.
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βK(s) =




0, s = SK

−∞, otherwise.

assuming that the encoder starts and ends in state 0. If the encoder ends in an

unknown state, the initial values for the backward recursion are chosen as

βK(s) = αK(s) ∀s

The denominators in (3.4) and (3.5) are normalization terms which help avoid

numerical problems arising out of finite precision. The
∗

log operator may be simplified

as

∗
log(aj)

j

= max
j

(aj) + δ(a1, a2, . . . , aJ) (3.6)

where δ(a1, a2, . . . , aJ) is a correction term that can be computed recursively using

a single-entry lookup table [20]. This simplification significantly decreases the com-

putational complexity of the BCJR algorithm at the expense of a slight performance

degradation.

2. Inter-conversion between symbol and bit Level LLR’s

Inter-conversion operations between symbol and bit Level LLR’s are necessitated by

the presence of a bit-interleaver. These operations assume that the bits forming a

symbol are independent. Suppose u = [u1, u2, . . . , um] is a symbol formed by m bits.

The extrinsic LLR λj of the j th bit uj within the symbol u is obtained as

λO
j (u) =

∗
log

u:uj=1
[λO(u) + λI(u)] −

∗
log

u:uj=0
[λO(u) + λI(u)] − λI

j (u). (3.7)
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Conversely, the extrinsic LLR of the symbol u is obtained from the extrinsic

LLR’s of its component bits uj as

λ(u) =
m∑

j=1

λjuj. (3.8)

B. M-BCJR Algorithm

The M-BCJR algorithm [7] is a reduced-complexity variant of the BCJR algorithm

and is based on the M-algorithm, a reduced-search trellis decoder. The reduction in

complexity is achieved by retaining only the M-best paths in the forward recursion

at each time instant. In the calculation of αk through forward recursion on αk−1, only

the M largest components are used; the rest of them are set to an LLR of −∞ and

the corresponding states are thus declared dead. The backward recursion is executed

only over those states that survived during the forward recursion. In Figure 6, we

show an example of M-BCJR computation pattern for M = 2.

Fig. 6. Idealized computation pattern in the M-BCJR algorithm on an 8-state trellis.

A line connecting two nodes indicates that the left node was used to compute

the right node and that right node survived the reduction process
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C. Theory of EXIT Charts

EXIT charts were originally proposed by Stephan ten Brink as a tool to better un-

derstand the convergence behavior of iterative decoding schemes [8]. The exchange of

extrinsic information between constituent SISO modules is visualized as a decoding

trajectory in the EXIT chart. This facilitates the prediction of convergence thresh-

olds with reasonable accuracy besides helping to understand the influence of code

memory, different constituent codes and precoders on the convergence behavior of

concatenated codes. To plot an EXIT chart for an iterative decoder, we need to

obtain the transfer characteristics of its constituent decoders.

1. Transfer Characteristics of Constituent Decoders

The basic purpose of EXIT charts is to predict the behavior of an iterative decoder

by looking solely at the input/output relations of its constituent decoders. They are

based on the following assumptions.

1. For large interleavers, the a priori values A remain fairly uncorrelated from

their corresponding channel observations Z over many iterations.

2. The probability density function (pdf) of the output extrinsic LLR’s E ap-

proaches Gaussian-like distributions as iterations progress [21].

The first observation can be explained by the fact that in the BCJR algorithm, the

extrinsic output Ek at time instant k is not influenced by the channel observations

Zk or the a priori value Ak [5]. A large interleaver further contributes to reduce

correlations. The possible reasons for the second observation are (a)the use of a

Gaussian channel model, and (b)that sums over many values are involved in the

calculation of E which typically leads to Gaussian-like distributions.
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Before proceeding further to describe how to obtain the transfer characteristics

of a constituent decoder, a review of some simple statistical properties of LLR values

will be in order. Consider a SISO module with the channel observations Z and a

priori LLR’s A as its input and the extrinsic LLR’s E as its output. For the received

signal from the AWGN channel

z = x + n (3.9)

the conditional pdf writes as

p(z|X = x) =
1√

2πσn

exp

{
− 1

2σ2
n

(z − x)2

}
. (3.10)

where the binary random variable X with alphabet χ = {−1, +1} denotes the trans-

mitted bits. The corresponding LLR’s are calculated as

Z = ln

(
p(z|x = +1)

p(z|x = −1)

)
(3.11)

which simplifies to

Z =
2

σ2
n

· z =
2

σ2
n

· (x + n). (3.12)

The variable n is Gaussian distributed with mean zero and variance σ2
n = No/2

(double-sided noise power spectral density). Equation (3.12) may be rewritten as

Z = µZ · x + nZ (3.13)

with

µZ =
2

σ2
n

(3.14)
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and nZ being Gaussian distributed with mean zero and variance

σ2
Z =

4

σ2
n

. (3.15)

Thus, the mean and variance of Z are connected by

µZ =
σ2

Z

2
. (3.16)

Based on the two observations made above, the a priori input A to the con-

stituent decoder can be modeled by an independent Gaussian random variable nA

with variance σ2
A and mean zero in conjunction with the known transmitted informa-

tion bits x.

A = µA · x + nA. (3.17)

Since A is supposed to be a Gaussian distributed LLR value as in the case of equations

(3.13), (3.16), the mean value µA must fulfil

µA =
σ2

A

2
. (3.18)

With (3.18), the conditional pdf belonging to A writes as

pA(ξ|X = x) =
1√

2πσA

exp

{
− 1

2σ2
A

(ξ − (σ2
A/2) · x)2

}
. (3.19)

The equation (3.19) can also be derived using the consistency condition [22] for the

LLR’s distribution, pA(ξ|X = x) = pA(−ξ|X = x)ex·ξ.

Let IA = I(A; X) be the mutual information between the a priori values A and
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the information bits X.

IA =
1

2
·

∑
x=−1,+1

∫ +∞

−∞
pA(ξ|X = x)

× log2

{
2 · pA(ξ|X = x)

pA(ξ|X = −1) + pA(ξ|X = +1)

}
dξ (3.20)

0 ≤ IA ≤ 1. (3.21)

Similarly, IE = I(E; X) is defined as the mutual information between the output

extrinsic LLR’s E and the information bits X.

IE =
1

2
·

∑
x=−1,+1

∫ +∞

−∞
pE(ξ|X = x)

× log2

{
2 · pE(ξ|X = x)

pE(ξ|X = −1) + pE(ξ|X = +1)

}
dξ (3.22)

0 ≤ IE ≤ 1. (3.23)

Viewing IE as a function of IA for a fixed Eb/No, the extrinsic information transfer

characteristics are defined as

IE = T (IA). (3.24)

2. Utility of Extrinsic Information Transfer Characteristics

To study the convergence behavior of an iterative decoder, the transfer characteristics

of both the constituent decoders are plotted into a single chart. However, the char-

acteristics of the second decoder (outer decoder in the case of SCCC’s) are plotted

with the axes swapped. The decoding process may be visualized as a trajectory in

the EXIT chart. Here, we illustrate the utility of an EXIT chart for an SCCC. The

procedure may be easily adapted to the case of PCCC’s.

Let m be the iteration number. The signal-to-noise ratio Eb/No is assumed to be

fixed. The subscripts i and o refer to the inner and outer decoders respectively. At
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m = 0, the decoding starts at the origin with zero a priori knowledge IAi,0 = 0. At it-

eration m, the extrinsic output of the inner decoder IEi,m = Ti(IAi,m). IEi,m is passed

as a priori information to the outer decoder and hence IAo,m = IEi,m. Interleav-

ing does not change mutual information. The extrinsic output of the outer decoder

is IEo,m = To(IAo,m), which is fed back to the inner decoder as a priori knowledge

IAi,m+1 = IEo,m for the next iteration.

The decoding process evolves as long as IEo,m+1 > IEo,m. With IEo,m+1 =

To(Ti(IEo,m)), this can be formulated as Ti(IEo,m) > T−1
o (IEo,m). The decoding process

willencounter a fixed point if IEo,m+1 = IEo,m, or equivalently, Ti(IEo,m) = T−1
o (IEo,m),

which corresponds to an intersection of the two characteristics in the EXIT chart.

The behavior of the decoding trajectory in the EXIT chart gives rise to three

regions of interest in the BER chart as discussed below.

1. Pinch-off region: The region of low Eb/No with imperceptible BER improve-

ment with iterations. This happens when the decoder characteristics intersect

at low mutual information and thus the decoding process encounters a fixed

point.

2. Bottle-neck region: The turbo-cliff region where the decoding trajectory just

manages to sneak through a narrow tunnel between the decoder characteristics;

convergence toward low BER is slow but possible because the decoder charac-

teristics no longer intersect. The lowest Eb/No at which this occurs is called as

the threshold Eb/No.

3. Wide-open region: This is the region of fast convergence where the gap between

the transfer characteristics of the component decoders is very wide. At very

high Eb/No’s, an error floor may surface.
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As iterative decoding is block-oriented, we can further distinguish between snapshot

trajectory and averaged trajectory. For the snapshot trajectory, the measurements of

the extrinsic output pdf pE,m at iteration m stem from the decoding of a single block.

For averaged trajectory, the extrinsic output pdf pE,m is obtained by averaging over

a number of NB blocks by applying

pE,m(ξ|X = ±1) =
1

NB
·

NB∑
b=1

pE,n,b(ξ|X = ±1) (3.25)

to trace an average behavior of the decoding convergence in the EXIT chart.

The importance of EXIT charts lies in the fact that they help us analyze the de-

coding behavior of an iterative decoder with sufficient accuracy without the necessity

for resource-intensive BER simulations. It should be noted that the actual decoding

trajectory may deviate from the expected path in the EXIT chart. This is attributed

to the increasing correlation of the extrinsic information with the information bits as

the iterations progress. The observed deviations are smaller when larger interleavers

are used. The EXIT charts may also be used to estimate the achievable channel

capacity with iterative decoding [23]. This is due to the property that for any outer

code, if the extrinsic information on the coded bits is assumed to be coming from an

erasure channel, the area under its transfer characteristic is the rate of the outer code.

Although this property holds only when the extrinsic channel is an erasure channel,

we observe that this is almost true in most practical situations and hence we will

assume that the above property holds good for IED as well. This implies that the

achievable information rate for a given equalizer in IED is the area under the transfer

characteristic of the equalizer which we shall loosely refer to as the achievable channel

capacity.
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CHAPTER IV

PERFORMANCE ANALYSIS OF M-BCJR EQUALIZER

The performance of the M-BCJR equalizer is studied and contrasted with that of the

BCJR equalizer on a variety of ISI channels (precoded and non-precoded) with the

help of BER and FER simulations and EXIT charts [8].

The ISI channels are modeled as convolutional codes (DTTF’s) as discussed

in Chapter II. In all our simulations, the channel is assumed to be static and its

coefficients fm, m = 0, 1, . . . , L − 1 where L is the length of the channel impulse

response, are perfectly known. Each of the channel coefficients has a power equal to

Pm = |f 2
m|, m = 0, 1, . . . , L − 1

and is normalized such that the total power

L−1∑
m=0

Pm = 1.

In this chapter and the remainder of the thesis, we shall represent an ISI channel by

its coefficients [f0, f1, . . . , fL−1].

We also investigate the performance of the M-BCJR equalizer on precoded chan-

nels because precoding improves the asymptotic performance of SCC’s [15]. Precoding

is achieved by appropriately processing the interleaved bits stream prior to passing it

through the DTTF.

A. Performance of the M-BCJR Equalizer

In Figure 7, we show the BER and FER performance of IED for the unprecoded

[
√

0.45,
√

0.25,
√

0.15,
√

0.10,
√

0.05] channel with [1, 3]8 as the outer code using 10

iterations and N=2048. The loss in performance of the M-BCJR equalizer as com-
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pared to the BCJR equalizer is unexpectedly small for non-precoded ISI channels.

The BER and FER curves of the M=8 BCJR algorithm are almost overlapping with

those of the full BCJR which operates on the whole 16-state trellis. When M=4 is

used, the loss in performance is only 0.05 dB at a BER of 10−5. For M=3, the loss

is 0.25 dB at a BER of 10−4. For M=2, the IED algorithm fails to evolve and does

not provide any improvement in performance with iterations.

As can be seen from these results for the above channel, we may use the M=4

BCJR equalizer with virtually no performance degradation or the M=3 BCJR equal-

izer with a very small loss in performance. This is an interesting result and suggests

that the complexity of the BCJR equalizer can be reduced considerably without

sacrificing its performance.

In the remainder of this section, we present a few more simulation results to

show that the M-BCJR equalizer delivers similar performance on a majority of ISI

channels, if not all of them. In fact, we present stronger simulation results in Section

B based on EXIT charts which demonstrate that the M-BCJR equalizer suffers neg-

ligible losses on practically every ISI channel even for very small values of M .

In Figure 8, we present the BER and FER simulation results over 6 iterations

for the unprecoded [0.5, 0.5, 0.5, 0.5] channel using the full BCJR and M=3 BCJR

equalizers. An information block length of N=2048 was used. The full BCJR equal-

izer operates on the whole trellis consisting of 8 states at each time instant. From

the plots, we observe that the performance of the M=3 BCJR equalizer is almost

indistinguishable from that of the full BCJR equalizer in the region of BER=10−5 at

reasonably high Eb/No. The performance of the M=3 BCJR equalizer is relatively

worse at low Eb/No.

The performance of the turbo equalizer saturates at a BER of 10−5 and does not

improve significantly even at very high Eb/No. Such an early error floor is typical of
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Fig. 7. BER & FER: Non-precoded [
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0.25,
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√

0.10,
√

0.05], [1, 3]8
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SCC’s in which the inner code is non-recursive [15]. It can be avoided by precoding

the channel.

The BER and FER simulation results for the precoded [0.5, 0.5, 0.5, 0.5] channel
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Fig. 8. Simulation results: Non-precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35

]8

using the full BCJR, M=5 and M=3 BCJR equalizers are plotted in Figure 9. In

comparison with the non-precoded channel, the M-BCJR equalizer suffers significant

losses in the precoded case. The performance of the M=5 BCJR equalizer is ap-

proximately 0.25 dB worse than the BCJR algorithm at a BER of 10−4. However,

this difference diminishes as we progress toward smaller BER’s. For M=3 BCJR, the

IED hardly yields any improvement in the BER performance with increasing number



25

of iterations. This is in stark contrast with its performance on the non-precoded

channel. It is also interesting to note that although the asymptotic performance on

precoded channels is better at high Eb/No, the non-precoded channels offer better

performance during the first few iterations. This behavior is a result of the fact that

the initial reliability of a precoded channel is smaller than that of a non-precoded

channel [24]. However, as the iterations progress, the precoded channel outperforms

the non-precoded channel. Also, there are no signs of an error floor at a BER of 10−5

and thus the performance may improve significantly as Eb/No increases.

In Figures 10 and 11, we plotted the BER and FER simulation results for
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Fig. 9. Simulation results: 1⊕D precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35

]8
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the non-precoded and precoded [0.5, 0.5, 0.0, 0.5, 0.5] channels respectively. A block

length of N=2048 and 6 iterations were used. For the non-precoded channel, the

performance graphs at the end of 6 iterations for the M=3 BCJR and the BCJR

equalizers are almost overlapping as in the case of the non-precoded [0.5, 0.5, 0.5, 0.5]

channel. For the precoded channel, the performance loss of the M=8 BCJR equalizer

is very small. For M=3 BCJR, the IED fails to improve the performance with any

number of iterations. All remarks made earlier with regards to the equalizer perfor-

mance on the precoded and non-precoded [0.5, 0.5, 0.5, 0.5] channel are applicable to

this channel as well.
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Fig. 10. Simulation results: Non-precoded [0.5, 0.5, 0.0, 0.5, 0.5], [1, 23
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B. Analysis of the Performance of the M-BCJR Equalizer

In this section, we use EXIT charts to understand and analyze the convergence be-

havior of the M-BCJR equalizer on several precoded and non-precoded ISI channels.

1. Explanation of Simulation Results

In Figure 12, we present five EXIT charts for the unprecoded [0.5, 0.5, 0.5, 0.5] chan-

nel with [1, 23/35]8 as the outer code at different values of Eb/No. They are obtained

by averaging the pdf’s, pA and pE of each decoder over five blocks each corresponding

to an information length of 250, 000 bits. The transfer characteristics of the outer

decoder are drawn with the axes swapped. The gaps between the transfer character-

istics of different equalizers and the decoder are good indicators of the relative speed

of convergence of turbo equalization. The more the gap, the faster the convergence.

Let us first consider the full BCJR equalizer. The EXIT chart at Eb/No =2.6

dB shows that the transfer characteristics of the equalizer and the decoder intersect

at a low IE(=0.65). Thus the IED is operating in the pinch-off region and does not

provide significant BER improvement. As the Eb/No increases, the point of intersec-

tion moves towards higher IE subsequently providing improved BER performance. At

Eb/No =5.0 dB, the decoder characteristics intersect at IE = 0.82 which is reasonably

high and thus gives acceptable BER performance. The wide gap between the transfer

characteristics of the component decoders ensures fast convergence and the IED may

be regarded as operating in the wide-open region. Also, as the EXIT charts show,

the asymptotic extrinsic output mutual information IE when the a priori mutual in-

formation IA =1.0 is always less than unity for non-precoded channels. This explains

the saturation of IED on non-precoded channels as seen in Figures 8 and 10.

The EXIT charts also depict the performance of the M=3 BCJR equalizer. The
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Fig. 12. EXIT charts: Non-precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35
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transfer characteristics of the M=3 equalizer are very close to the full BCJR equalizer

at all Eb/No. In fact, at high values of IA they merge. Based on this observation,

we expect the performance of the M=3 equalizer to be slightly degraded during the

initial iterations but nearly the same as the BCJR equalizer after sufficient number

of iterations. Since the gap between the characteristics of the M=3 equalizer and

the decoder is slightly smaller, the speed of convergence will be relatively slower.

An examination of the BER charts in Figure 8 reveals that the actual performance

is in slight disagreement with our expectations. The gap between the performances

of the BCJR and the M=3 equalizers closes after six iterations at high Eb/No but

is significantly wide at low Eb/No. We shall briefly explain this behavior here. A

detailed analysis and explanation is the object of Chapter V. The extrinsic outputs

of the M-BCJR equalizer are not true LLR’s. However, as more and more a apriori

information becomes available, they approach true LLR’s. An EXIT chart is plot-

ted with the assumption that the extrinsic outputs are used in an optimal fashion

and therefore their falsity does not degrade the asymptotic performance. Hence the

performance of an M-BCJR equalizer as predicted from its transfer characteristics

will necessarily be optimistic. Thus at low Eb/No, the true gap between the decoder

characteristics would be narrower and the observed BER performance is significantly

degraded perhaps due to an early intersection. On the other hand, at high Eb/No,

the true gap would still be sufficiently wide thus ensuring convergence, although at a

slower rate.

The achievable channel capacities for the BCJR and M=3 equalizers at different

Eb/No are listed in Table I. The M=3 equalizer provides almost the same channel

capacity as the BCJR equalizer.

The EXIT charts for the unprecoded [0.5, 0.5, 0.0, 0.5, 0.5] channel with [1, 23/35]8

as the outer convolutional code are plotted in Figure 13. They were obtained by av-
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Table I. Channel capacities: Non-precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35

]8
Eb/No Equalizer

(dB) M=8 (full BCJR) M=3 BCJR
2.6 0.5256 0.5191
3.2 0.5650 0.5574
3.8 0.6044 0.5960
4.4 0.6454 0.6360
5.0 0.6864 0.6763

eraging over 5 blocks of length N=250,000 each. Again, we observe in Figure 13 that

the error performances of the full BCJR and M=3 equalizers are almost coincident

at high Eb/No after 6 iterations. The performance of M=3 equalizer is only slightly

degraded at low Eb/No and approaches the full BCJR performance at high Eb/No.

However, the rate of convergence is relatively slow due to the narrower gap between

the component decoder characteristics. Also, the asymptotic IE is always less than

unity as noted earlier which results in early saturation of BER in IED. These results

can be explained by applying the same arguments as used above for the unprecoded

[0.5, 0.5, 0.5, 0.5] channel. The estimated channel capacities at different Eb/No are

listed in Table II. It shows that the M = 3 BCJR equalizer offers almost the same

capacity as the BCJR equalizer for this channel also.

Next, the EXIT charts of the precoded [0.5, 0.5, 0.5, 0.5] and [0.5, 0.5, 0.0, 0.5, 0.5]

channels are presented in Figures 14 and 15 respectively. These were also obtained

by averaging over 5 blocks of length of N=250,000 each. The EXIT charts for the

precoded [0.5, 0.5, 0.5, 0.5] channel show that the transfer characteristics of the BCJR

equalizer and the decoder intersect at Eb/No <3.8 dB. At Eb/No =3.9 dB, the BCJR

turbo equalizer can just manage to sneak through the narrow tunnel between the

decoder characteristics thus providing good BER performance albeit at a slow con-

vergence rate. In fact, as we shall see in Chapter V, the actual performance of the
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Table II. Channel capacities: Non-precoded [0.5, 0.5, 0.0, 0.5, 0.5], [1, 23
35

]8
Eb/No Equalizer

(dB) M=16 (full BCJR) M=3 BCJR
2.6 0.5772 0.5642
3.2 0.6213 0.6063
3.8 0.6658 0.6488
4.4 0.7104 0.6915
5.0 0.7550 0.7340

BCJR equalizer exhibits convergence at the expected threshold of Eb/No = 3.9 dB.

At Eb/No≥3.9 dB, the BCJR turbo equalizer provides rapidly improving BER per-

formance as Eb/No increases.

The simulation results in Figure 9 however, show that the performance just

begins to improve at Eb/No = 3.8 dB and provides acceptable error performance of

BER≤ 10−5 only at Eb/No≥5.0 dB approximately. This behavior is in contradiction

with our expected threshold of Eb/No =3.9 dB but can be easily explained by noting

that the EXIT charts only portray the asymptotically best achievable performance.

The discrepancy in actual performance as seen in Figure 9 is attributed to the small

information block length of N=2048 (or equivalently the small interleaver size) and

the small number of iterations (only 6) used for obtaining these plots. At Eb/No =3.8

dB, the performance just begins to improve but does not converge due to the small

block length. At 3.8 < Eb/No < 5.0, there is only a gradual improvement in perfor-

mance. The small block length is still a significant limiting factor in this region but

the performance is also affected by the small number of iterations used. In other

words, the BER may be significantly improved simply by using more iterations.

The M=5 BCJR equalizer intersects the transfer characteristic of [1, 23/35]8

outer decoder at Eb/No < 4.0 dB as may be deduced from the EXIT charts. Ac-

cordingly, its performance just begins to improve at Eb/No = 4.0 dB and gradually
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improves as Eb/No increases. The convergence rate is slow as compared with the

BCJR equalizer because of the narrower gap between the characteristics of the com-

ponent decoders.

As already noted, the extrinsic outputs of M-BCJR equalizers are not true LLR’s

and therefore the performance predicted from their EXIT charts would seem opti-

mistic. Hence the simulated performance of M-BCJR equalizers may actually be

more degraded than expected. This phenomenon is mirrored in the M=3 equalizer

performance. Based on EXIT charts, we expect a threshold of Eb/No = 4.4 dB for

the M=3 equalizer. However, as the simulation results in Figure 9 show, it does not

provide any improvement in BER at least for Eb/No≤5.0 dB. In fact, we shall see in

Chapter V that it evolves at Eb/No ≈ 5.1 dB using a large information block length

(N=100,000) and by decoding over 15 iterations.

In Figure 15, we plot the EXIT charts of the precoded [0.5, 0.5, 0.0, 0.5, 0.5] chan-

nel for the BCJR, M=8 and M=3 equalizers. The BER performance of different turbo

equalizers on this channel shown in Figure 11 may be explained from the EXIT charts

by using similar arguments as for the precoded [0.5, 0.5, 0.5, 0.5] channel. The trans-

fer characteristics of the BCJR and the M=8 equalizers are very close in the region

of low IA and merge at high IA. This explains why the performance of the M=8

equalizer approaches that of the BCJR equalizer after sufficient number of iterations

at high Eb/No. On the other hand, though a threshold of 4.4 dB is expected for the

M=3 equalizer, it actual performance is severely degraded and does not show any

improvement in performance at least for Eb/No≤5.0 dB. Once again, this observation

is justified by the fact that the extrinsic outputs of M-BCJR equalizers are not true

LLR’s and thus the EXIT charts provide optimistic predictions about their perfor-

mance.

The channel capacity estimates for the precoded channels: [0.5, 0.5, 0.5, 0.5] and
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Table III. Channel capacities: 1⊕D precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35

]8
Eb/No Equalizer

(dB) M=8 (full BCJR) M=5 BCJR M=3 BCJR
2.6 0.5239 0.5212 0.5064
3.2 0.5615 0.5586 0.5425
3.8 0.6010 0.5979 0.5805
4.4 0.6409 0.6378 0.6199
5.0 0.6815 0.6783 0.6600

Table IV. Channel capacities: 1⊕D precoded [0.5, 0.5, 0.0, 0.5, 0.5], [1, 23
35

]8
Eb/No Equalizer

(dB) M=16 (full BCJR) M=8 BCJR M=3 BCJR
2.6 0.5752 0.5732 0.5401
3.2 0.6170 0.6149 0.5794
3.8 0.6600 0.6578 0.6199
4.4 0.7039 0.7018 0.6616
5.0 0.7476 0.7456 0.7033

[0.5, 0.5, 0.0, 0.5, 0.5] at different Eb/No can be found in Tables III and IV respectively.

These tables reiterate that the capacity loss of M-BCJR equalizers is negligibly small.

A comparison of these tables with those of the corresponding non-precoded channels

shows that precoding does not affect the achievable channel capacity.

2. Comparison of M-BCJR and MMSE Equalizers

In Figure 16, the EXIT chart of the exact MMSE LE adopted from [13] on the unpre-

coded [0.227, 0.46, 0.688, 0.46, 0.227] channel is plotted for comparison with the BCJR

and M-BCJR equalizers. The estimates of channel capacities for various equalizers

are also listed on the figure. These estimates show that the MMSE equalizer suffers a

substantial loss in channel capacity compared with the BCJR equalizer. On the other

hand, the capacities of M=5 and M=3 BCJR equalizers are quite close to the BCJR

equalizer’s capacity. Therefore the loss in capacity suffered by using an M-BCJR
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equalizer instead of the BCJR equalizer is very small.

In Figures 17 and 18, we plot the cdf’s of achievable channel capacity loss
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Fig. 16. Comparison of BCJR, M-BCJR and exact MMSE LE on non-precoded

[0.227, 0.46, 0.688, 0.46, 0.227]

between BCJR and M=3 BCJR equalizers for 4-tap (L=4) and 5-tap (L=5) ISI

channels respectively. The channel coefficients fm, m = 0, 1, . . . , L − 1 where L is

the length of the channel impulse response were randomly generated subject to the

constraint that

L−1∑
m=0

|fm|2 = 1.

For each random channel, the capacity losses at three Es/No’s of 1.4 dB, 2.0 dB and

2.6 dB are plotted in Figures 17 and 18. A data length of 250,000 was used for all

simulations. The sample sizes for 4-tap and 5-tap channels are 5150 and 3050 respec-

tively.

The loss in capacity for 4-tap channels was less than 2% for a majority of them.

At worst, the loss was only 5% approximately. For 5-tap channels, a majority of
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channels suffered a loss of less than 3% and the worst loss was 6% or less. These

observations suggest that the performance of the M-BCJR equalizer is almost the

same as the BCJR equalizer. Also, the loss in channel capacity is very small.

With a fixed outer decoder during IED, the shape of the MMSE transfer char-
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Fig. 17. Capacity loss cdf: 4-tap channels

acteristic suggests that its threshold Eb/No may be higher or the rate of convergence

may be much slower or both as compared with an M-BCJR equalizer. Hence the

advantage of using an M-BCJR equalizer over an MMSE equalizer is two-fold. It

should however be remembered that the complexity of an MMSE equalizer is several

times smaller.

C. M-BCJR Algorithm for Convolutional Codes

In Section A, we saw that the performance degradation of the M-BCJR equalizer

in relation to the BCJR equalizer is negligibly small even for small values of M .
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Fig. 18. Capacity loss cdf: 5-tap channels

These observations were also supported by the EXIT charts presented in Section B.

Figures 19 and 20 present the EXIT charts for the BCJR and M-BCJR algorithms on

some traditional convolutional codes. These plots show that the performance of the

M-algorithm as compared with the BCJR algorithm is severely degraded. Thus, we

see that the M-algorithm behaves differently in the cases of convolutional codes and

DTTF models. Here, we try to explain this anomaly with the help of some empirical

arguments.

As explained in Chapter III, the M-BCJR algorithm differs from the original

BCJR only in the calculation of αk(s) and βk(s) during the forward and backward

recursions. They are respectively computed using equations (3.4) and (3.5). In the

original BCJR algorithm, the number of terms in the numerator (or denominator) of

(3.4) and (3.5) is a constant. But, in case of the M-BCJR algorithm, the number of

active terms in the numerator (or denominator) of these equations varies depending

on the survivor states at the preceding or the succeeding time instant. However, the
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number of such terms is always less than the constant number of terms on which the

BCJR operates. We note that
∗

log defined in equation (3.1) is the main operator used

in both these recursive equations. The performance degradation of the M-algorithm

therefore depends on the sensitivity of the
∗

log operator to its arguments.

The computation of the
∗

log operation may be greatly simplified as noted in

equation (3.6) with only a small performance degradation. This tells us that the
∗

log

operator may not be sensitive to some of its arguments if they are relatively small

in value. Let a1, a2 be two values. Without loss of generality, assume that a1 > a2.

Then,

∗
log(a1, a2) = max(a1, a2) + δ(a1, a2) ≈ a1 (4.1)

if (a1−a2) is sufficiently large.

Based on the above arguments, we may conclude that the M-BCJR algorithm

suffers more degradation in performance if the variance of the arguments entering

the
∗

log operation in equations (3.4) and (3.5) is small. If the variance is large, the

loss in performance will be less. To explain the contrasting behavior of M-BCJR

algorithm on convolutional codes and ISI channels, we show that the variance of

metrics entering the calculation of αk(s) and βk(s) is much larger for ISI channels

than for convolutional codes.

We first present some empirical arguments to show that the variance of metrics

is larger for convolutional codes. Later, we present more reliable simulation results

to support our explanation. Let wk, k = 1, 2, . . . , K be the discrete-time received

signal used to compute the channel observation LLR’s Lj(wk), k = 1, 2, . . . , K; j =
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1, 2, . . . , J using

Lj(wk) = − 1

2σ2
n

· (wk − sj)
2 − log

{
J∑

j=1

exp

{
− 1

2σ2
n

· (wk − sj)
2

}}
(4.2)

where sj , j = 1, 2, . . . , J forms the output alphabet of the convolutional encoder or

the ISI channel and σ2
n is the noise variance. αk(s) and βk(s), k = 1, 2, . . . , K; s =

1, 2, . . . , M where M is the number of trellis states, are calculated by normalized

recursive accumulation of Lj(wk)’s over a number of time instants. Since at any time

instant the number of Lj(wk)’s entering the computation of any αk(s) or βk(s) may

be considered to be approximately the same, we infer that the variance of the metrics

used in these computations varies directly in proportion with the variance of Lj(wk)’s.

Ignoring the constant in equation (4.2), the variance Bk of Lj(wk)’s is given by

Bk = − 1

2Jσ2
n

{
J∑

j=1

(wk − sj)
2

}
. (4.3)

Consider a typical convolutional encoder whose output alphabet is BPSK. Using

equation (4.3), its variance Bconv
k at a particular time instant k computes as

Bconv
k =

w2
k

σ4
n

. (4.4)

The output alphabet of an ISI channel typically has more than two symbols. For

example, the output alphabet of [0.5, 0.5, 0.5, 0.5] channel (precoded or non-precoded)

is {−2,−1, 0, +1, +2} and its variance Bisi
k computes as

Bisi
k =

2w2
k

σ4
n

+
0.7

σ4
n

. (4.5)

From equations (4.4) and (4.5), we infer that the variance of metrics for ISI

channels is larger than for convolutional codes. In Tables V and VI, we present

some simulation results to support our conclusion. They list the metric variances at
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Table V. Metric variances in αk(s) computation on some ISI channels
Channel 1⊕D precoded Non-precoded Non-precoded

[0.5, 0.5, 0.5, 0.5] [0.5, 0.5, 0.5, 0.5] [0.5, 0.5, 0.0, 0.5, 0.5]
Es/No(dB) 2.6 3.2 2.6 3.2 -0.4 0.2

σA = 0 20.82 26.77 20.83 26.73 7.48 9.21
σA = 4 35.30 42.50 40.65 47.89 26.10 29.28

σA = 10 67.03 76.08 84.81 94.65 72.32 77.13
σA = 15 100.80 111.583 132.39 144.71 124.45 131.46
σA = 25 194.12 206.411 256.88 274.17 265.72 275.01

Table VI. Metric variances in αk(s) computation on some convolutional codes
Channel [1, 23

35 ]8 [1, 7
5 ]8

Es/No(dB) -2.0 -1.5 -2.0 -1.5
σA = 0 0.31 0.41 0.34 0.46
σA = 4 1.73 2.15 1.89 2.26

σA = 10 7.59 9.04 6.48 7.48
σA = 15 15.50 17.57 12.41 13.91
σA = 25 37.80 41.19 29.04 31.98

various Es/No for ISI channels and convolutional codes respectively. The a priori

LLR’s are simulated with a variance σ2
A and mean µA = σ2

A/2 in accordance with

equation (3.16). As predicted, the variance of metrics used in the computation of

αk(s) (likewise βk(s)) is much larger for ISI channels. Consequently, the
∗

log operator

is less sensitive to smaller metrics that may be discarded by the M-algorithm in

the case of an ISI channel. This explains the anomalous behavior of the M-BCJR

algorithm.
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CHAPTER V

CONVERGENCE BEHAVIOR OF M-BCJR EQUALIZER

The EXIT charts of an iterative decoder help us in understanding its error perfor-

mance and also in the prediction of the convergence threshold Eb/No. The threshold

of convergence is defined as the smallest Eb/No at which the decoding trajectory in

the EXIT chart just manages to sneak through a narrow tunnel; the rate of conver-

gence toward a low BER is rather slow but possible as the transfer characteristics

of the component decoders no longer intersect. We shall henceforth abbreviate the

threshold Eb/No predicted from EXIT charts as SNREX and the actual threshold

Eb/No observed from BER simulations as SNRAC .

Our simulations showed that for IED using the BCJR equalizer SNREX ≈SNRAC .

However, for IED using the M-BCJR equalizer on precoded channels, SNRAC >

SNREX . In the case of non-precoded channels, the concept of convergence threshold

is not applicable because the EXIT charts of the equalizer and the outer decoder

always intersect. Therefore, we shall focus only on the convergence behavior of the

M-BCJR equalizer on precoded channels.

A. Convergence Behavior of BCJR Equalizer

From the EXIT charts of IED using the BCJR equalizer on the 1⊕D precoded

[0.5, 0.5, 0.5, 0.5] channel shown in Figure 14, we can see that its expected convergence

threshold is SNREX = 3.9 dB. The actual asymptotic performance of IED with the

BCJR equalizer on this channel is plotted in Figure 21. An information block length

of N=87,500 and 15 iterations were used. At Eb/No = 4.0 dB, the BER is 10−6 or

better when more than 10 iterations are used. In the region 3.8 < Eb/No < 4.0, we

observe a rapid improvement in BER. Therefore we conclude that the IED actually
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converges at Eb/No =3.9 dB i.e., SNRAC =SNREX =3.9 dB.

The EXIT charts of the BCJR equalizer at Eb/No = 3.9 dB and the outer
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Fig. 21. BCJR performance: 1⊕D precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35

]8

[1, 23/35]8 decoder are plotted in Figure 22. We used respective block lengths of

250,000 and 100,000 to plot these EXIT charts. It also illustrates the actual decoding

trajectory of the IED at Eb/No = 3.9 dB obtained by averaging over 25 blocks of

information length N=100,000 bits. It just manages to squeeze through the bottle-

neck region and slowly converges to a low BER.

B. Convergence Behavior of M-BCJR Equalizer

The EXIT charts for M=5 and M=3 equalizers for the precoded [0.5, 0.5, 0.5, 0.5]

channel are also plotted in Figure 14. The precoder used was 1⊕D. Based on
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these EXIT charts, we may predict an SNREX = 4.0 dB for the M=5 BCJR and

an SNREX = 4.4 dB for the M=3 BCJR algorithm. The IED simulation results us-

ing these respective equalizers are plotted in Figures 23 and 24. These performance

curves were obtained using 15 iterations and information block lengths of N=87,500

and N=100,000 respectively.

As Figure 23 shows, the IED using M=5 equalizer decodes without any errors at
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Fig. 23. M=5 BCJR performance: 1⊕D precoded [0.5, 0.5, 0.5, 0.5], [1, 23
35

]8

Eb/No =4.0 dB using 14 or more iterations. Hence the actual convergence threshold

is SNRAC =4.0 dB which means SNRAC =SNREX for this equalizer as well.

Figure 24 shows that IED using M=3 BCJR equalizer provides a low BER at

Eb/No =5.2 dB after 8 iterations. The performance curves exhibit rapid BER improve-

ment in the bottle-neck region which may be roughly specified as 5.0 < Eb/No < 5.2.
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Hence we may conclude that SNRAC ≈ 5.1 dB i.e., SNRAC > SNREX . We will ex-

plain the cause of this discrepancy of 0.7 dB between the predicted and actual con-

vergence thresholds in Section C. The decoding trajectories at SNREX = 4.4 dB

and SNRAC = 5.1 dB are plotted in Figure 25. The M=3 equalizer EXIT chart at

Eb/No = 4.4 dB and the decoder EXIT chart are also plotted. At SNREX =4.4 dB, the

decoding trajectory encounters a fixed point and further iterations do not improve the

performance. However, at SNRAC =5.1 dB the decoding trajectory emerges through

the tunnel between the decoder characteristics and converges to a low BER.

C. Extrinsic Outputs of M-BCJR Equalizer Not True LLR’s

The extrinsic outputs of the M-algorithm are not true LLR’s for two reasons.

1. The M-algorithm discards some low-probability paths at each time instant and

thus ignores their contributions in all future computations.

2. In the original DTTF trellis, the number of +1 and −1 information bit edges is

the same. However, in the LLR’s computation of the M-algorithm, at any time

instant k, the number of surviving +1 and −1 information bit edges entering

equations (3.2) and (3.3) may not be equal. In the worst case, there may not

be any +1 and −1 information bit survivor edges at a particular time instant.

Therefore, they may not be called as LLR’s in its true sense.

In the remainder of this section, we use EXIT charts to assert that the extrinsic

outputs of the M-BCJR equalizer are not true LLR’s. In subsection 1, we derive

a simplified expression for the computation of the mutual informations I(A; X) and

I(E; X) of a SISO module assuming that the LLR values are true. Here, X is the

information bits stream, A are the input a priori LLR values, and E are the output

extrinsic values.
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1. Simplified Calculation of I(A; X) and I(E; X) for True LLR’s

In plotting EXIT charts, the mutual informations I(A; X) and I(E; X) of a SISO

module are computed from equations (3.20) and (3.22) respectively. They use the

conditional distributions pA(ξ|X = x) and pE(ξ|X = x),X ∈ χ of the a priori and

extrinsic output LLR’s respectively for each symbol in the input alphabet χ of the

SISO device. For our purposes, the input alphabet is χ={−1, +1} always.

Let pZ(ξ|X = x), X ∈{−1, +1} be the conditional distributions of the random

variable Z. Assume that Z represents the true LLR of the random variable X defined

as

LZ(x) = log

{
p(X =+1|ξ)
p(X =−1|ξ)

}
= log

(
p

1 − p

)
(5.1)

where p is the conditional probability that X =+1. Using Bayes’ theorem, equation

(5.1) may be rewritten as

LZ(x) = log

(
p

1 − p

)
= log

{
pZ(ξ|X =+1)

pZ(ξ|X =−1)

}
(5.2)

because Pr(X =−1)=Pr(X =+1)=1/2. The mutual information I(Z; X) computes

as

IZ =
1

2
·

∑
x=−1,+1

∫ +∞

−∞
pZ(ξ|X =x)

× log2

{
2 · pZ(ξ|X =x)

pZ(ξ|X =−1) + pZ(ξ|X =+1)

}
dξ (5.3)

0 ≤ IZ ≤ 1. (5.4)
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Equation (5.3) has the same form as equations (3.20) and (3.22) used for computing

I(A; X) and I(E; X) respectively. It may be simplified as

IZ =
1

2
·

∑
x=−1,+1

∫ +∞

−∞
pZ(ξ|X =x)

×
[
1 + log2

{
pZ(ξ|X =x)

pZ(ξ|X =−1) + pZ(ξ|X =+1)

}]
dξ (5.5)

which expands to

IZ = 1 +
1

2
·
∫ +∞

−∞
pZ(ξ|X =−1)·log2

{
pZ(ξ|X =−1)

pZ(ξ|X =−1) + pZ(ξ|X =+1)

}
dξ

+
1

2
·
∫ +∞

−∞
pZ(ξ|X =+1)·log2

{
pZ(ξ|X =+1)

pZ(ξ|X =−1) + pZ(ξ|X =+1)

}
dξ. (5.6)

Rewriting equation (5.6), we get

IZ = 1 +
1

2
·
∫ +∞

−∞
pZ(ξ|X =−1)·log2

{
1

1 + pZ(ξ|X=+1)
pZ(ξ|X=−1)

}
dξ

+
1

2
·
∫ +∞

−∞
pZ(ξ|X =+1)·log2

{ pZ(ξ|X=+1)
pZ(ξ|X=−1)

1 + pZ(ξ|X=+1)
pZ(ξ|X=−1)

}
dξ. (5.7)

Using equation (5.2) and the fact that Pr(X = −1) = Pr(X = +1) = 1/2, equation

(5.7) becomes

IZ = 1 +

∫ +∞

−∞
pZ(ξ|X =−1)·Pr(X =−1)·log2(1 − p)dξ

+

∫ +∞

−∞
pZ(ξ|X =+1)·Pr(X =+1)·log2(p)dξ (5.8)

which may be rewritten using Bayes’ theorem and equation (5.1) as

IZ = 1 +

∫ +∞

−∞
[pZ(ξ) · {(1 − p)·log2(1 − p) + p·log2(p)}] dξ. (5.9)

By replacing the continuous integration by a summation operation over the data

block in equation (5.9), the expression for calculation of mutual information may be
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equivalently written as

IZ = 1 +
1

N
·

N−1∑
n=0

{(1 − pn)·log2(1 − pn) + pn ·log2(pn)} . (5.10)

Equation (5.10) is simple to implement and has lower computational complexity

than equations (3.20) and (3.22). It also does not require the computation of the

conditional distributions pZ(ξ|X = x), X∈{−1, +1}.

2. EXIT Charts Using the Simplified Expression

In plotting EXIT charts, the input a priori LLR’s are randomly generated by im-

posing certain conditions as described in Chapter IV. Hence they always behave as

true LLR’s. However, the extrinsic outputs of a SISO module may not be true LLR’s.

Given this scenario, an EXIT chart plotted using equation (5.10) will not concur with

its original EXIT chart if the extrinsic outputs are not true LLR’s.

The EXIT charts for the precoded [0.5, 0.5, 0.5, 0.5] and [0.5, 0.5, 0.0, 0.5, 0.5]

channels obtained using equation (5.10) for the computation of mutual informations

are shown in Figures 26 and 27. The original EXIT charts for these respective chan-

nels were plotted in Figures 14 and 15. The EXIT charts for the BCJR equalizer

plotted using the equation (5.10) and the original equations (3.20) and (3.22) for mu-

tual information are perfectly coincident for both the DTTF models. This is because

the extrinsic outputs of the BCJR equalizer are true LLR’s. On the other hand, the

EXIT charts for the M-BCJR equalizers do not concur on either of these channels.

In fact, similar results were observed on several other channels. This proves that the

extrinsic outputs of an M-BCJR equalizer are not true LLR’s. In addition, the new

EXIT charts predict that the performance of the M-BCJR equalizer is superior to

its actual performance. Therefore, we may also conclude that the extrinsic outputs

of the M-BCJR equalizer are optimistic.
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D. Genie-Assisted IED

Since the extrinsic outputs of an M-BCJR equalizer are not true LLR’sthe traditional

practice of directly using them as feedback to the outer decoder is suboptimal. The

EXIT charts of an IED device however, project its best achievable performance. In

other words, they are drawn with the intrinsic assumption that the extrinsic outputs

of the component SISO modules are used in an optimal fashion. In plotting EXIT

charts, the mutual informations I(A; X) and I(E; X) are computed from equations

(3.20) and (3.22) using their respective conditional distributions pA(ξ|X = x) and

pE(ξ|X =x),X ∈{−1, +1}.
The above observations collectively suggest that the true LLR’s at the output

of the M-BCJR equalizer may be estimated using Bayes’ theorem if the conditional

distributions pE(ξ|X = x), X ∈ {−1, +1} are known. Consequently, the actual error

performance threshold SNRAC of an M-BCJR equalizer may converge to the predicted

threshold SNREX .

Using Bayes’ theorem and the conditional pdf’s pE(ξ|X =−1) and pE(ξ|X =+1),

the true LLR’s at the output of an M-BCJR equalizer are estimated from its extrinsic

outputs as

LE(xk) =
Pr(X =+1|ξ)
Pr(X =−1|ξ) =

PE(ξ|X =+1)

PE(ξ|X =−1)
(5.11)

because Pr(X =−1)=Pr(X =+1)=1/2.

It should be noted that the estimation of true LLR’s using equation (5.11) is

not possible because of the impracticability of knowing the conditional distributions

pE(ξ|X =−1) and pE(ξ|X =+1). For this reason, the IED in which the true LLR’s

are estimated from equation (5.11) is called as a genie-assisted IED.

In the following, we present some EXIT charts of M-BCJR equalizers and simu-
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lated decoding trajectories on different channels to illustrate the effectiveness of the

genie-assisted IED. Figure 28 shows the EXIT charts of the M=3 BCJR equalizer

for the 1⊕D precoded [0.5, 0.5, 0.5, 0.5], [1, 23/35]8 outer decoder and the decoding

trajectories of traditional and genie-assisted IED’s. By traditional IED, we mean the

IED which directly uses the extrinsic outputs of the M-BCJR equalizer as feedback

to the outer decoder. These decoding trajectories were simulated using 20 iterations

and an information block length of N=100,000. From our convergence analysis of the

M-BCJR equalizer on the precoded [0.5, 0.5, 0.5, 0.5] channel in Section B, we know

that the traditional IED for this channel has a threshold SNRAC = 5.1 dB (Figure

25). The IED predicted threshold is SNREX =4.4 dB at which the genie-assisted IED

converges as seen in Figure 28. This confirms that the true LLR’s can be accurately

estimated using equation (5.11).

We further present a few more EXIT charts and decoding trajectories to verify

the performance of the genie-assisted IED. The EXIT charts for IED on 1⊕D pre-

coded [0.5, 0.5, 0.5, 0.5] with [1, 1/3]8 as the outer decoder are plotted in Figure 29.

They were obtained using data blocks of length N=250,000. It is a well known result

that a smaller constraint length outer convolutional code allows the IED to converge

at a smaller SNRAC . Due to this reason, we chose the outer code as [1, 1/3]8. From

the EXIT charts, we predict SNREX =3.2 dB for the M=3 BCJR equalizer.

The error performance of the traditional IED using the M=3 BCJR equalizer

converges at SNRAC = 3.35 dB. Its decoding trajectory is shown in Figure 30. The

decoding trajectories of the traditional and genie-assisted IED’s at Eb/No = 3.2 dB

are illustrated in Figure 31. All these decoding trajectories were simulated using an

information block length of N=250,000 and 40 iterations. These plots show that the

genie-assisted IED converges at SNREX =3.2 dB. In Figure 31, the traditional IED

at SNREX =3.2 dB did not encounter a fixed point. It might slowly squeeze through
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Fig. 29. EXIT charts: 1⊕D precoded [0.5, 0.5, 0.5, 0.5], [1, 1
3
]8
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the bottle-neck region between the transfer characteristics of the M=3 BCJR and the

outer decoder and eventually converge to a low BER. But, the number of iterations

required to achieve an acceptable BER of 10−5 or better could be as high as 100.
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CHAPTER VI

ESTIMATION OF TRUE LLR’S FROM M-BCJR EQUALIZER OUTPUTS

The true LLR’s at the output of an M-BCJR equalizer can be estimated perfectly

if the conditional distributions pE(ξ|X = x), X ∈ {−1, +1} of the output extrinsic

values are known. Since this is an impractical requirement, we design a practical and

reliable estimator based on some approximations.

It may be noted that the concept of refining the extrinsic outputs of a suboptimal

SISO device before they are used as a priori input to the other SISO device in

an iterative decoder is not entirely new. For example, the extrinsic outputs of the

SOVA are optimistic. They are brought closer to the true LLR’s by normalization

[25] which consists of multiplying every extrinsic output by a constant factor that

depends on the current BER. This normalization constant is computed by assuming

a Gaussian distribution for the extrinsic outputs. In our initial efforts to design a

reliable estimator, we followed a similar approach.

A. Estimation Using Gaussian Approximation

The extrinsic outputs of the M-BCJR equalizer are assumed to be Gaussian dis-

tributed. Unlike simple convolutional codes, the ISI channels behave as non-linear

codes. In this scenario, we verified the validity of our assumption from simulations as

a precautionary measure. The actual distribution of the extrinsic outputs matched

closely with the Gaussian assumption but we discovered some interesting facts about

the behavior of the M-BCJR equalizer. On non-precoded channels, the conditional

distributions of the extrinsic outputs pE(ξ|X =x), X∈{−1, +1} were quite similar in

shape and had similar means and variances as well. On the other hand, the conditional

distributions of the extrinsic outputs pE(ξ|X =x), X∈{−1, +1} on precoded channels
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were quite dissimilar. As an example, the histograms of pE(ξ|X =x), X ∈{−1, +1}
for M=3 BCJR on the precoded [0.5, 0.5, 0.5, 0.5] channel are shown in Figure 32.

These results suggest that the M-BCJR equalizer offers unequal protection to the

information bits −1 and +1 when the channel is precoded. Therefore, the problem

of estimating the true LLR’s assumes different forms for precoded and non-precoded

channels. However, for reasons explained earlier, we try to design the estimator for

the precoded case only.

In actual decoding, it is only practical to compute the mean µD and variance
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Fig. 32. Conditional pdf’s of M=3 BCJR: 1⊕D precoded [0.5, 0.5, 0.5, 0.5]

σ2
D of all the extrinsic outputs of each block. It is not possible to compute the means

µD−1, µD+1 and the variances σ2
D−1

, σ2
D+1

of the conditional distributions pE(ξ|X =−1)

and pE(ξ|X =+1) from the extrinsic outputs themselves. We overcome this problem

by using lookup tables of the means µW , µ−1, µ+1 and variances σ2
W , σ2

−1, σ2
+1 at

several points along the EXIT chart. The subscript W refers to the extrinsic out-
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puts as a whole and the subscripts −1 and +1 refer to the corresponding conditional

distributions. These tables are generated from simulations by averaging over several

blocks assuming that the transmitted bits X are known.

During actual decoding, we compute the whole mean µD and variance σ2
D and

estimate the means µD−1, µD+1 and variances σ2
D−1

, σ2
D+1

by interpolation. The true

LLR’s are then computed using

LE(xk) = log

(
σD−1

σD+1

)
− 1

2

[
(ξ − µD+1)

2

σ2
D+1

− (ξ − µD−1)
2

σ2
D−1

]
(6.1)

where ξ is the extrinsic output.

Our simulations using equation (6.1) for the estimation of true LLR’s did not

improve the error performance of the turbo equalizer. This shows that the above true

LLR estimator is unreliable. The ineffectiveness of estimator (6.1) may be attributed

to the heavy tails of the conditional distributions pE(ξ|X =x), X ∈{−1, +1} in the

direction of the opposite information symbol.

B. Estimation Using Stored Histograms

This approach is intrinsically similar to the Gaussian approximation method de-

scribed in Section A. However, the assumption of Gaussian distribution for the

extrinsic outputs is discarded. Instead, a string of histograms hm
E (ξ|X = x), X ∈

{−1, +1}, m = 1, 2, . . . , T where T is the total number of iterations, are used to

estimate the true LLR’s. They are computed from the genie-assisted IED by aver-

aging the true conditional distributions of the M-BCJR equalizer extrinsic outputs

pE(ξ|X = x), X ∈ {−1, +1} at the end of iteration m over 25 blocks. These his-

tograms are specific to a particular Eb/No and may be used only when operating at

that Eb/No. Therefore, it is important to have a priori knowledge of the channel
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signal-to-noise ratio in order to use this method.

In actual performance simulations using these stored histograms, the true LLR’s

at the end of iteration m are estimated using

LE(xk) =
Pr(X =+1|ξ)
Pr(X =−1|ξ) =

hm
E (ξ|X =+1)

hm
E (ξ|X =−1)

(6.2)

which is similar to equation (5.11). The performance of IED using stored histograms

to estimate the true LLR’s from equation (6.2) at the M=3 BCJR equalizer output

on the precoded [0.5, 0.5, 0.5, 0.5] channel is shown in Figure 33. The outer code was
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Fig. 33. Performance of M=3 BCJR: 1⊕D precoded [0.5, 0.5, 0.5, 0.5]. True LLR’s at

the M-BCJR equalizer output estimated using stored histograms

[1, 23/35]8 and the precoder was 1⊕D. An information block length of N=100,000

and 20 iterations were used for the simulations. At Eb/No = 4.4 dB, IED failed to

evolve. However, at Eb/No =4.5 dB, there were no errors at the end of 13 iterations.

As seen in Chapter V, the expected convergence threshold for the above code is

SNREX =4.4 dB and the observed threshold is SNRAC =5.1 dB. This shows that this

method of estimating true LLR’s from stored histograms significantly improves the

error performance of IED using M-BCJR equalizers on precoded channels. In Figure
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34, we plotted the decoding trajectory of IED using stored histograms at Eb/No =4.5

dB and the EXIT charts of the M=3 equalizer and the outer decoder. The plot shows

the efficacy of this true LLR’s estimator.
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CHAPTER VII

CONCLUSIONS

In this thesis, we focussed on understanding the behavior of the M-BCJR [7] equal-

izer in IED and also compared its performance with other low complexity equalizers.

We studied the performance of the M-BCJR equalizer on precoded and non-precoded

channels with the help of BER, FER simulations and EXIT charts [8]. The perfor-

mance degradation of the M-BCJR equalizer as compared with the BCJR equalizer

was found to be rather small. We also compared the losses in achievable channel

capacity of IED suffered when the BCJR equalizer is replaced with the M-BCJR

equalizer and an MMSE LE. It was observed that the capacity loss for the M-BCJR

equalizer was very small. On the other hand, the MMSE LE suffered a substantial

loss in channel capacity. It was also observed that precoding only affects the IED

performance. It does not affect the channel capacity.

Simulation results showed that the M-BCJR algorithm suffers significant losses

in the case of simple convolutional decoders. This contrasting behavior of the M-

BCJR algorithm in the cases of ISI channels and convolutional codes was explained

by showing that the metrics computed during the forward and backward recursions

of the M-BCJR equalizer have much larger variance than in the case of a convolu-

tional code. The larger variance of the metrics in the M-BCJR equalizer makes the

algorithm less sensitive to the paths discarded.

Next, the convergence behavior of the M-BCJR equalizer was studied and com-

pared with the BCJR equalizer. In contrast with the BCJR equalizer, the actual con-

vergence threshold of the M-BCJR equalizer was found to disagree with its threshold

predicted from the EXIT charts. These observations were justified by showing that

the extrinsic outputs of the M-BCJR equalizer are not true LLR’s. It was there-
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fore argued that these values cannot be used directly as a priori input to the outer

decoder. We showed that the true LLR’s can be estimated using Bayes’ theorem if

the conditional distributions of the extrinsic outputs for each symbol in the input

alphabet of the ISI channel are known. We also presented some EXIT charts and

decoding trajectories for such a genie-assisted IED using the M-BCJR equalizer to

prove its effectiveness.

Since the genie-assisted IED assumes perfect knowledge of the actual informa-

tion bits, it is not practically realizable. Hence a practical and reliable estimator

for computing the true LLR’s from the extrinsic outputs of the M-BCJR equalizer

is required and we tried two different approaches to design such an estimator. In

the first method, the extrinsic outputs of the M-BCJR equalizer were assumed to

be Gaussian distributed. However, the Gaussian approximation estimator did not

yield satisfactory results. The second method consisted of using stored histograms of

the conditional distributions of extrinsic outputs computed from simulations. This

method was successful and significantly improved the performance of IED using the

M-BCJR equalizer.
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