448 research outputs found

    On the performance of successive interference cancellation in D2D-enabled cellular networks

    Full text link
    Abstract—Device-to-device (D2D) communication underlaying cellular networks is a promising technology to improve network resource utilization. In D2D-enabled cellular networks, the inter-ference among spectrum-sharing links is more severer than that in traditional cellular networks, which motivates the adoption of interference cancellation techniques such as successive inter-ference cancellation (SIC) at the receivers. However, to date, how SIC can affect the performance of D2D-enabled cellular networks is still unknown. In this paper, we present an analytical framework for studying the performance of SIC in large-scale D2D-enabled cellular networks using the tools from stochastic geometry. To facilitate the interference analysis, we propose the approach of stochastic equivalence of the interference, which con-verts the two-tier interference (interference from both the cellular tier and D2D tier) to an equivalent single-tier interference. Based on the proposed stochastic equivalence models, we derive the general expressions for the successful transmission probabilities of cellular uplinks and D2D links with infinite and finite SIC capabilities respectively. We demonstrate how SIC affects the performance of large-scale D2D-enabled cellular networks by both analytical and numerical results. I

    Zero-Outage Cellular Downlink with Fixed-Rate D2D Underlay

    Full text link
    Two of the emerging trends in wireless cellular systems are Device-to-Device (D2D) and Machine-to-Machine (M2M) communications. D2D enables efficient reuse of the licensed spectrum to support localized transmissions, while M2M connections are often characterized by fixed and low transmission rates. D2D connections can be instrumental in localized aggregation of uplink M2M traffic to a more capable cellular device, before being finally delivered to the Base Station (BS). In this paper we show that a fixed M2M rate is an enabler of efficient Machine-Type D2D underlay operation taking place simultaneously with another \emph{downlink} cellular transmission. In the considered scenario, a BS BB transmits to a user UU, while there are NMN_M Machine-Type Devices (MTDs) attached to UU, all sending simultaneously to UU and each using the same rate RMR_M. While assuming that BB knows the channel B−UB-U, but not the interfering channels from the MTDs to UU, we prove that there is a positive downlink rate that can always be decoded by UU, leading to zero-outage of the downlink signal. This is a rather surprising consequence of the features of the multiple access channel and the fixed rate RMR_M. We also consider the case of a simpler, single-user decoder at UU with successive interference cancellation. However, with single-user decoder, a positive zero-outage rate exists only when NM=1N_M=1 and is zero when NM>1N_M>1. This implies that joint decoding is instrumental in enabling fixed-rate underlay operation.Comment: Revised versio

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen
    • …
    corecore