7 research outputs found

    Bilayer Protograph Codes for Half-Duplex Relay Channels

    Get PDF
    Despite encouraging advances in the design of relay codes, several important challenges remain. Many of the existing LDPC relay codes are tightly optimized for fixed channel conditions and not easily adapted without extensive re-optimization of the code. Some have high encoding complexity and some need long block lengths to approach capacity. This paper presents a high-performance protograph-based LDPC coding scheme for the half-duplex relay channel that addresses simultaneously several important issues: structured coding that permits easy design, low encoding complexity, embedded structure for convenient adaptation to various channel conditions, and performance close to capacity with a reasonable block length. The application of the coding structure to multi-relay networks is demonstrated. Finally, a simple new methodology for evaluating the end-to-end error performance of relay coding systems is developed and used to highlight the performance of the proposed codes.Comment: Accepted in IEEE Trans. Wireless Com

    Bilayer Low-Density Parity-Check Codes for Decode-and-Forward in Relay Channels

    Full text link
    This paper describes an efficient implementation of binning for the relay channel using low-density parity-check (LDPC) codes. We devise bilayer LDPC codes to approach the theoretically promised rate of the decode-and-forward relaying strategy by incorporating relay-generated information bits in specially designed bilayer graphical code structures. While conventional LDPC codes are sensitively tuned to operate efficiently at a certain channel parameter, the proposed bilayer LDPC codes are capable of working at two different channel parameters and two different rates: that at the relay and at the destination. To analyze the performance of bilayer LDPC codes, bilayer density evolution is devised as an extension of the standard density evolution algorithm. Based on bilayer density evolution, a design methodology is developed for the bilayer codes in which the degree distribution is iteratively improved using linear programming. Further, in order to approach the theoretical decode-and-forward rate for a wide range of channel parameters, this paper proposes two different forms bilayer codes, the bilayer-expurgated and bilayer-lengthened codes. It is demonstrated that a properly designed bilayer LDPC code can achieve an asymptotic infinite-length threshold within 0.24 dB gap to the Shannon limits of two different channels simultaneously for a wide range of channel parameters. By practical code construction, finite-length bilayer codes are shown to be able to approach within a 0.6 dB gap to the theoretical decode-and-forward rate of the relay channel at a block length of 10510^5 and a bit-error probability (BER) of 10āˆ’410^{-4}. Finally, it is demonstrated that a generalized version of the proposed bilayer code construction is applicable to relay networks with multiple relays.Comment: Submitted to IEEE Trans. Info. Theor

    Bilayer protograph codes for half-duplex relay channels

    Full text link

    Design of low-density parity-check codes in relay channels

    Get PDF
    Recent breakthroughs in forward error correction, in the form of low-density parity-check (LDPC) and turbo codes, have seen near Shannon limit performances especially for pointto- point channels. The construction of capacity-achieving codes in relay channels, for LDPC codes in particular, is currently the subject of intense interest in the research and development community. This thesis adds to this field, developing methods and supporting theory in designing capacity-achieving LDPC codes for decode-and-forward (DF) schemes in relay channels. In the first part of the thesis, new theoretical results toward optimizing the achievable rate of DF scheme in half-duplex relay channels under simplified and pragmatic conditions (equal power or equal time allocation) are developed. We derive the closed-form solutions for the optimum parameters (time or power) that maximize the achievable rates of the DF scheme in the half-duplex relay channel. We also derive the closed-form expression for the DF achievable rates under these simplified and pragmatic conditions. The second part of the thesis is dedicated to study the problem of designing several classes of capacity-achieving LDPC codes in relay channels. First, a new ensemble of LDPC codes, termed multi-edge-type bilayer-expurgated LDPC (MET-BE-LDPC) codes, is introduced to closely approach the theoretical limit of the DF scheme in the relay channel. We propose two design strategies for optimizing MET-BE-LDPC codes; the bilayer approach and the bilayer approach with intermediate rates. Second, we address the issue of constructing capacity-achieving distributed LDPC codes in the multiple-access and two-way relay channels, with broadcast transmissions and time-division multiple accesses. We propose a new methodology to asymptotically optimize the codeā€™s degree distribution when different segments within the distributed codeword have been transmitted through separate channels and experienced distinct signal-to-noise ratio in the relay system. Third, we investigate the use of LDPC codes under the soft-decode-and forward (SDF) scheme in the half-duplex relay channel. We introduce the concept of a K-layer doping matrix that enables one to design the rate-compatible (RC) LDPC code with a lower triangular parity-check matrix, subsequently allowing the additional parity bits to be linearly and systematically encoded at the relay. We then present the soft-decoding and soft-re-encoding algorithms for the designed RC-LDPC code so that the relay can forward soft messages to the destination when the relay fails to decode the sourceā€™s messages. Special attention is given to the detection problem of the SDF scheme. We propose a novel method, which we refer to as soft fading, to compute the log-likelihood ratio of the received signal at the destination for the SDF scheme

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    Cooperative diversity techniques for future wireless communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2013.Multiple-input multiple-output (MIMO) systems have been extensively studied in the past decade. The attractiveness of MIMO systems is due to the fact that they drastically reduce the deleterious e ects of multipath fading leading to high system capacity and low error rates. In situations where wireless devices are restrained by their size and hardware complexity, such as mobile phones, transmit diversity is not achievable. A new paradigm called cooperative communication is a viable solution. In a cooperative scenario, a single-antenna device is assisted by another single-antenna device to relay its message to the destination or base station. This creates a virtual multiple-input multiple-output (MIMO) system. There exist two cooperative strategies: amplify-and-forward (AF) and decode-and-forward (DF). In the former, the relay ampli es the noisy signal received from the source before forwarding it to the destination. No form of demodulation is required. In the latter, the relay rst decodes the source signal before transmitting an estimate to the destination. In this work, focus is on the DF method. A drawback of an uncoded DF cooperative strategy is error propagation at the relay. To avoid error propagation in DF, various relay selection schemes can be used. Coded cooperation can also be used to avoid error propagation at the relay. Various error correcting codes such as convolutional codes or turbo codes can be used in a cooperative scenario. The rst part of this work studies a variation of the turbo codes in cooperative diversity, that further reduces error propagation at the relay, hence lowering the end-to-end error rate. The union bounds on the bit-error rate (BER) of the proposed scheme are derived using the pairwise error probability via the transfer bounds and limit-before-average techniques. In addition, the outage analysis of the proposed scheme is presented. Simulation results of the bit error and outage probabilities are presented to corroborate the analytical work. In the case of outage probability, the computer simulation results are in good agreement with the the analytical framework presented in this chapter. Recently, most studies have focused on cross-layer design of cooperative diversity at the physical layer and truncated automatic-repeat request (ARQ) at the data-link layer using the system throughput as the performance metric. Various throughput optimization strategies have been investigated. In this work, a cross-relay selection approach that maximizes the system throughput is presented. The cooperative network is comprised of a set of relays and the reliable relay(s) that maximize the throughput at the data-link layer are selected to assist the source. It can be shown through simulation that this novel scheme outperforms from a throughput point of view, a system throughput where the all the reliable relays always participate in forwarding the source packet. A power optimization of the best relay uncoded DF cooperative diversity is investigated. This optimization aims at maximizing the system throughput. Because of the non-concavity and non-convexity of the throughput expression, it is intractable to derive a closed-form expression of the optimal power through the system throughput. However, this can be done via the symbol-error rate (SER) optimization, since it is shown that minimizing the SER of the cooperative system is equivalent to maximizing the system throughput. The SER of the retransmission scheme at high signal-to-noise ratio (SNR) was obtained and it was noted that the derived SER is in perfect agreement with the simulated SER at high SNR. Moreover, the optimal power allocation obtained under a general optimization problem, yields a throughput performance that is superior to non-optimized power values from moderate to high SNRs. The last part of the work considers the throughput maximization of the multi-relay adaptive DF over independent and non-identically distributed (i.n.i.d.) Rayleigh fading channels, that integrates ARQ at the link layer. The aim of this chapter is to maximize the system throughput via power optimization and it is shown that this can be done by minimizing the SER of the retransmission. Firstly, the closed-form expressions for the exact SER of the multi-relay adaptive DF are derived as well as their corresponding asymptotic bounds. Results showed that the optimal power distribution yields maximum throughput. Furthermore, the power allocated at a relay is greatly dependent of its location relative to the source and destination

    On the performance of complexity-optimized bilayer lengthened LDPC codes for relay channels

    No full text
    corecore