9 research outputs found

    On the parity complexity measures of Boolean functions

    Get PDF
    The parity decision tree model extends the decision tree model by allowing the computation of a parity function in one step. We prove that the deterministic parity decision tree complexity of any Boolean function is polynomially related to the non-deterministic complexity of the function or its complement. We also show that they are polynomially related to an analogue of the block sensitivity. We further study parity decision trees in their relations with an intermediate variant of the decision trees, as well as with communication complexity.Comment: submitted to TCS on 16-MAR-200

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions ff\circ \oplus satisfies that Qϵ(f)=O(2d(logf^1,ϵ+lognϵ)log(1/ϵ))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and f^1,ϵ=ming:fgϵf^1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound Qϵ(f)=Ω(logf^1,ϵ)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlogf^0)Q_E(f) = O(2^d \log \|\hat f\|_0), where f^0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ω(logrank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    Truth Table Minimization of Computational Models

    Full text link
    Complexity theory offers a variety of concise computational models for computing boolean functions - branching programs, circuits, decision trees and ordered binary decision diagrams to name a few. A natural question that arises in this context with respect to any such model is this: Given a function f:{0,1}^n \to {0,1}, can we compute the optimal complexity of computing f in the computational model in question? (according to some desirable measure). A critical issue regarding this question is how exactly is f given, since a more elaborate description of f allows the algorithm to use more computational resources. Among the possible representations are black-box access to f (such as in computational learning theory), a representation of f in the desired computational model or a representation of f in some other model. One might conjecture that if f is given as its complete truth table (i.e., a list of f's values on each of its 2^n possible inputs), the most elaborate description conceivable, then any computational model can be efficiently computed, since the algorithm computing it can run poly(2^n) time. Several recent studies show that this is far from the truth - some models have efficient and simple algorithms that yield the desired result, others are believed to be hard, and for some models this problem remains open. In this thesis we will discuss the computational complexity of this question regarding several common types of computational models. We shall present several new hardness results and efficient algorithms, as well as new proofs and extensions for known theorems, for variants of decision trees, formulas and branching programs
    corecore